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Multivariate pattern analysis links drug use severity to distributed cortical 
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A B S T R A C T   

Opioid use disorder (OUD) is characterized by emotional and cognitive impairements that are associated with 
poor treatment outcomes. The present study investigated the neural mechanism underlying emotion evaluation 
and inhibitory control using an affective go/no-go (AGN) task and its association with drug use severity and 
craving in patients with OUD. Twenty-six recently detoxified patients with OUD underwent functional magnetic 
resonance imaging (fMRI) while performing the AGN task that required response to frequently presented 
appetitive stimuli (“go”) and inhibition of response to infrequently presented aversive stimuli (“no-go”). The 
fMRI session was immediately followed by an injection of extended-release opioid antagonist naltrexone (XR- 
NTX). Participants’ opioid craving was assessed immediately before fMRI and 10 ± 2 days after XR-NTX in-
jection. Multivariate pattern analysis (MVPA) showed that drug use severity was associated with distributed 
brain hypoactivity in response to aversive no-go stimuli, with particularly large negative contributions from the 
cognitive control and dorsal attention brain networks. While drug use severity and its associated MVPA brain 
response pattern were both correlated with opioid craving at baseline, only the brain response pattern predicted 
craving during XR-NTX treatment. Our findings point to widespread functional hypoactivity in the brain net-
works underlying emotional inhibitory control in OUD. Such a distributed pattern is consistent with the 
multifaceted nature of OUD, which affects multiple brain networks. It also highlights the utility of the multi-
variate approach in uncovering large-scale cortical substrates associated with clinical severity in complex psy-
chiatric disorders and in predicting treatment response.   

1. Introduction 

Opioid use disorder (OUD) is a chronic, relapsing disorder and a 
growing public health crisis. In 2018, approximately 10.3 million 
Americans misused opioids (Substance Abuse and Mental Health Ser-
vices Administration, 2019), and over 48,000 deaths were linked to 
opioid-related overdoses (Wilson et al., 2020). Pharmacotherapies such 
as methadone, buprenorphine and naltrexone are highly effective at 
reducing opioid craving and relapse and can hence save lives (Volkow 
et al., 2014). However, impaired cognitive and emotional processing 
undermines patients’ ability to adhere to these treatments, while the 
individual variability in these impairments makes it difficult to 
personalize treatments and predict treatment outcomes. Therefore, 
there is an urgent need to research individual differences in brain 

function associated with opioid use and treatment success. 
The ability to regulate prepotent behavioral responses to emotionally 

salient stimuli, i.e., emotional inhibitory control, is central to effective 
coping with real-life emotional and cognitive challenges. Poor 
emotional inhibitory control is characteristic of various types of psy-
chopathology (Elliott et al., 2004; Erickson et al., 2005; Hummer et al., 
2013; Köchel et al., 2012; Magnuson et al., 2019; Sætren et al., 2021) 
including addiction (Ely et al., 2020; Loeber and Duka, 2009; Shi et al., 
2019). Patients with substance use disorders exhibit deficits in both 
behavioral response inhibition (Lubman et al., 2009; Salloum et al., 
2007; Wilcox et al., 2016) and processing of naturally salient stimuli 
(Moeller et al., 2016; Smith et al., 2014). Using functional magnetic 
resonance imaging (fMRI), studies have shown that patients with OUD 
have blunted frontolimbic responses to non-drug emotional stimuli vs. 
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drug-related stimuli (Shi et al., 2021; Shi et al., 2018) and lower pre-
frontal and parietal engagement on cognitive control (Fu et al., 2008). 
While most previous studies have used domain-specific behavioral 
paradigms (e.g., cue-reactivity and go/no-go tasks) to investigate 
emotional and cognitive deficits separately, they do not take into 
consideration that in real life, emotional and cognitive challenges often 
occur concurrently. For example, in order to achieve abstinence, it 
would require a patient to not only recognize aversive consequences of 
drug use (i.e., an emotional challenge) but also to be able to suppress 
compulsive drug seeking (i.e., a cognitive challenge). A paradigm that 
captures both emotional and cognitive components of emotional 
inhibitory control may more closely approximate patients’ real-life 
challenges and hence possess better external validity. Moreover, the 
conventional mass-univariate approach that remains the most widely 
used technique in the analysis of fMRI data has limited ability to inte-
grate effects across multiple regions that are jointly linked to addiction 
severity. Multivariate pattern analysis (MVPA) offers a powerful alter-
native to the univariate approach that applies machine learning to the 
investigation of multivariate brain activity patterns (Kriegeskorte et al., 
2006; Mahmoudi et al., 2012; Norman et al., 2006; Sundermann et al., 
2014). It is well-suited to the study of multifaceted psychiatric disorders 
like addiction (Goldstein and Volkow, 2011; Kwako et al., 2016) and has 
strong potential for the identification of neural signatures of clinical 
diagnoses and treatment responses (Abi-Dargham and Horga, 2016; 
Garrison and Potenza, 2014; Orrù et al., 2012; Sundermann et al., 2014; 
Volkow et al., 2015; Woo et al., 2017). 

