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OUD is a problematic pattern of opioid use that leads to sub-
stantial impairment or distress1. In the United States, a ten-
fold increase in opioid analgesic prescriptions between 1990 

and 2010 contributed to an epidemic of opioid misuse, abuse and 
overdose deaths2–4. By 2019, 3.7% of US adults reported past-year 
opioid misuse and 0.6% met criteria for an OUD5. Overdose deaths, 
which continue to increase annually, have reached crisis propor-
tions6, reflecting the limitations of available preventive and treat-
ment efforts.

Genetic studies can help inform our understanding of the biol-
ogy underlying OUD. However, although the estimated heritability 
(h2) of OUD based on twin and family studies is ~50%7, few genetic 
associations have been identified. Genome-wide association stud-
ies (GWAS) of OUD, opioid dependence (OD) or related pheno-
types have yielded inconsistent results, likely due to the limited 
sample size of the discovery datasets and different case and control 
definitions8–11.

The use of data from electronic health records (EHRs) linked 
to biobanks has provided increasingly large GWAS samples. An 
EHR-based study of 1,039 OUD cases identified two genome-wide 
significant (GWS) loci, with a single-nucleotide polymorphism 
(SNP)-based heritability of 6.0%12. A meta-analysis of African 
Americans (AAs; 5,212 OUD cases) and European Americans 
(EAs; 10,544 OUD cases) based largely on data from the Million 
Veteran Program (MVP), identified a single GWS SNP, rs1799971 

in OPRM1, in EAs only, with SNP-based heritability of 11.3%13. In 
this study, there were no GWS findings in AAs or in a cross-ancestry 
meta-analysis. A study that combined data from multiple cohorts 
(20,858 OUD cases), including an earlier release of MVP data, iden-
tified two GWS loci—a variant within OPRM1 in a cross-ancestry 
analysis, and an additional variant in FURIN in a European-ancestry 
(EUR) meta-analysis14.

Two recent GWAS have increased sample sizes for genetic dis-
covery by examining opioid-related phenotypes other than OUD. A 
GWAS of prescription opioid misuse in a EUR sample from 23andMe 
(27,805 cases) identified two novel GWS loci15. A meta-analysis of 
EUR individuals including 23,367 cases ascertained using either 
Diagnostic and Statistical Manual of Mental Disorders (DSM) diag-
noses or frequency of opioid use16 identified GWS SNPs in OPRM1 
and, in gene-based analyses, PPP6C and FURIN.

These studies also identified significant genetic correlations 
(rgs) with traits well known to co-occur with OUD, suggest-
ing widespread pleiotropy. The strongest positive rgs were with 
substance-related traits12,13,16 and psychiatric disorders13,16. Negative 
rgs were seen for educational attainment13,16 and subjective wellbe-
ing16. Causal effects on OUD for some of these traits were identified 
via Mendelian randomization (MR) analysis13. Positive causal effects 
on OUD were found for regular tobacco smoking, major depressive 
disorder (MDD) and neuroticism. A negative causal effect on OUD 
was seen for educational attainment. It was not possible to examine 
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the causal effect of OUD on these traits due to the limited number 
of GWS variants.

The different phenotypes used in these studies reflect the dif-
ficulty of ascertaining a large, multi-ancestry, well-characterized 
sample for use in GWAS of opioid-related phenotypes. EHR-based 
traits generally use International Classification of Disease (ICD) 
diagnostic codes for phenotyping OUD (for example, see refs. 12,13).  
Cohorts recruited from some nonclinical biobanks rely on single- 
item, self-report questionnaires (for example, see ref. 15) or have 
combined multiple case and control definitions derived as latent 
variables in genomic structural equation modeling (SEM)16. A key 
consideration in selecting OUD cases, particularly given the high 
prevalence of opioid use in the United States, is the stringency of the 
definition. More stringent case definitions increase confidence in 
the specificity of the diagnosis and, by reducing heterogeneity, may 
increase statistical power. However, they also reduce the sample size 
and have the potential to reduce generalizability by not capturing a 
disorder’s full range of presentations (for example, by misclassifying 
cases as subthreshold).

Here, we conducted a cross-ancestry meta-analysis of OUD 
that included AA, EA and Hispanic American (HA) participants 
recruited from the MVP that maximized OUD cases by using a 
less stringent definition (requiring the presence of a single OUD 
diagnostic code) and compared them to opioid-exposed controls 
(Ncases = 31,473 and Ncontrols = 394,471). In supplementary analyses, 
we compared our results to those using a stringent OUD pheno-
type in MVP (Ncases = 23,459 and Ncontrols = 394,471), and performed 
a meta-analysis that combined data from the MVP, Yale-Penn (data 
not shown), the Partners HealthCare Biobank12 and the Psychiatric 
Genomics Consortium (PGC11; Ncases = 37,761 and Ncontrols = 409,760).

Results
Sample description. Our MVP sample comprised 425,944 indi-
viduals (AA, 88,498; EA, 302,585; HA, 34,861), of whom 90.6% 
were male (Supplementary Table 1). The less stringent OUD defi-
nition yielded 28.8–38.9% more cases across the ancestral groups 
(AA, 8,968; EA, 19,978; HA, 2,527) than the stringent definition 
(AA, 6,457; EA, 15,040; HA, 1,962). In total, 2,525 (8%) of the 
less-stringent cases and 1,926 (8%) of the stringent cases had no 

opioid prescription fills. Among the individuals with a single OUD 
code (N = 8,014), 599 (7%) had no opioid prescription fills. Of the 
remaining individuals with an opioid prescription, less-stringent 
cases had 77.2 (s.d. = 96.9) opioid prescription fills, stringent cases 
had 76.5 (s.d. = 97.6) fills, and controls had 25.0 (s.d. = 48.3) fills. 
Thus, most individuals with an OUD diagnosis had documented 
prescriptions for opioids. Further, individuals with a single diagno-
sis code for OUD (that is, less stringent) had a similar number of 
opioid fills as those with the stringent diagnosis. Finally, the docu-
mented exposure to prescription opioids was similar for OUD cases 
defined using the less stringent diagnosis and those defined using 
the stringent diagnosis.

Identification of novel loci associated with opioid use disorder. 
The cross-ancestry meta-analysis of the less stringent OUD diag-
nosis within the MVP sample yielded 12 GWS variants, 10 of which 
were independent after conditioning on the lead variant within 
each locus (Fig. 1 and Supplementary Table 3). The protein-coding 
genes nearest these variants are CDKAL1, BTNL2 and OPRM1 (all 
on chromosome 6), RABEPK (chromosome 9), FBXW4 (chromo-
some 10; a second locus on chromosome 10 had no protein-coding 
gene within 500 kb), NCAM1 (chromosome 11), FURIN (chromo-
some 15), KCNN1 (chromosome 19) and RNF114 (chromosome 
20). The most robust signal was in OPRM1 (lead SNP rs1799971, 
P = 6.78 × 10−10), which replicates the main finding of the previous 
MVP OUD GWAS13. The variant in FURIN is supported by previ-
ous findings in variant-level14 and gene-based16 analyses. In addi-
tion, there were 3 ancestry-specific loci (Supplementary Table 4): 1 
each in AAs (NNT, chromosome 5), EAs (CDH8, chromosome 16) 
and HAs (MRS2, chromosome 8).

