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Chronic pain is a common problem, with more than one-fifth of adult Americans reporting pain daily or 27 

on most days. It adversely affects quality of life and imposes substantial personal and economic costs. 28 

Efforts to treat chronic pain using opioids played a central role in precipitating the opioid crisis. Despite 29 

an estimated heritability of 25-50%, the genetic architecture of chronic pain is not well characterized, in 30 

part because studies have largely been limited to samples of European ancestry. To help address this 31 

knowledge gap, we conducted a cross-ancestry meta-analysis of pain intensity in 598,339 participants in 32 

the Million Veteran Program, which identified 125 independent genetic loci, 82 of which are novel. Pain 33 

intensity was genetically correlated with other pain phenotypes, level of substance use and substance 34 

use disorders, other psychiatric traits, education level, and cognitive traits. Integration of the GWAS 35 

findings with functional genomics data shows enrichment for putatively causal genes (n = 142) and 36 

proteins (n = 14) expressed in brain tissues, specifically in GABAergic neurons. Drug repurposing analysis 37 

identified anticonvulsants, beta-blockers, and calcium-channel blockers, among other drug groups, as 38 

having potential analgesic effects. Our results provide insights into key molecular contributors to the 39 

experience of pain and highlight attractive drug targets. 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

Introduction 53 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.09.23286958doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23286958
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

Pain is an unpleasant sensory and emotional experience associated with, or resembling that 54 

associated with, actual or potential tissue damage
1
. Pain is often classified as either acute, which 55 

typically lasts less than 4 weeks, and chronic, lasting more than three months and potentially 56 

maladaptive
2
. An individual’s experience of pain is influenced by biological, psychological, and social 57 

factors
1,3

.  58 

In a national survey, 50.2 million US adults (20.5%) reported experiencing pain on most days or 59 

every day
4
, making pain the most common reason for seeking medical treatment

5
 and resulting in total 60 

healthcare costs of 560 to 635 billion dollars in 2010
6
. Chronic pain is also associated with a poor quality 61 

of life
7
. In the late 1980's many medical and pain organizations adopted policies to increase patients’ 62 

access to pain management, including opioids. These policies included efforts to ensure the adequate 63 

assessment of pain, which was designated as “the fifth vital sign”
2
. The resulting dramatic increase in 64 

prescriptions for opioid analgesics contributed to the opioid epidemic and a doubling of opioid-related 65 

deaths in the 1990s
8,9

.  66 

Success rates for treating chronic pain with currently available medications are estimated to be 67 

as low as 10%
10

. Opioids are not efficacious in managing chronic non-cancer pain
11

 and their long-term 68 

use is associated with adverse effects such as addiction, sleep disturbance, opioid-induced hyperalgesia, 69 

endocrine changes, and cardiac and cognitive effects
12,13

. Other medications used to treat chronic non-70 

cancer pain, such as non-steroidal anti-inflammatory medications and antiepileptic drugs, are effective 71 

for only some types of pain and may be associated with significant adverse effects
14

. Because non-72 

pharmacologic interventions are not accessible to most patients with pain, safe and efficacious 73 

medications are needed to address this highly prevalent condition. Thus, novel therapeutic targets for 74 

chronic pain are needed to facilitate the discovery or repurposing of safe, effective analgesics. 75 

Notably, drug development efforts informed by genetics can double the rate of success
15–17

. 76 

Although the heritability (h
2
) of individual differences in the susceptibility to develop chronic pain is 77 

estimated in twin and family studies to be 25–50%
18,19

, the mechanisms that underlie it are poorly 78 

understood
20

. To date, genome-wide association studies (GWAS) of chronic pain in large samples, 79 

including the UK Biobank (UKBB) and 23andMe cohorts, have focused on specific bodily sites
21–24

 or 80 

aspects of an individual’s sensitivity to experiencing and reporting pain
25–28

. Although in samples of 81 

150,000 to nearly 500,000 individuals GWAS have identified genome-wide significant (GWS) loci for 82 

headache
29

, osteoarthritis
30,31

, low back pain
23,24

, knee pain
21

, neuropathic pain
32

, and multisite chronic 83 

pain
25,26

, they have yielded few overlapping loci. This may be due to the different pain phenotypes 84 

employed, despite their having high genetic correlations among them
27,33

.  85 
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There are also significant genetic correlations between pain phenotypes and psychiatric, 86 

substance use, cognitive, anthropometric, and circadian traits
21,23–25,29,34

. This shared genetic 87 

predisposition suggests that a common genetic susceptibility underlies a broad range of diverse chronic 88 

pain conditions
34

 and common co-occurring conditions. For example, Mendelian randomization (MR) 89 

and latent causal variable analyses have shown positive causal effects of specific bodily site pain on 90 

depression
35,36

 and bi-directional casual associations between multisite chronic pain and major 91 

depressive disorder (MDD)
25,35

. 92 

Despite a growing literature on pain GWAS, most studies have been conducted in predominantly 93 

European ancestry cohorts recruited from non-clinical biobanks. However, biobanks linked to electronic 94 

health records (EHRs) with large, well-characterized, multi-ancestry samples are now available for use in 95 

identifying genetic risk factors and therapeutic targets for chronic pain
37

. The Million Veteran Program 96 

(MVP)
38

, an observational cohort study and mega-biobank implemented in the U.S. Department of 97 