The current study aimed to investigate the neural substrates of 
emotional inhibitory control and its association with individual differ-
ences in drug use severity and response to extended-release naltrexone 
(XR-NTX), an opioid antagonist treatment that blocks the effect of opi-
oids for 30 days (Krupitsky et al., 2011). We used a previously reported 
affective go/no-go (AGN) paradigm, in which participants are asked to 
respond to frequently presented naturally positive stimuli (i.e., “go”), 
and to inhibit responses to infrequently presented naturally negative 
stimuli (i.e., “no-go”) (Goldman et al., 2015; Shi et al., 2019). The task is 
affectively congruent with the human predisposition to approach re-
wards and avoid harms (Chen and Bargh, 1999; Goldman et al., 2015), a 
capacity that is compromised by chronic preoccupancy with drug use 
(Kakoschke et al., 2019; Wiers et al., 2013; Wiers et al., 2014). We used 
MVPA with partial least squares regression (PLSR) (Krishnan et al., 
2011) to uncover the multivariate brain activity pattern that best ac-
counts for the individual differences in drug use severity measured by 
the Addiction Severity Index (ASI), an instrument widely used in the 
clinical research and treatment of substance use disorders (McLellan 
et al., 2006; McLellan et al., 1980). Furthermore, we explored the 
relative external validity of drug use severity and the multivariate brain 
activity pattern by examining their correlations with (1) opioid craving 
ratings on the same day as the fMRI scan, and (2) future residual opioid 
craving approximately 10 days after starting treatment with XR-NTX. 
First, we hypothesized that the severity of drug use would negatively 
covary with responses to aversive no-go signal in the frontoparietal 
cortices that subserve emotional inhibitory control (Brown et al., 2012). 
Second, we hypothesized that compared to drug use severity, the PLSR 
brain activity pattern would show greater associations with baseline 
opioid craving and future opioid craving during XR-NTX treatment. 

2. Materials and methods 

2.1. Participants 

Twenty-nine patients with OUD who were recently detoxified in 
preparation for XR-NTX treatment (see Study Medications section) were 
enrolled. Two participants were excluded due to excessive errors of 
omission on the AGN task (>75% missed response on go trials), and one 
excluded due to excessive head motion during fMRI (>1 voxel), which 
was an a priori cut-off used previously (Shi et al., 2021; Shi et al., 2018). 

Results from analyses that included the participant with excessive head 
motion are reported in the Supplementary Information. The character-
istics of the remaining 26 participants are summarized in Table 1. 
Benefits of participation included a free, medically supervised, 3--month 
treatment for OUD with XR-NTX, and referral to community providers 
after study completion. All participants gave written informed consent 
to participate in the protocol approved by the University of Pennsylva-
nia Institutional Review Board. 