Replication of loci associated with opioid use disorder. The 
cross-ancestry meta-analysis of the stringent OUD diagnosis in the 
MVP sample also identified the variants in OPRM1 and FURIN and 
one additional locus (TSNARE1, chromosome 8; Supplementary 
Table 5). The cross-ancestry meta-analysis of all datasets (MVP, 
Partners HealthCare Biobank, PGC and Yale-Penn 3 (YP3)) iden-
tified no additional loci (Supplementary Table 8). GWS loci from 
all analyses are presented in Supplementary Tables 3–8. Based on 
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Fig. 1 | Manhattan and quantile–quantile plot for cross-ancestry meta-analysis of opioid use disorder (Ncases = 31,480 and Ncontrols = 394,484). 
Meta-analyses with effective sample size weighting were performed in METAL. The nearest protein-coding gene (<1 Mb) in each locus is labeled. [] 
represents an intergenic locus. The dashed line indicates GWS after correction for multiple testing (P < 5 × 10−8).
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all analyses, we identified a total of 14 GWS loci, 12 of which were 
novel (Table 1).

Single-nucleotide polymorphism heritability and genetic corre-
lations across GWAS datasets. In MVP, similar estimates of SNP 
heritability (h2

SNP ± s.e.) were obtained for the less stringent phe-
notype in AAs (0.11 ± 0.03) and EAs (0.12 ± 0.01). Estimates of 
h2

SNP for the stringent OUD phenotype were slightly higher (AA, 
0.20 ± 0.05; EA, 0.15 ± 0.01), and estimates were slightly lower for 
the ancestry-specific meta-analyses across datasets (AA, 0.08 ± 0.03; 
EA, 0.11 ± 0.01). Variation in these estimates appears to be driven 
by changes in effective sample size, as estimates using the actual 
sample size show little variation (Supplementary Table 9). Using a 
two-sample t-test, we found no significant difference in h2

snp across 
the ancestral groups (MVP less stringent phenotype, P = 0.69; 
MVP stringent phenotype, P = 0.35; and ancestry-specific meta- 
analysis, P = 0.40).

The cross-ancestry rg between MVP AA and EA populations 
was 0.43 (s.e. = 0.21, P = 6.83 × 10−3) for the less stringent diagnosis, 
and 0.48 (s.e. = 0.23, P = 2.58 × 10−2) for the stringent diagnosis. The 
within-ancestry rg (± s.e.) between datasets was high, ranging from 
0.66 (± 0.3) between the less stringent OUD MVP and Partners 
HealthCare Biobank datasets in EAs, to 1.2 (± 0.2) between the less 
stringent OUD MVP and the previous OUD MVP GWAS13 in EAs 
(which used the same diagnosis definition as the present stringent 
analysis) (Supplementary Table 10). Because the h2

SNP of the PGC 
and Yale-Penn datasets was low, we did not calculate rgs between 
MVP and either of these datasets. A sign test showed that the major-
ity of SNPs with P < 1 × 10−5 (N SNPs, AFR = 400 and EUR = 954) 
had the same direction of effect in both MVP and other datasets, 
with the exception of MVP AA and PGC AFR (AFR, MVP-PGC 
21.7%, P = 2.2 × 10−16; MVP-YP3 60.1%, P = 3.1 × 10−3; EUR, 
MVP-PGC 61.1%, P = 1.07 × 10−9; MVP-YP3 65.1%, P = 2.2 × 10−16; 
MVP-Partners 74.5%, P = 2.2 × 10−16).

Considering the similarity in h2
SNP between the different OUD 

GWAS and the greater number of loci captured by the less strin-
gent diagnosis in MVP, all downstream analyses were based on the 
GWAS for the less stringent OUD case definition in EAs within the 
MVP sample.

Partitioning heritability enrichment. We performed partitioning 
heritability enrichment analyses using linkage disequilibrium score 
regression (LDSC)17 and examined heritability enrichment for gene 
expression using Genotype–Tissue Expression (GTEx) data18. In 
the baseline model, genomic evolutionary rate profiling19 functional 
annotation was significantly enriched (P = 6.7 × 10−4), suggest-
ing that SNPs included in the analyses are under stronger negative 
selection (Supplementary Table 11). The only significantly enriched 
cell-type group was CNS (P = 3.34 × 10−3; Fig. 2a and Supplementary 
Table 12). We observed significant enrichment for OUD in brain tis-
sues only, including the anterior cingulate cortex (P = 4.71 × 10−6), 
limbic system (P = 3.25 × 10−5), prefrontal cortex (P = 5.73 × 10−5), 
cerebral cortex (P = 9.81 × 10−5), cortex (P = 1.11 × 10−4), hypothala-
mus (P = 1.23 × 10−4), amygdala (P = 1.41 × 10−4) and hippocampus 
(P = 2.04 × 10−4; Fig. 2b and Supplementary Table 13). There were 
no significant enrichments for epigenetic annotations after correc-
tion for multiple testing (Supplementary Table 14).

Transcriptome-wide analysis. We used S-PrediXcan20 to pre-
dict the effect of genetic variation on gene expression. Significant 
within-tissue gene expression regulation was identified for 43 tis-
sues, including brain, adipose, gastrointestinal, thyroid and liver 
(Supplementary Fig. 2 and Supplementary Tables 15 and 16). 
Significant associations with expression in brain tissues were 
detected for FURIN, FES, LRP8, LINC01556, ZNF660 and RP1-
153G14.4 (Fig. 2c). Some of these genes (FURIN, LINC01556, 
ZNF660 and RP1-153G14.4) were also expressed in non-brain tis-
sues, such as adipose, gastrointestinal and thyroid (Supplementary 

Table 1 | Summary of the 14 genome-wide significant loci identified in GWAS analyses of opioid use disorder

Chr Position (GRCh37/hg19) of lead SNPs Nearest genes GWAS analysis

5 43846681 NNT AA (less stringent)

6 21362610, 21478361 CDKAL1, SOX4 Cross-ancestry (less stringent), HA (less stringent), 
cross-ancestry (meta)

6 32383573 BTNL2 Cross-ancestry (less stringent)

6 154360797, 154380719, 154382139, 
154393680, 154396472

OPRM1 Cross-ancestry (less stringent), EA (less stringent), 
cross-ancestry (stringent), EA (stringent), cross-ancestry 
(meta), EA (meta)

6 24394925 MRS2 HA (less stringent)

8 143312933, 143316970 TSNARE1 Cross-ancestry (stringent), EA (stringent), EA (meta)

9 127873473, 127959540, 127980426 SCAI, RABEPK Cross-ancestry (less stringent), cross-ancestry (meta), 
EA (meta)

10 103414885 FBXW4 Cross-ancestry (less stringent), EA (less stringent), EA 
(meta)

10 110504365 [] Cross-ancestry (less stringent)

11 112869404 NCAM1 Cross-ancestry (less stringent)

15 91410009, 91406146, 91426560 FURIN Cross-ancestry (less stringent), EA (less stringent), 
cross-ancestry (stringent), EA (stringent), cross-ancestry 
(meta), EA (meta)

16 61631362 CDH8 EA (less stringent), EA (stringent)

19 18093588 KCNN1 Cross-ancestry (less stringent), AA (less stringent), 
cross-ancestry (meta), AA (meta)

20 48540277, 48583726 RNF114 Cross-ancestry (less stringent), cross-ancestry (meta)

Chr, chromosome number.
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Fig. 2), suggesting that OUD-related genetic variation may exert 
significant transcriptomic changes in the periphery as well as  
the CNS.