2.2. Inclusion and exclusion criteria 

DSM-IV-TR diagnosis of opioid dependence was established using the 
best estimate format, on the basis of all available sources of information 
including history and physical examination and the Mini-International 
Neuropsychiatric Interview (MINI) (Sheehan et al., 1998). Inclusion 
criteria were age between 18 and 59 years; a DSM--IV--TR diagnosis of 
opioid dependence confirmed by self-report and medical records doc-
umenting daily opioid use for >2 weeks in the past 3 months; evidence 
of detoxification from opioids before XR--NTX injections, established by 
urine drug screen (UDS) (Redwood Toxicology Laboratory) and a 
negative naloxone challenge test (Krupitsky et al., 2011); and good 
physical health ascertained by history and physical examination, blood 
chemistry and urinalysis. Exclusion criteria were current use of medi-
cations that could confound blood oxygen level-dependent (BOLD) fMRI 
response, such as anti-dopaminergic agents, anticonvulsants, and 
β--blockers; current psychosis, dementia, intellectual disability, or life-
time history of schizophrenia; clinically significant cardiovascular, he-
matologic, hepatic, renal, pulmonary, metabolic, gastrointestinal, 
neurologic, or endocrine abnormalities; pregnancy or breastfeeding; 
history of clinically significant head trauma; contraindications for XR-- 
NTX treatment, including medical conditions requiring opioid analge-
sics such as chronic pain disorder, planned surgery, obesity, elevated 
liver enzymes >3 times the upper limit of normal, or failure to complete 
opioid detoxification; contraindications for MRI, such as indwelling 
magnetically active foreign bodies, or fear of enclosed spaces; and cur-
rent use of illicit drugs (e.g., cocaine) except marijuana 

2.3. Study medication 

Participants were detoxified using non-opioid withdrawal manage-
ment medications (e.g., clonidine) in combination with supportive 
measures, except for one participant who was already detoxified else-
where upon enrollment, and his detoxification regimen included tapered 
doses of buprenorphine/naloxone (Suboxone®). To ensure complete-
ness of opioid detoxification, XR-NTX was preceded by a challenge with 
0.6 mg of naloxone hydrochloride IV. Participants were offered up to 
three monthly intramuscular injections of XR-NTX (380 mg of 
naltrexone-HCl gradually released from dissolvable polymer 

Table 1 
Participant demographic and clinical characteristics.  

Variable mean ± SD/count 

Sex 7 female, 19 male 
Age (years) 28.69 ± 9.90 
Race 3 AA, 23 Caucasian 
Ethnicity 3 Hispanic 
Education (years) 14.04 ± 1.68 
COWS score 3.57 ± 2.19 
HAM-A score 6.92 ± 5.11 
HAM-D score 7.96 ± 5.52 
Days of abstinence 18.43 ± 24.95 
ASI drug use severity score 0.30 ± 0.11 
Craving (baseline) 3.24 ± 2.57 
Craving (on-treatment) 2.14 ± 2.75 

Abbreviations: COWS, Clinical Opiate Withdrawal Scale; HAM-A, 
Hamilton Anxiety Rating Scale; HAM-D, Hamilton Depression Rating 
Scale; ASI, Addiction Severity Index; AA, African American. 
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microspheres over a period of one month, manufactured by Alkermes 
Inc., Cambridge, MA, under the brand name Vivitrol®), free of charge. 
As part of consent procedure, participants were briefed about the ex-
pected loss of pharmacological effects of opioids resulting from the XR- 
NTX treatment and the dangers of attempting to overcome the opioid 
receptor blockade with higher than usual opioid doses. Medication was 
provided in the context of ongoing psychosocial support (two weekly 
sessions of professional drug counseling and anti-relapse strategies by 
trained clinical psychologists) and twice-weekly UDS monitoring. 

2.4. Procedure 

Participants completed the following clinical assessments after the 
informed consent procedure: the MINI (Sheehan et al., 1998), the ASI 
5th edition (McLellan et al., 1980), the Clinical Opiate Withdrawal Scale 
(COWS) (Wesson and Ling, 2003), the Hamilton Anxiety Rating Scale 
(HAM-A) (Hamilton, 1959), and the 24-item version of the Hamilton 
Depression Rating Scale (HAM-D) (Guy, 1976). Drug use severity was 
indexed by the ASI drug composite score (McLellan et al., 1980). Opioid 
craving was assessed using a 10-point self-reported craving scale (0 =
none; 9 = extremely), which has shown good external validity in prior 
studies (Franklin et al., 2015; Franklin et al., 2007; Shi et al., 2018). The 
craving score was missing in one participant. The COWS score was 
missing in three participants. The HAM-A and HAM-D scores were 
missing in two participants. Participants then completed the fMRI AGN 
task adopted from previous research (Goldman et al., 2015; Shi et al., 
2019). The go trials included 122 positively valenced pictures depicting 
naturally rewarding stimuli (e.g., sweets), and the no-go trials were 38 
negatively valenced pictures depicting naturally aversive stimuli (e.g., 
snakes). Each trial consisted of a stimulus displayed for 300 ms, followed 
by a 1700-ms baseline period during which a crosshair was displayed. 
We used an invariant inter-trial interval in order to facilitate automa-
ticity of prepotent “go” response tendencies (Erickson et al., 2005; 
Wessa et al., 2007). Pseudo-random order of the stimuli and baseline 
periods was generated using optseq2 (surfer.nmr.mgh.harvard.edu/ 
optseq). A subsample of 22 participants received an XR-NTX injection 
2.22 (±7.54) days after the fMRI session and completed the on- 
treatment craving assessment 10.64 (±2.38) days after the injection. 