Considering the sharing of expression quantitative trait loci 
(eQTLs) across multiple tissues, we tested the joint effects of variation 
in gene expression across tissues using S-MultiXcan21. Significant 
transcriptomic effects for OUD were detected in eight genes, five 
of which overlapped with genes detected by S-PrediXcan (FURIN, 
FES, RP1-153G14.4, LRP8 and RABEPK) and three of which were 
novel (ZNF391, ZKSCAN4 and MAGOH) (Supplementary Table 
17). We also observed that the lead SNP in RABEPK was in high 
linkage disequilibrium (LD) with PPP6C variants (r2 > 0.8) that are 
significantly associated with gene expression and chromatin inter-
action, especially in the prefrontal cortex (Supplementary Fig. 3).

Using summary-based MR (SMR) and Brain-eMeta data22, we 
found that FURIN (beta = −0.13) and PPP6C (beta = 0.09) passed 
the SMR (false discovery rate (FDR) q < 0.05) and HEIDI (HEIDI 
P > 0.05) causality tests, consistent with the genes being associated 
with OUD via their regulation of brain mRNA expression levels 
(Supplementary Table 18). We also found that OPRM1 expression 
was causal for OUD when the variant rs3778151 was used as an 
instrument (beta = −0.21, FDR q = 0.03, HEIDI P = 0.06). In the 
cerebellum (which has high levels of OPRM1 expression in GTEx), 
expression was causal for OUD using either variant as an instrument 
(FDR q < 0.05). However, the most significant variant (rs1799971) 
failed the heterogeneity test (HEIDI P = 1.75 × 10−4). This suggests 
that the effect of rs1799971 is functional rather than mediated by 
gene expression, consistent with it being a nonsynonymous sub-
stitution. This contrasts with rs3778151, which appears to exert its 
causal effect via gene expression (HEIDI P = 0.07).

Gene-set, functional enrichment and drug repurposing analyses. 
MAGMA gene-based analyses identified one GWS gene in AAs 
(CHRM2, P = 9.52 × 10−7) and three GWS genes in EAs (OPRM1, 
P = 2.17 × 10−7; FTO, P = 9.52 × 10−7; DRD2, P = 1.67 × 10−6; 

Supplementary Fig. 4), but none in HAs. GCTA-fastBAT gene-based 
analyses identified two GWS genes in EAs (OPRM1, P = 3.14 × 10−8; 
BTRC, P = 3.21 × 10−7), but none in AAs or HAs. Following 
Bonferroni correction, no biological processes or pathways were 
significantly enriched, although nominal associations in EAs high-
lighted pathways of potential relevance, including ‘dopamine recep-
tors’ (P = 1.87 × 10−5) and ‘regulation of adenylate cyclase activating 
G-protein-coupled receptor signaling pathway’ (P = 4.39 × 10−5; 
Supplementary Table 19).

Genes identified in the variant-level, gene-based or tran-
scriptome (brain region) analyses (N = 24) are summarized in 
Supplementary Table 20. Examination of these genes for drug–gene 
interactions via the Drug Gene Interaction database identified 
761 interactions between 8 genes (CHRM2, DRD2, FES, FURIN, 
KCNN1, NCAM1, OPRM1 and PRL) and 340 unique medications 
(Supplementary Table 21 and Supplementary Fig. 5). OPRM1 had 
193 interactions, mainly with classes of analgesics, anesthetics and 
drugs for constipation. DRD2 had 376 interactions, most of which 
were with psycholeptics.

Genetic correlations. We estimated pairwise rgs with OUD for 
40 published phenotypes using LDSC23. OUD showed significant 
rgs with 21 traits. As expected, the strongest positive correlations 
were with substance use traits (for example, problematic alcohol 
use: rg = 0.70, cannabis use disorder: rg = 0.65, ever smoked regu-
larly: rg = 0.44) and psychiatric disorders (for example, bipolar 
disorder: rg = 0.32, MDD: rg = 0.29). The strongest negative cor-
relation (rg = −0.27) was with educational attainment (Fig. 3a and 
Supplementary Table 22). We also assessed rgs of OUD with 1,270 
complex traits from the UK Biobank using the Complex-Trait 
Genetics Virtual Lab (CTG-VL)24. After multiple-testing correc-
tion (P = 3.94 × 10−5), OUD was significantly associated with 106 
traits (Supplementary Fig. 6 and Supplementary Table 23). These 
included positive correlations with substance use-related traits (for 
example, current smoking: rg = 0.44; ever addicted to any substance 
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or behavior: rg = 0.67), psychiatric traits (for example, anxiety treat-
ment: rg = 0.41, self-reported depression: rg = 0.35) and pain-related 
traits (for example, low back pain: rg = 0.44, multisite chronic pain: 
rg = 0.26), and negative correlations with having secondary educa-
tion qualifications (rg = −0.34) and the presence of social support 
(rg = −0.36). Thus, overall, we found that increased risk of OUD is 
genetically correlated with increased liability for use of substances, 
psychiatric disorders and experiencing pain, and lower likelihood of 
educational attainment and social support.

Mendelian randomization. Using MR, we tested for bidirectional 
causal effects between OUD and the 21 traits identified as signifi-
cantly genetically correlated with OUD (Fig. 3a and Supplementary 
Fig. 7). There was a causal effect of OUD on 6 traits: problematic 
alcohol use, drinks per week, cannabis use disorder, general risk 
tolerance, MDD and cross disorder. Among the 21 traits, 9 had a 
causal effect on OUD, of which 2 showed a negative causal effect on 
OUD (cognitive performance and educational level) and 7 showed 
a positive causal effect on OUD (in descending order of magnitude: 
drinks per week, worry subcluster, neuroticism, number of sexual 
partners, MDD, cigarettes per day and schizophrenia).

Polygenic risk scores and phenome-wide association studies. 
Polygenic risk scores (PRSs) were calculated in two independent 
datasets to identify phenotypic associations of genetic liability for 
OUD. In the Yale-Penn sample, PRSs were calculated for 4,918 AA 
individuals and 5,692 EA individuals. No significant associations 
were identified for AAs (Supplementary Fig. 8 and Supplementary 
Table 24). In EAs, phenome-wide association studies (PheWAS) 
identified 43 phenotypes in the opiate domain and 78 phenotypes 
in other phenotypic domains that were significantly associated with 
OUD PRSs (Fig. 3c and Supplementary Table 25). The most sig-
nificantly associated phenotypes were ‘ever used opioids’ and ‘time 
spent obtaining/using opioids’. In Vanderbilt University Medical 
Center’s (VUMC) Biobank (BioVU), PRSs were calculated for 
12,384 AAs and 66,903 EAs. No significant associations were found 
for OUD PRS in AAs (Supplementary Fig. 9 and Supplementary 
Table 26). In EAs, the OUD PRS was associated with 27 phenotypes, 
including ‘substance addiction and disorders’ and ‘mood disorders’ 
(Fig. 3b and Supplementary Table 27).

Genomic structural equation modeling. We conducted genomic 
SEM to evaluate how OUD relates to the 3 other substance use traits 
and the 7 psychiatric disorders identified as the most significantly 
associated with OUD in genetic correlation analyses. Exploratory 
factor analysis involving all 11 traits supported a four-factor model 
with cumulative variance of 0.639. We retained paths with a loading 
factor ≥ 0.2 and conducted confirmatory factor analysis. In this anal-
ysis, the four-factor model fit the data well (comparative fit index of 
0.948, Akaike information criterion of 340.840, χ2 = 276.840, d.f. = 34, 
standard root mean root square error = 0.073). The 4 substance use 
traits all loaded on factor 1, with a major contribution from OUD 
(0.84 ± 0.05) and problematic alcohol use (0.91 ± 0.3), and lower 
contributions from cannabis use disorder (0.58 ± 0.06) and ever 
smoked regularly (0.40 ± 0.03). Cannabis use disorder (0.37 ± 0.06) 
and ever smoked regularly (0.42 ± 0.03), together with other psychi-
atric disorders, also loaded on factor 3. Major psychiatric disorders, 

including bipolar disorder (0.86 ± 0.04), schizophrenia (0.76 ± 0.03) 
and MDD (0.43 ± 0.03) loaded on factor 2. Tourette’s syndrome (TS; 
0.33 ± 0.07) and obsessive-compulsive disorder (OCD; 1.03 ± 0.21) 
loaded on factor 4 (Fig. 4 and Supplementary Table 28).

Discussion
This study, the largest single-sample GWAS of OUD to date, iden-
tified 14 loci associated with the disorder, 12 of which are novel 
findings. Three of these loci were significant in ancestry-specific 
analyses only, demonstrating that inclusion of diverse ancestral 
samples in genetic studies of OUD permits the identification of 
novel genetic variants. Post-GWAS analyses in EAs revealed enrich-
ment for OUD in the CNS, particularly the brain, and an extensive 
phenotypic spectrum associated with genetic liability for OUD.

Because the effect sizes of common variants contributing to 
highly polygenic phenotypes such as OUD are small, large sample 
sizes are required to identify GWS loci. The largest OUD GWAS 
before the current study greatly increased the effective sample size 
(Neffective = 88,115) by conducting meta-analyses of the results of 
studies that used a range of case and control definitions16. Here, we 
performed GWAS using the stringent definition of OUD used by 
Zhou et al.13 (Neffective = 88,569) and a less stringent definition requir-
ing the presence of only one ICD Ninth Revision (ICD-9) or Tenth 
Revision (ICD-10) diagnostic code for opioid abuse or dependence 
(Neffective = 116,590). Although the less stringent definition lowers 
the specificity of the case phenotyping (that is, individuals are more 
likely to be mislabeled as having OUD), it increases the number of 
cases by more than 8,000, reveals eight more GWS variants than the 
stringent definition, and as denoted by the high genetic correlation 
between the two definitions, has a similar polygenic architecture. 
These results support previous conclusions that the potential vari-
ability introduced by broadening phenotypic definitions in genetic 
studies of OUD is outweighed by substantial increases in sample 
size16. In contrast, our meta-analysis of the MVP data with other 
datasets reduced the number of GWS loci identified, potentially 
because the smaller additional datasets increased the variability in 
the effect size of variants.

The most significant locus, OPRM1, encodes the mu-opioid 
receptor, which binds morphine and other opioids and has 
been the focus of many functional and candidate gene studies of 
opioid-related phenotypes25–27. In a previous GWAS comprised 
principally of participants from MVP, OUD was significantly asso-
ciated only with OPRM1 in EAs13, with the lead SNP being the non-
synonymous, exon 1 variant rs1799971 (A118G). In neither that 
study, nor the present study, was the SNP associated with OUD in 
AAs, presumably because the minor (G) allele frequency in this 
population group is considerably lower than in EAs28. Even so, it is 
difficult to explain why meta-analysis with AAs does not increase 
the statistical strength of the association of OUD with this variant if 
it is truly the lead functional variant, even if based on introgressed 
EA alleles alone.

We identified a second peak in OPRM1, with the lead SNP 
rs3778151, a variant in intron 1 that is in high LD with rs9478500 
(r2 = 0.56–0.90)29, the variant associated with opioid addiction in a 
recent meta-analysis16. A previous study in EA alcohol-dependent 
or drug-dependent cases and controls also identified two inde-
pendent LD blocks in OPRM1 (ref. 30). Our SMR analyses suggest 

Fig. 3 | Phenotypic spectrum associated with opioid use disorder. a, Genetic correlation analyses showed multiple traits significantly genetically 
correlated with OUD following Bonferroni correction (P < 1.25 × 10−3; red bars indicate positively correlated traits, while blue bars indicate negatively 
correlated traits). MR analyses identify causal associations between OUD and other traits (red arrows denote a positive causal association, blue arrows 
denote a negative causal association). b,c, PheWAS results in BioVU (b) and Yale-Penn (c) datasets. All phenotypes significant at an FDR of q < 0.05 are 
plotted. In b, all phenotypes that passed Bonferroni correction (P < 3.7 × 10−5) are labeled. For readability, in c, only the top three traits within each group 
that passed Bonferroni correction (P < 7.9 × 10−5) are labeled. Circle size denotes effect size. ASPD, antisocial personality disorder; PTSD, post-traumatic 
stress disorder.
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a plausible role for both variants in OUD: a functional effect for 
the nonsynonymous substitution rs1799971 and an effect on gene 
expression by rs3778151.

Our cross-ancestry analysis identified a SNP in FURIN, with 
transcriptome-wide analyses showing significant downregulation 
of gene expression in brain-related tissues. These findings support 
the reported associations of OUD with FURIN both in gene-based 
analyses14,16 and in a variant-level meta-analysis14. Although FURIN 
encodes a protease that cleaves some endogenous opioids31, the 
enzyme has not previously been linked to the effects of exogenous 
opioids or mu-opioid receptor signaling. Given these findings, fur-
ther research on the mechanism underlying the gene’s effects on risk 
of OUD is warranted.