2.5. fMRI data acquisition and processing 

MRI data were collected using a Siemens Tim Trio 3-Tesla scanner. 
BOLD fMRI was performed, using a whole-brain, single-shot gradient- 
echo echo-planar sequence with the following parameters: repetition 
time (TR)/echo time (TE) = 2000/30 ms, field of view (FOV) = 220 ×
220 mm2, matrix = 64 × 64, slice thickness/gap = 4.5/0 mm, 32 slices, 
effective voxel resolution of 3.4 × 3.4 × 4.5 mm3, flip angle (FA) = 90◦. 
T1-weighted structural images were acquired using the magnetization- 
prepared rapid gradient echo (MPRAGE) sequence with the following 
parameters: TR/TE = 1510/3.71 ms, FOV = 256 × 192 mm3, matrix =
256 × 192, slice thickness/gap = 1/0 mm, 160 slices, effective voxel 
resolution of 1 × 1 × 1 mm3, FA = 9◦. An oblique acquisition, oriented 
along the anterior commissure–posterior commissure line, allowed 
coverage of the entire brain with the exception of the lower cerebellum. 

Imaging data analysis was performed using MATLAB 2020a (Math-
Works, Natick, MA) and SPM 12 (Wellcome Trust Centre for Neuro-
imaging, London, UK). Images were adjusted for slice timing, realigned 
to the mean image and motion corrected, normalized into the stereo-
tactic Montreal Neurological Institute (MNI) space with 3-mm cubic 
voxels by applying deformation field, and spatially smoothed by a 
Gaussian filter with full-width at half-maximum parameter (FWHM) set 
to 8 mm. Individual-level statistical analyses were performed by 
modeling go and no-go trials using a canonical hemodynamic response 
function and its temporal derivative. Multicollinearity was low for both 
the “go” and “no-go” regressors (variance inflation factor = 1.85 & 
1.87). We focused on the “no-go vs. go” contrast which is the most 

common contrast used to examine inhibitory control in prior go/no-go 
studies (Criaud and Boulinguez, 2013). 

2.6. Statistical analysis 

MVPA was performed using the MATLAB Statistics and Machine 
Learning Toolbox’s implementation of PLSR (de Jong, 1993; Krishnan 
et al., 2011). PLSR finds a set of latent variables that simultaneously 
projects the independent variables to a low-dimensional space and 
predicts the dependent variable(s). In the case of p independent vari-
ables and q dependent variables in n observations, the underlying PLSR 
model that projects the data to k latent components can be expressed as 
X = TPT and Yˆ = TWQT, where X and Yˆ are the n × p and n × q in-
dependent and predicted dependent variable matrices, respectively; T is 
the n × k matrix for X’s latent components; P and Q are the p × k and q ×
k orthogonal loading matrices, respectively; W is the k × k diagonal 
matrix for regression weights. The PLSR approach is well suited for 
analyzing fMRI data where the number of brain regions is often larger 
than the number of participants (p≫n), and there is multicollinearity 
among brain activity across regions (Krishnan et al., 2011). Specifically, 
in the case of k = 1 and q = 1, we have Yˆ = XPT+WQT = XPTWQ/||P||2 

(where PT+ is the Moore-Penrose pseudo-inverse of PT), which would 
allow vector P to be interpreted as a scaled indicator of activation 
pattern proposed by Haufe et al. (2014). 