Our analysis also identified 12 novel GWS loci. Two of these, in 
RABEPK and NCAM1, were GWS in a multi-trait analysis using 
GWAS of OUD with cannabis use disorder and alcohol use disor-
der14. Here, we show associations directly with OUD. RABEPK is 
adjacent to PPP6C, a gene previously implicated in a gene-level 
analysis of OUD16 that has also been linked to reward-related phe-
notypes like obesity and smoking32,33. Our analysis shows that the 
lead SNP in RABEPK is tagging PPP6C variants that affect gene 
expression and chromatin interaction. Furthermore, SMR analyses 
show that expression changes in PPP6C are causal for OUD. These 
lines of evidence suggest that PPP6C is likely the causal gene in this 
locus. NCAM1 and KCNN1 have been implicated in the neurophar-
macology of opioid-related phenotypes. The mouse homolog of 
KCNN1 is differentially expressed in the nucleus accumbens follow-
ing chronic morphine exposure34, and downregulated in the rodent 
prelimbic cortex after exposure to cues associated with morphine 
withdrawal35. NCAM1 also appears to be involved in the response to 
morphine exposure. Tolerance in rodents due to repeated morphine 
injection can be prevented by treatment with an antisense oligode-
oxynucleotide that targets Ncam1 (ref. 36). NCAM1 variants have also 
been significantly associated with other substance use traits33,37–39.

Several other loci contain GWS hits for other traits, suggesting 
widespread pleiotropy of loci associated with OUD. CDKAL1 and 
BTNL2 have been associated with metabolic traits such as type 2 dia-
betes, body mass index40 and obesity-related phenotypes32. FBXW4 
and CDH8 have previous associations with cognitive traits such as 

educational attainment and mathematical ability41, and TSNARE1 
has a previous association with schizophrenia42.

Partitioning heritability enrichment analyses showed that CNS 
cells were the only significantly enriched group. We found signifi-
cant enrichment for OUD in brain tissues only, including regions 
previously associated with the underlying neurobiology of the dis-
order43. These findings underscore the neural basis of OUD and 
reinforce the conceptualization of substance use disorders, which 
are often chronic and relapsing, as brain diseases. This notion was 
novel when proposed nearly 25 years ago44 and although today it is 
a view widely held by neuroscientists and clinicians, it is not uni-
versally understood by politicians or the general public. Improving 
our understanding of the biological basis of OUD could promote a 
science-based response to the opioid epidemic.

Consistent with previous findings, OUD showed strong genetic 
correlations with multiple substance use disorders, psychiatric dis-
orders, cognitive traits and risk behaviors13,16,45. MR analyses dem-
onstrated causal effects of OUD on problematic alcohol use and 
cannabis use disorder, and a bidirectional causal effect with drinks 
per week. These findings have both theoretical and clinical implica-
tions for the ‘gateway hypothesis’ of addiction liability, which pos-
its that substance use starts with a legal substance and progresses 
on to the use of hard drugs, such as opioids. A more compelling 
explanation for the high rate of comorbidity of OUD with other 
substance-related traits is common genetic liability or pleiotropic 
effects46, which is supported here by the robust genetic correlations 
between OUD and other substance-related traits, the causal effects 
of OUD on other substance use, and the latent addiction factor 
identified through genomic SEM.

Genetic liability for psychiatric traits, including neuroticism and 
schizophrenia, was also causally associated with OUD, with a bidi-
rectional causal effect of MDD on OUD. Our findings, along with 
those of others13, suggest that OUD has a common biological path-
way with schizophrenia and MDD. Despite the significant genetic 
correlations and causal associations between OUD and psychiatric 
disorders, genomic SEM indicated a common genetic factor rep-
resenting broad genetic liability for substance use disorders that is 
distinct from those underlying the psychiatric disorders. The factor 
structure among psychiatric disorders seen here is consistent with 
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Fig. 4 | Genomic SEM analysis of ouD with other substance use traits and psychiatric disorders. Analysis of OUD with PAU, problematic alcohol 
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previous findings47 and shows that cannabis use disorder and smok-
ing, unlike OUD, load onto both the substance use disorder factor 
and the factor underlying MDD, attention-deficit hyperactivity dis-
order (ADHD), autism spectrum disorder (ASD) and TS.

PheWAS of the genetic liability for OUD in the Yale-Penn sam-
ple, which was ascertained for substance use disorders, reproduced 
the broad association with other substance use. In a clinical dataset 
using EHR data, the genetic liability for OUD was associated with 
multiple traits in every phenotypic domain tested, demonstrating 
the widespread effects of OUD liability on bodily systems. Some of 
the associations may be due to phenotypic correlation. For instance, 
associations were found with viral hepatitis and human immuno-
deficiency virus, potential proxies of injection drug use, and with 
chronic pain and back pain, potential proxies for the use of analge-
sic medications. Negative associations with obesity, type 1 diabetes 
and skin cancer could reflect underreporting or underdiagnosis in 
individuals with OUD, or they could reflect true biological relation-
ships. The lack of genetic correlation between obesity and OUD 
(Supplementary Table 22) argues against a biological relationship 
between the two.

Limitations to the present study should be noted. Although it 
includes AA, EA and HA individuals, participants of European 
ancestry make up more than 60% of the total sample, which in large 
part drove the results of the cross-ancestry analysis. This disparity 
in sample size is also reflected in analyses of the individual ances-
tral groups, in which the smaller AA and HA groups provided less 
statistical power and yielded fewer significant loci. The lower power 
of the AA GWAS is also reflected in the lack of associations in PRS 
analysis in AAs. Future GWAS of OUD should focus on expanding 
sample sizes for populations of non-European ancestry to capture 
loci that are relevant to specific population groups. The sample for 
this study is >90% male, reflecting the sex distribution of veterans 
in the United States. Risk variants relevant only to women may thus 
have been overlooked due to the lower statistical power. Because 
the MVP dataset lacks information on the initiation of opioid use 
among individuals diagnosed with OUD, we could not differentiate 
participants who developed the disorder only after being prescribed 
opioid analgesics from those whose first opioid use involved recre-
ational use of analgesics or heroin. Differences in the initiation of 
opioid use could reflect different genetic risk factors contributing to 
nonoverlapping intermediate phenotypes (for example, pain thresh-
old/susceptibility in analgesic use versus risk taking in recreational 
use). Finally, a study of the validity of incident OUD diagnoses in 
the US Department of Veterans Affairs (VA) EHR data showed 
that 26% of diagnoses were erroneous, attributable to administra-
tive errors (77%) or clinical ones (23%)48. Such false positive errors, 
however, are likely to bias the findings to the null, rather than con-
tribute to false positive findings.

In summary, we have identified 14 genetic loci associated with 
OUD, the majority of which are novel. Many of the loci contain 
genes with previous associations with substance use or psychiatric 
disorders, suggesting widespread pleiotropy. The use of a less strin-
gent definition of OUD allowed 25% more OUD cases than a strin-
gent definition in the MVP sample. Downstream analyses validate 
this approach by demonstrating plausible enrichment of OUD in 
brain regions, genetic correlations with other substance use disor-
ders and psychiatric disorders, and association between OUD PRSs 
and OD in an independent sample. Our findings provide insight 
into the biological underpinnings of OUD, which could inform 
preventive, diagnostic and therapeutic efforts and thereby help to 
address the opioid epidemic.
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Methods
Overview of analyses. We conducted an ancestry-specific GWAS using a less 
stringent OUD case definition in AAs, EAs and HAs from the MVP, followed by 
a cross-ancestry meta-analysis. Cases had received at least one lifetime ICD-9 
or ICD-10 diagnosis of OUD and control participants were exposed to opioids. 
Further details on phenotyping are described below.

In a supplementary analysis, we performed within-ancestry meta-analyses for 
AAs and EAs from the MVP, Yale-Penn (data not shown), the Partners HealthCare 
Biobank12 and the PGC11, followed by a cross-ancestry meta-analysis that included 
all samples. In a second supplementary analysis, we repeated the GWAS in MVP 
with the more stringent case definition used in the previous MVP OUD GWAS13. 
Most subsequent downstream analyses are based on the GWAS for the less 
stringent OUD case definition in EAs within the MVP sample, with the exception 
being the use of the stringent definition in the same population group to estimate 
its heritability and to calculate genetic correlations between the less-stringent and 
stringent traits. An overview of the analyses is provided in Supplementary Fig. 1.

Million Veteran Program cohort. As of September 2021, the MVP49 had 
recruited approximately 850,000 veterans at 63 VA medical centers nationwide. 
All participants provided written informed consent and a blood sample for DNA 
extraction and genotyping and gave permission to access their EHRs for research 
purposes. The MVP was approved by the Central Veterans Affairs Institutional 
Review Board (IRB) and all site-specific IRBs. All relevant ethical regulations for 
work with human participants were followed in the conduct of the study.

Phenotypes. OUD diagnostic codes based on ICD-9/10 were obtained from the 
VA EHRs. The main GWAS used a less stringent definition of OUD (N = 31,473), 
which required the presence of one inpatient or outpatient ICD-9/10 diagnostic 
code for OUD (304.0, 304.7, 305.5, F11.1, F11.2) in the EHR. The stringent 
definition (N = 23,459), used in the supplementary GWAS, required at least one 
inpatient or two outpatient ICD-9/10 OUD diagnostic codes in the EHR. Controls 
(N = 394,471) for all GWAS were defined as individuals with at least one outpatient 
opioid analgesic prescription fill (that is, exposed to opioids, but excluding 
prescriptions for OUD treatment (for example, buprenorphine or methadone)) and 
no ICD-9/10 diagnosis code for OUD documented in the EHR. Demographics are 
presented in Supplementary Table 1.

Genotyping and imputation. The genotyping of samples in the MVP is ongoing 
and, in this analysis, we used release 4 imputed data. MVP samples were genotyped 
with a custom Affymetrix Axiom Biobank Array. Quality control of genotype 
data and subsequent imputation were performed by the MVP Genomics Working 
Group. Duplicate samples were removed, as were those with a sex mismatch, seven 
or more relatives in MVP (kinship > 0.08), excessive heterozygosity or a genotype 
call rate < 98.5%. Variants were removed if they were monomorphic, had a missing 
call rate < 0.8 or had a Hardy–Weinberg equilibrium of P < 1 × 10−6 both in the 
entire sample using a principal-component analysis (PCA)-adjusted method and 
within one of the three major ancestral groups (AA, EA and HA). Genotypes were 
phased with SHAPEIT4 (v.4.1.3)50 and imputed using Minimac4 software51, with 
biallelic SNPs imputed using the African Genome Resources reference panel by the 
Sanger Institute (which includes all samples from 1000 Genomes Project phase 3, 
version 5 reference panel52, together with 1,500 unrelated pan-African samples), 
and non-biallelic SNPs and indels imputed in a secondary imputation using the 
1000 Genomes Project phase 3, version 5 reference panel52. Indels and complex 
variants from the second imputation were merged into the African Genome 
Resources imputation.

We removed one individual from each pair of related individuals at random 
(kinship > 0.08, N = 31,010). Genetic ancestry was unified with self-identified race/
ethnicity using the HARE (Harmonizing Genetic Ancestry and Self-Identified Race/
Ethnicity) method53. Quality control of imputed variants was performed within each 
ancestral group. Genetic variants were excluded based on minor allele frequency 
(MAF, AA < 0.005; EA < 0.001; HA < 0.01), genotype call rate < 0.95, and Hardy–
Weinberg equilibrium P < 1 × 10−6 or a population-specific imputation quality 
(INFO) score < 0.7. Genome-wide association analyses were performed using PLINK 
(v.2.0)54 and a logistic regression model. Covariates included sex, age at enrollment 
and the first ten genetic principal components (PCs) within each ancestry.

Datasets for meta-analysis. Supplementary Table 2 summarizes the datasets used 
for meta-analysis. Summary statistics for GWAS of OUD were obtained from two 
previously published datasets: (1) Partners HealthCare Biobank, which used the 
same less stringent case definition and opioid-exposed controls in individuals 
of European ancestry12, and (2) PGC, which used a DSM-IV OD diagnosis and 
opioid-exposed controls in individuals of African and European ancestry11. We also 
included the YP3 unpublished dataset (Yale-Penn 1 and 2 were included in PGC 
analyses). In YP3, we conducted a GWAS using cases with a DSM-IV OD diagnosis 
and opioid-exposed controls. For AAs, there were 168 cases and 153 controls; 
for EAs, there were 578 cases and 219 controls. We used GEMMA to conduct an 
association analysis to account for relatedness between the individuals. Sex, age at 
enrollment and the first ten PCs were included as covariates. We used a sign test 
to compare the direction of effects for SNPs in MVP and the other three datasets. 

SNPs with P < 1 × 10−5 from MVP AFR results (400 SNPs) or from MVP EUR 
results (954 SNPs) were evaluated for the direction of their signs in PGC, Partners 
and YP3 results. We used a binomial test to evaluate the null hypothesis that 50% 
of SNPs have the same effect direction in independent datasets.