Before performing PLSR, we first subdivided the cortex into 1000 
functionally homogeneous parcels using the atlas developed by Schaefer 
et al. (2018), with each parcel belonging to one of the 7 previously 
established brain networks: cognitive control network (CCN), dorsal 
attention network (DAN), ventral attention network (VAN, also known 
as the salience network), default mode network (DMN), visual network 
(VN), somatomotor network (SMN), and limbic network (LN) (Yeo et al., 
2011). Contrast values were extracted from each parcel and entered into 
the PLSR as the independent variables, and drug use severity was 
entered as the dependent variable. To avoid overfitting, the PLSR model 
was validated using 10-fold cross-validation (CV) with 10 Monte-Carlo 
repetitions, resulting in 100 training–testing partitions (Varoquaux 
et al., 2017; Whelan and Garavan, 2014). Within each training set, 
nested 10-fold CV with 10 Monte-Carlo repetitions was used to deter-
mine the optimal value for hyperparameter k (i.e., the number of latent 
components) by grid search over k = [1, 2 … 10] (Varma and Simon, 
2006; Varoquaux et al., 2017; Yip et al., 2020). Prediction accuracy was 
indexed by the cross-validated mean squared error (MSE). The statistical 
significance of MSE and that of the reliability of regional loadings (P) 
were determined by 5000-iteration permutation and bootstrap tests, 
respectively (McIntosh and Lobaugh, 2004). Due to a total of 1000 
parcels being examined, the p-values for loadings were further corrected 
for false discovery rate (FDR) following the Benjamini–Hochberg pro-
cedure (Benjamini and Hochberg, 1995). 

We evaluated the engagement of the 7 brain networks in the PLSR 
model using a procedure adapted from Kozák et al. (2017). Each net-
work’s engagement metric was calculated as the average of supra- 
threshold PLSR loadings that achieved FDR-corrected p < 0.05 within 
that network. The metric was further normalized by first subtracting the 
minimum of supra-threshold loadings and then dividing it by the range 
of supra-threshold loadings across the brain (Kozák et al., 2017). The 
relative importance of each network was examined by comparing the 
normalized engagement metric of that network with the average of 
engagement metrics of the other 6 networks. 

The external validity of the latent PLSR brain score was investigated 
by examining its association with baseline and on-treatment levels of 
opioid craving using Pearson correlation. Commonality analysis was 
performed to compare the relative contribution of the ASI drug use 
severity measure and the brain score in accounting for individual vari-
ability in craving (Seibold and McPhee, 1979). Given two predictors X1 
and X2, their unique contributions were calculated as R12

2–R2
2 and 

R12
2–R1

2, respectively, and their common contribution was calculated 
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as R1
2 + R2

2–R12
2. Here, R1

2, R2
2, and R12

2 stand for the coefficients of 
determination for the models with X1 only, with X2 only, and with both 
X1 and X2, as predictor(s), respectively. Using a 5000-iteration bootstrap 
test, we compared the unique contributions of drug use severity and the 
brain score to the prediction of baseline craving and that of on-treatment 
craving (Nimon and Oswald, 2013). 

Exploratory whole-brain analysis using the conventional mass- 
univariate approach was performed to examine the effect of no-go vs. 
go stimuli as well as the association between brain response and drug 
use severity. Exploratory PLSR analysis used the raw contrast values 
from the 1000 cortical parcels to predict craving scores. Results of these 
exploratory analyses are reported in the Supplementary Information. 

3. Results 

The average errors of commission and omission during the fMRI AGN 
task were 39.17% (SD = 18.48%) and 3.69% (SD = 4.72%), respec-
tively. Drug use severity was not associated with any of the de-
mographic, behavioral or clinical variables listed in Table 1 (p’s >
0.052) except for a positive correlation with baseline opioid craving (r =
0.46, p = 0.021) and negative correlation with number of days of 
abstinence (r = –0.40, p = 0.045). 

The multivariate PLSR model achieved optimal performance in 
predicting drug use severity when the number of latent components was 
set to one (i.e., k = 1) in most of the CV iterations (99%). Drug use 
severity was associated with distributed brain hypoactivity in response 
to the no-go vs. go stimuli, as evidenced by significantly negative 
loadings in 874 of the 1000 cortical parcels (FDR-corrected p’s < 0.05) 
(see Fig. 1A). No regions showed significantly positive loadings. Of the 7 
brain networks, the CCN and DAN had significantly more negative 
normalized engagement metrics compared to the average of other net-
works (CCN vs. others, –0.24 vs. –0.18, 95% bootstrap confidence in-
terval (CI) of difference = –0.10 to –0.02, FDR-corrected p = 0.024; DAN 
vs. others, –0.26 vs. –0.18, 95% bootstrap CI of difference = –0.12 to 
–0.02, FDR-corrected p = 0.033), while the LN engagement was 
significantly less negative than the average of other networks (–0.08 vs. 
–0.20, 95% bootstrap CI of difference = 0.06 to 0.16, FDR-corrected p =
0.003) (see Fig. 1B). The association between the observed and pre-
dicted drug use severity scores is shown in Fig. 1C. The cross-validated 
prediction error was significantly lower than those obtained from a 

5000-iteration permutation test (observed MSE = 0.010, 5th percentile 
of null MSE distribution = 0.011, p = 0.035; see Fig. 1D). 