Meta-analysis and independent variants. Meta-analyses were conducted using a 
sample size-weighted method in METAL55 due to substantial differences in sample 
sizes. To compensate for the imbalance in the ratio of cases to controls, effective 
sample sizes were calculated using the formula: 4/(1/n_case + 1/n_control). 
Effective sample sizes were used in all meta-analyses and all downstream analyses. 
Meta-analyses were conducted across the following datasets: (1) cross-ancestry 
(AA, EA and HA) meta-analysis within MVP, comprising 31,473 less-stringent 
OUD cases and 394,471 controls and 23,459 stringent cases and 394,471 controls; 
(2) within-ancestry meta-analysis across datasets (AA: MVP (8,968 less-stringent 
cases and 79,530 controls), PGC (1,297 less-stringent cases and 1,291 controls), 
YP3 (168 less-stringent cases and 153 controls); EA: MVP (19,978 less-stringent 
cases and 282,607 controls), Partners HealthCare Biobank (Partners: 1,038 
less-stringent cases and 10,744 controls), PGC (3,272 less-stringent cases and 2,876 
controls), YP3 (578 less-stringent cases and 219 controls)); (3) cross-ancestry 
meta-analysis across all datasets (AA (MVP, PGC, YP3; 10,433 less-stringent cases 
and 80,974 controls); EA (MVP, Partners HealthCare Biobank, PGC, YP3; 24,866 
less-stringent cases and 296,446 controls); HA (MVP; 2,527 less-stringent cases and 
32,334 controls)).

To identify independent variants, we performed LD clumping within each 
ancestry using a range of 3,000 kb, r2 > 0.1, and the matched 1000 Genomes52 
reference panel. Following clumping, variants that were located <1 Mb apart were 
merged into a single locus. For loci that contained multiple variants, we conducted 
conditional analyses using COJO in GCTA56. Within each locus, we conditioned 
on the most significant variant. Upon conditioning, variants within the locus that 
remained significant (P < 5 × 10−8) were considered independent.

Single-nucleotide polymorphism-based heritability analyses and partitioning 
heritability enrichment. We used LDSC23 to estimate OUD (less-stringent 
and stringent case definitions) SNP-based heritability (h2

SNP) in AAs and 
EAs for common SNPs mapped to HapMap3 (ref. 57). To ensure matching 
of population LD structure, we used pre-computed LD scores based on the 
African and European 1000 Genomes Project phase 3 (ref. 52). SNPs in the major 
histocompatibility complex region were excluded. Because of the high degree of 
genetic admixture in HAs and the smaller size of the sample, we did not estimate 
h2

SNP in that population group.
We used LDSC to partition h2

SNP in the OUD EA dataset and examined 
the enrichment of the partitioned h2

SNP based on different functional genomic 
annotation models17,58. In the baseline model, we examined 75 overlapping 
functional annotations comprising genomic, epigenomic and regulatory features 
(see ref. 17 for details). Next, we analyzed ten overlapping cell-type groups derived 
from 220 cell-type-specific annotations in four histone marks: methylated 
histone H3 Lys4 (H3K4me1), trimethylated histone H3 Lys4 (H3K4me3), 
acetylated histone H3 Lys4 (H3K4ac) and H3K27ac (see ref. 17 for details). Finally, 
enriched cell-type categories were analyzed based on annotations obtained from 
H3K4me1-imputed, gapped peak data generated by the Roadmap Epigenomics 
Mapping Consortium59 (see ref. 58. for details). For each h2

SNP partitioning model, 
multi-allelic and major histocompatibility complex region variants were excluded, 
and Bonferroni correction was applied to identify significant enrichment.

Gene-based, functional enrichment and pathway analyses. We performed 
gene-based association testing for OUD in FUMA (v1.3.6a)60, with MAGMA 
(v1.08)61, which uses multiple regression models to detect multiple marker 
effects that account for SNP P values and LD between markers, using the 
matched-ancestry 1000 Genomes Project phase 3 panel52 as LD reference. We 
used 18,707 protein-coding genes, with P < 2.67 × 10−6 (0.05/18,707) considered 
GWS. We also conducted a separate gene-based analysis with GCTA-fastBAT, 
which included 26,292 genes62. We tested the genetic architecture of selected lead 
SNPs by integrating our GWAS results with brain-related GTEx v7 and chromatin 
interaction data in FUMA.

To identify gene sets enriched for OUD, we used MAGMA61 to curate gene 
sets, Gene Ontology terms (obtained from MsigDB c2) and GWAS-catalog 
enrichment, correcting for gene size, variant density and LD within and between 
genes. We also used MAGMA to test the association between gene-set properties 
and tissue-specific gene expression profiles using GTEx (v.7) data from 53 tissues 
(Bonferroni-corrected P-value threshold of 9.43 × 10−4).

Transcriptome-wide association analyses. We performed transcriptome- 
wide association analyses using the MetaXcan framework20 and the GTEx  
release v.8 eQTL MASHR-M models63. Forty-nine tissues from GTEx v.8 were 
analyzed comprising 12,951 samples. First, GWAS summary statistics were 
harmonized for the EA population based on the human genome assembly  
GRCh38 (hg38) and linked to the 1000 Genomes reference panel using GWAS 
tools, as previously described20. A transcriptome-wide association analysis of 
49 tissues was run using S-PrediXcan20. A Bonferroni correction for statistical 
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significance was applied within each tissue conditioned on the number of genes 
tested (Supplementary Table 15).

Because eQTLs were correlated across tissues, we integrated gene expression 
signals for 49 tissue panels using S-MultiXcan21 and tested 10,552 genes in 
total. Resulting P values were Bonferroni corrected to identify significant gene 
associations (P-value threshold = 4.74 × 10−6).

To examine whether the effects of GWS variants associated with OUD are 
mediated by changes in gene expression patterns, we performed SMR analyses64 
using brain cis-eQTL summary data (Brain-eMeta22) obtained from a meta-analysis 
of ten brain regions in GTEx (v6)65, and dorsolateral prefrontal cortex in CMC66 
and ROSMAP67. We also conducted SMR analyses for individual brain tissues 
generated from GTEx (v8)63. We considered causal genes to be those with a P value 
below an FDR threshold of 5% and no evidence of pleiotropy (HEIDI P > 0.05).

Drug interactions. To identify drugs that could potentially be repurposed to treat 
OUD, we examined genes identified in the variant-level or gene-based analyses 
using the Drug Gene Interaction Database68 (https://www.dgidb.org/). Medications 
were categorized using the Anatomical Therapeutic Chemical classification system, 
retrieved from the Kyoto Encyclopedia of Genes and Genomics (https://www.
genome.jp/kegg/drug/).

Genetic correlation. We used LDSC23 to calculate the rg between (a) OUD or 
OD datasets used for meta-analysis (AA (MVP, PGC, YP3); EA (MVP, Partners 
HealthCare Biobank, PGC, YP3)) and (b) OUD (MVP EA) and 40 other published 
psychiatric, substance use, cognitive and anthropometric traits selected based on 
a priori hypotheses (see Supplementary Table 20 for a full list), using pre-computed 
LD scores for HapMap3 (ref. 57) SNPs based on the matched-ancestry 1000 
Genomes Project phase 3 reference panel52. To explore additional traits in a 
hypothesis-free manner, we also estimated the rg between OUD and 1,270 traits 
(comprising published and unpublished traits from the UK Biobank using the 
CTG-VL (https://genoma.io/). CTG-VL integrates publicly available GWAS 
summary statistics and utilizes the LDSC framework to calculate rg between 
complex traits and diseases of interest24. A Bonferroni correction was applied 
within each LDSC and CTG-VL analysis, and traits with a corrected P < 0.05 were 
regarded as significantly correlated.

We also estimated the trans-ancestry rgs for OUD in the MVP between the 
AA and EA populations using the Popcorn package, a computationally efficient 
method that uses summary-level data from GWAS while accounting for LD69.  
We used African and European 1000 Genomes Project phase 3 (ref. 52) data as  
the LD references.

Mendelian randomization. We performed MR analysis using the 
MendelianRandomization package in R. Causal relationships between OUD and 
other traits were tested bidirectionally using three methods: weighted median, 
inverse-variance weighted and MR-Egger. We tested for pleiotropy using the 
MR-Egger intercept test. Instrumental variants were those associated with the 
exposure at P < 1 × 10−5. When the instrumental variants were not present in 
the outcome data, we identified the best-proxy variant (LD > 0.8). Variants with 
MAF < 0.01 or with no proxy with LD > 0.8 within 200 kb were removed. Each trait 
included more than 20 instrumental variables, which provides a robust estimate 
of causal effects. We considered causal effects as those for which at least two MR 
tests were significant after Bonferroni correction and that showed no evidence of 
violation of the horizontal pleiotropy test (MR-Egger intercept P > 0.05).

Polygenic risk scores and phenome-wide association studies. We calculated 
PRSs for OUD in two independent datasets (Yale-Penn and BioVU) using 
PRS-continuous shrinkage (PRS-CS)70, followed by PheWAS. In each dataset, OUD 
summary statistics from the matched ancestry were used to calculate PRSs. Details 
for the analysis in each dataset are below.

Yale-Penn. We removed SNPs with an INFO score < 0.7, a MAF < 0.01, a genotype 
call rate < 0.95 or an allele frequency difference between genotyping batches > 0.4, 
which left a total of 8,811,422 SNPs. We removed one individual from each pair of 
related individuals with pi-hat > 0.25. To estimate genetic ancestry, we calculated 
PCs on common SNPs between Yale-Penn and the 1000 Genomes Project phase 
3 (ref. 52) using the --pca flag in PLINK (v.1.9)54. Participants were assigned to 
an ancestry based on the distance of 10 PCs from the 1000 Genomes reference 
populations. The resulting dataset included 4,918 AAs and 5,692 EAs. We 
excluded binary phenotypes with fewer than either 100 cases or 100 controls, and 
continuous phenotypes with fewer than 100 individuals. We conducted PheWAS 
by fitting logistic regression models for binary traits and linear regression models 
for continuous traits. We used sex, age at enrollment and the top 10 genetic PCs as 
covariates. We applied a Bonferroni correction to control for multiple comparisons.

BioVU. We used de-identified clinical data from BioVU. Details on the quality 
control process have been described elsewhere71. The genotyping information that 
we used was from the Illumina MEGAEX array. Genotypes were filtered for SNP 
and individual call rates, sex discrepancies and excessive heterozygosity using 
PLINK (v1.9)54. Imputation of the autosomes was conducted using the Michigan 

Imputation Server51 based on the Haplotype Reference Consortium reference 
panel. PCA using FlashPCA2 combined with CEU, YRI and CHB reference 
sets from 1000 Genomes Project phase 3 (ref. 52) was conducted to determine 
participants of African and European ancestry. The sample was then filtered for 
cryptic relatedness by removing one individual of each pair for which pi-hat > 0.2. 
This yielded samples from 12,384 individuals of African ancestry and 66,903 
individuals of European ancestry for analysis. We conducted PheWAS by fitting 
a logistic regression for each of the 1,335 disease phenotypes available in BioVU 
to estimate the odds of a diagnosis of that phenotype given the OUD PRS. Each 
disease phenotype (commonly referred to as ‘phecode’; https://phewascatalog.org/
phecodes/, Phecode Map 1.2) was classified using ICD-9/10 diagnostic codes to 
establish ‘case’ status. For an individual to be considered a case, they were required 
to have two ICD codes for the index phenotype, and each phenotype needed 
at least 100 cases to be included in the analysis. The covariates included in the 
analyses were sex, median age of the longitudinal EHR measurements and the top 
10 genetic PCs. The project was approved by the VUMC IRB (nos. 160302, 172020 
and 190418).

Genomic structural equation modeling. To establish whether there is a shared 
genetic structure between OUD, other substance use disorders and psychiatric 
disorders, we performed genomic SEM72 for OUD, three other substance use traits 
(problematic alcohol use73, cannabis use disorder74 and ever smoked regularly33), 
and seven psychiatric disorders (schizophrenia75, bipolar disorder76, MDD77, 
ASD78, ADHD79, TS80 and OCD81). We calculated a genetic covariance matrix using 
multivariable LDSC and the 1000 Genomes Project phase 3 European samples52 
as a reference. An exploratory factor analysis was conducted using the genetic 
covariance matrix and a four-latent-factor structure with varimax rotation. We 
used the determined structure containing paths with a loading factor > 0.2 to 
perform a confirmatory factor analysis implemented in the GenomicsSEM package 
in R. To prevent negative residual variance after estimation, we restricted the 
residual variance of OCD and ADHD to greater than 0.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full summary-level association data from the meta-analysis are available 
through dbGaP at https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.
cgi?study_id=phs001672.

Code availability
Imputation was performed using Minimac3 (https://genome.sph.umich.edu/wiki/
Minimac3). GWAS was performed using PLINK2 (https://www.cog-genomics.org/
plink2). Meta-analyses were performed using METAL (https://genome.sph.umich.
edu/wiki/METAL_Documentation). GCTA (https://cnsgenomics.com/software/
gcta/#Overview) was used for identification of independent loci (GCTA-COJO) 
and gene-based analysis (GCTA-fastBAT). FUMA (https://fuma.ctglab.nl/) 
was used for gene association, functional enrichment and gene-set enrichment 
analyses. Transcriptomic analyses were performed using S-PrediXcan and 
S-MultiXcan (https://github.com/hakyimlab/MetaXcan). LDSC (https://github.
com/bulik/ldsc) was used for heritability estimation, genetic correlation analysis 
(also using the CTG-VL; https://genoma.io) and heritability enrichment analyses. 
Trans-ancestry genetic correlation was estimated using Popcorn (https://github.
com/brielin/Popcorn). PRS analyses were performed using PRS-CS (https://github.
com/getian107/PRScs). PheWAS analyses were run using the PheWAS R package 
(https://github.com/PheWAS/PheWAS). The MendelianRandomization R package 
(https://cran.r-project.org/web/packages/MendelianRandomization/index.html) 
was used for MR analyses. Genomic SEM was conducted using the GenomicsSEM 
R package (https://github.com/GenomicSEM/GenomicSEM).
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