The PLSR brain score obtained from the multivariate neural response 
pattern was significantly correlated with both baseline opioid craving (r 
= 0.49, p = 0.013) and on-treatment opioid craving (r = 0.62, p =
0.002). It was not significantly associated with any other demographic, 
behavioral or clinical variables (p’s > 0.14). Commonality analyses 
showed that the brain score and drug use severity made comparable 
unique contributions in accounting for the variance in baseline craving 
(ΔR2 = 2.93%, 95% bootstrap CI = –23.05% to 25.76%, p = 0.74; see 
Fig. 2A). For on-treatment craving, the brain score made significantly 
greater unique contribution than drug use severity (ΔR2 = 23.06%, 95% 
bootstrap CI = 3.19% to 48.77%, p = 0.022; see Fig. 2B). 

Neither drug use severity nor the MVPA brain score was correlated 
with craving reduction (baseline minus on-treatment, r = –0.06 & –0.25, 
p = 0.78 & 0.27). Considering that a higher level of baseline craving had 
more room for a subsequent reduction, we adjusted craving reduction 
for baseline craving. We found that the brain score, but not drug use 
severity, was significantly negatively correlated with adjusted craving 
reduction (r = –0.46 & –0.23, p = 0.034 & 0.31). Commonality analyses 
showed that the brain score made significantly greater unique contri-
bution than drug use severity (ΔR2 = 16.28%, 95% bootstrap CI =
0.42% to 47.03%, p = 0.042) in accounting for the variance in adjusted 
craving reduction. 

4. Discussion 

Using an MVPA machine learning approach, we found that clinically 
measured drug use severity in OUD patients was associated with a 
multivariate brain hypoactivity pattern in response to aversive no-go 
stimuli. Such a pattern was characterized by contributions from 
largely distributed brain regions, with particularly prominent engage-
ment of the CCN and DAN networks that span across the frontoparietal 
cortices. This finding is in line with previous studies indicating lower 
frontoparietal response to no-go signals in OUD patients compared to 
non-dependent controls (Fu et al., 2008). It also provides evidence for an 
association between functional brain hypoactivation during emotional 
inhibitory control and clinical severity in OUD. Moreover, while drug 
use severity and the brain pattern were similarly correlated with base-
line opioid craving, the brain pattern accounted for a greater proportion 

Fig. 1. Results of multivariate pattern analyses. (A) 
Brain parcels with significantly negative PLSR load-
ings (FDR-corrected p < 0.05), color-coded by brain 
network belongingness. Brain parcellation (1000 
parcels) and network assignment were based on 
atlases developed by Schaefer et al. (2018) and Yeo 
et al. (2011), respectively. Brain networks are out-
lined in grey. (B) Normalized engagement metric for 
each brain network. Error bars represent bootstrap 
standard errors. *: significantly more negative 
engagement than the average of other networks at 
FDR-corrected p < 0.05. (C) Observed drug use 
severity vs. its predicted values from 10 Monte-Carlo 
repetitions of 10-fold cross-validation of the PLSR 
model. (D) Cross-validated MSE of the PLSR model 
compared to the null distribution of MSE obtained 
from a 5000-iteration permutation test. Solid green 
line represents the actual MSE from the original 
model. Dashed red line represents the 5th percentile 
of the empirical MSE null distribution. Abbrevia-
tions: PLSR, partial least squares regression; CCN, 
cognitive control network; DAN, dorsal attention 
network; VAN, ventral attention network; DMN, 
default mode network; VN, visual network; SMN, 
somatomotor network; LN, limbic network; MSE, 
mean squared error; FDR, false discovery rate.   
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of variance in future craving during XR-NTX treatment. It suggests that 
compared to clinically measured drug use severity, the brain activity 
pattern may have better external validity. 

Addiction is a complex brain disease that impacts multiple psycho-
logical domains and brain regions. One of the well-established phe-
nomena in addiction is abnormal incentive salience (Kwako et al., 
2016). Chronic drug use results in emotional dysregulation that disrupts 
normal processing of natural, non-drug rewards and punishments and 
assigns high incentive value to drugs of abuse (Elman and Borsook, 
2016; Gardner, 2011; Kenny et al., 2006; Keramati and Gutkin, 2013). 
Neuroimaging studies have shown blunted frontolimbic (Noori et al., 
2016) and occipital (Hanlon et al., 2014) responses to non-drug stimuli 
compared to drug-related stimuli. In addition, those with substance use 
disorders exhibit various cognitive control deficits including inhibitory 
dysregulation (Kwako et al., 2016). The ability to inhibit prepotent but 
inappropriate behavioral responses is crucial for maintaining normal 
social and occupational functioning. Inhibitory control is governed by 
multiple frontoparietal regions including the medial and lateral pre-
frontal cortex, anterior cingulate cortex, and the superior and inferior 
parietal lobules (Swick et al., 2011; Zhang et al., 2017). Compared to 
healthy controls, patients with OUD show reduced neural response in 
these regions during inhibitory control (Fu et al., 2008). In the current 
study, we investigated emotional inhibitory control in OUD patients 
with the AGN task that involved both emotional and cognitive pro-
cessing, i.e., natural saliency encoding and behavioral inhibitory con-
trol. Using PLSR, we found that clinical drug use severity was negatively 
associated with a multivariate pattern of neural activity across a large 
number of cortical regions. This is consistent with the fact that OUD 
affects a wide range of neuropsychological functions. Moreover, the 
PLSR model did not decompose the brain pattern into separate 
emotional and cognitive components. Instead, nested cross-validation 
identified a single-component solution that best accounted for individ-
ual differences in drug use severity. It suggests that the emotional and 
cognitive processes are interrelated during emotional inhibitory control 
and may jointly contribute to the maintenance of OUD. 

ASI is a clinical instrument broadly used in research and treatment 
settings (McLellan et al., 2006). Specifically, the drug use composite 
score derived from ASI has been used as both a diagnostic tool (Rikoon 
et al., 2006) and an indicator for intervention outcome (Roy-Byrne et al., 
2014). We found that baseline drug use severity was correlated with 
baseline but not subsequent, on-treatment opioid craving, which is 
consistent with the external validity of ASI that is often but not always 
satisfactory (Leonhard et al., 2000; Mäkelä, 2004). Here we made the 

first attempt to use ASI to guide the search for a multivariate brain 
signature for drug use severity in OUD. Interestingly, the brain signa-
ture, characterized by a large-scale pattern of cortical hypoactivity, 
correlated with opioid craving both at baseline and during subsequent 
treatment. This finding underscores a potentially greater prognostic 
value of the multivariate brain response pattern than clinically 
measured addiction severity. It also adds to a growing literature 
reporting the use of fMRI to predict other mental health outcomes such 
as smoking cessation (Falk et al., 2011; Shi et al., 2017) and OUD 
treatment adherence (Shi et al., 2019; Wang et al., 2015). In addition, 
we noted that the brain response obtained at baseline appeared to be 
more correlated with on-treatment craving (r = 0.62) than with baseline 
craving (r = 0.49). The difference may reflect the fact that the current 
sample comprised treatment-seeking patients whose brain activity dur-
ing emotional inhibitory control may better indicate potential treatment 
benefit than current drug motivation. 

Craving is an important characteristic of substance use disorders 
(American Psychiatric Association, 2013). Reduction in craving is one of 
the key objectives of substance use disorder treatments (Wise, 1988). 
Traditionally, measurement of craving has mainly relied on self-reports, 
which can be influenced by cognitive bias and poor insight (Sayette 
et al., 2000). Objective alternatives to self-reports have been proposed, 
ranging from implicit behavioral probes (e.g., attentional bias (Field 
et al., 2009), approach bias (Wiers et al., 2014)) to functional neuro-
imaging markers. The latter includes resting-state fMRI indices of 
cortical functional connectivity (Li et al., 2016) and task-based fMRI 
measures of regional neural response to drug cues (Kühn and Gallinat, 
2011) and stress (Sinha et al., 2005). The association we found between 
the neural response during emotional inhibitory control and opioid 
craving contributes to the efforts for elucidating the neural mechanism 
of craving. A better understanding of neural mechanisms underlying 
drug craving may help uncover novel brain targets for addiction treat-
ments that aim to reduce craving and prevent relapse (Wise, 1988). 

Recent MVPA studies have reported neural indicators of abnormal 
incentive salience in smokers (Elton et al., 2019), treatment response in 
internet gamers (Wang et al., 2020), and problematic eating behavior 
(Cosme and Lopez, 2020). Our study is among the first to utilize MVPA 
to investigate individual differences in drug use severity among OUD 
patients. Compared to the conventional mass-univariate approach, 
MVPA and other multivariate methods provide greater sensitivity in 
detecting subtle intra- and inter-individual differences (Kriegeskorte 
et al., 2006; Mahmoudi et al., 2012; Norman et al., 2006; Sundermann 
et al., 2014). By studying brain response patterns across multiple regions 

Fig. 2. Results of commonality analyses. (A) Comparable amount of variance in baseline opioid craving was uniquely explained by drug use severity and by the PLSR 
brain score. ns: non-significant. (B) Significantly more variance in future on-treatment opioid craving was uniquely explained by PLSR brain score than by drug use 
severity. *: p < 0.05. Abbreviation: PLSR, partial least squares regression. 
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instead of examining individual regions (e.g., voxels), multivariate 
analysis can also negate the need for excessive correction for multiple 
comparisons and thus improve statistical power (Cremers et al., 2017). 
Moreover, the use of cross-validation (and particularly nested cross- 
validation) prevents model overfitting and promotes generalizability 
(Yip et al., 2020). In the current study, we used PLSR to establish the 
multivariate brain signature for drug use severity. By taking a dimension 
reduction approach, PLSR projects features (e.g., neural response) to a 
low-dimensional space by accounting for their underlying covariance 
structure and produces one or more latent variables that best predict the 
outcomes (Krishnan et al., 2011; McIntosh and Lobaugh, 2004). These 
properties make PLSR well-suited for analyzing fMRI data, where brain 
regions with similar functions tend to have covarying fMRI signals. 
Applying PLSR to translational addiction fMRI research may advance 
the discovery of novel mechanistic neural signatures of clinical severity 
and treatment response. 

In addition to its many practical benefits, the prospective within- 
subjects design of our study has several limitations. First, the rela-
tively small sample size is prone to undetected effects (i.e., Type II error) 
and requires replication. Second, our study did not include a healthy 
control group, which would have enabled a normative comparison of the 
neuroimaging findings. Third, our study treatment was the antagonist 
XR-NTX. Hence, replication with the more commonly used opioid 
agonist methadone and partial agonist buprenorphine is required to 
show the generalizability of our findings. Fourth, the AGN task that we 
used was limited to investigating emotional inhibitory control. Other 
domains of neurobehavioral functioning such as attentional and 
approach bias (Field et al., 2009; Wiers et al., 2014), stress reactivity 
(MacLean et al., 2019), social cognition (McDonald et al., 2013) and 
decision making (Schoenbaum et al., 2006) could have yielded com-
plementary results. Fifth, alternative multivariate regression methods 
exist. Unlike PLSR, methods such as regression trees (Kesler et al., 2017) 
and artificial neural networks (Yan et al., 2019) allow the study of non- 
linear relationships between predictors and outcomes. Other methods 
like stepwise regression (Loughead et al., 2015), supporter vector 
regression (Smyser et al., 2016) and elastic net regression (Marquand 
et al., 2012) eliminate features that make little contribution to outcome 
prediction. Future studies are needed to determine if non-linear and 
feature-elimination approaches yield similar or complementary find-
ings. Lastly, fMRI is expensive and not widely available in the substance 
abuse treatment settings, limiting its direct clinical utility. Therefore, 
replication studies with electroencephalography or functional near- 
infrared spectroscopy are warranted. 

In conclusion, our findings provide evidence for an association be-
tween drug use severity and the widespread functional neural hypo-
activity during emotional inhibitory control in OUD. Such a distributed 
neural hypoactivity pattern is consistent with the multifaceted nature of 
OUD, whose severity may be attributed to impairments in multiple brain 
networks. Our findings also highlight the power of the multivariate 
approach in uncovering large-scale cortical substrates associated with 
clinical severity in complex psychiatric disorders and in predicting 
treatment response. 
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