Veterans Affairs (VA) health care system, includes data on routine pain screening. Pain ratings in the 98 

MVP use an 11-point ordinal Numeric Rating Scale (NRS), which has been a standard practice in VA 99 

primary care for more than a decade
39

. The NRS has been shown to be a consistent, valid measure of 100 

reported pain
40–42

 and is particularly informative for a GWAS of pain, as over 50% of VA patients 101 

experience chronic pain
43

. 102 

We conducted a cross-ancestry meta-analysis of the NRS in samples of African American (AA), 103 

European American (EA) and Hispanic American (HA) ancestries from the MVP (N = 598,339). Because of 104 

the frequency with which the NRS is administered to patients in the VA, for each individual we 105 

calculated the median annual score and then the median across years. Thus, although the NRS is a 106 

report of pain intensity experienced at a specific point in time, the median of medians provided a proxy 107 

for chronic pain. We also conducted a secondary analysis in a subsample of 566,959 individuals that 108 

excluded participants with a lifetime opioid use disorder (OUD) diagnosis to assess potential 109 

confounding by OUD. 110 

 111 

Methods 112 

Overview of analyses 113 

We conducted ancestry-specific GWASs of pain scores using an 11-point ordinal NRS in a) all 114 

AAs, EAs, and HAs with pain ratings from the MVP and b) a subset of these participants that excluded 115 

those with a lifetime OUD diagnosis, each followed by a cross-ancestry meta-analysis. Details on 116 
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phenotyping are provided below. Downstream analyses are based principally on the GWAS of pain 117 

scores in the full sample, complemented by the estimated heritability and genetic correlations (rgs) for 118 

the sample exclusive of participants with OUD. An overview of the analyses is provided in 119 

Supplementary Fig. 1. 120 

Million Veteran Program cohort 121 

The MVP
38

 is an EHR-based cohort comprising >900,000 veterans recruited at 63 VA medical 122 

centers nationwide. All participants provided written informed consent, a blood sample for DNA 123 

extraction and genotyping, and approval to securely access their EHR for research purposes. The 124 

protocol and consent were approved by the Central Veterans Affairs Institutional Review Board (IRB) 125 

and all site-specific IRBs. All relevant guidelines for work with human participants were followed in the 126 

conduct of the study. 127 

 128 

Phenotype description 129 

As early as 2000, the VA recommended using the NRS to routinely measure pain in clinical 130 

practice as a “fifth vital sign”
44

. Since that time, veterans have been asked to rate their pain severity in 131 

response to the question: “Are you in pain?” They then rated their current pain on a scale of 0-10 where 132 

“0 is no pain and 10 is the worst pain imaginable”. Participants had at least one inpatient or outpatient 133 

pain rating in the EHR. We included 598,339 individuals with 76,798,104 NRS scores (median number of 134 

scores = 109, IQR = 28 – 351) in the primary GWAS. To reduce the large number of pain observations, we 135 

calculated the median pain score by year for each participant and the median of the annual median pain 136 

scores. In a supplementary GWAS we excluded individuals with a documented ICD-9/10 diagnosis code 137 

for OUD in the EHR, yielding a total of 566,959 study participants. Demographic characteristics for the 138 

supplementary sample are presented in Supplementary Table 1. 139 

 140 

Genotyping and imputation 141 

DNA samples were genotyped on the Affymetrix Axiom Biobank Array (MVP Release 4). For 142 

genotyped SNPs, standard quality control (QC) and subsequent imputation were implemented. Full 143 

details about SNP and sample QC by the MVP Genomics Working Group are published
45

. Briefly, DNA 144 

samples were removed for sex mismatch, having seven or more relatives in MVP (kinship > 0.08), 145 

excessive heterozygosity, or genotype call rate < 98.5%. Variants were removed if they were 146 

monomorphic, had a high degree of missingness (call rate < 0.8) or a Hardy–Weinberg equilibrium 147 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 13, 2023. ; https://doi.org/10.1101/2023.03.09.23286958doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.09.23286958
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

(HWE) threshold of PT<T1T×T10
−6

 both in the entire sample using a principal-component analysis (PCA)-148 

adjusted method and within one of the three major ancestral groups (AA, EA and HA).  149 

Genotype phasing and imputation were performed using SHAPEIT4 (v.4.1.3)
46

 and Minimac4 150 

software
47

, respectively. Biallelic SNPs were imputed using the African Genome Resources reference 151 

panel by the Sanger Institute (comprising all samples from the 1000 Genomes Project phase 3, version 5 152 

reference panel
48

, and 1,500 unrelated pan-African samples). Non-biallelic SNPs and indels were 153 

imputed in a secondary imputation step using the 1000 Genomes Project phase 3, version 5 reference 154 

panel
48

, with indels and complex variants from the second imputation merged into the African Genome 155 

Resources imputation. 156 

We removed one individual from each pair of related individuals (kinshipT>T0.08, NT=T31,010) 157 

at random. The HARE method
49

 was used to classify subjects into major ancestral groups (AA = 112,968, 158 

EA = 436,683, HA = 48,688) and QC of imputed variants was performed within each ancestral group. 159 

SNPs with imputation quality (INFO) scoreT<T0.7; minor allele frequency (MAF) in AAsT<T0.005, 160 

EAsT<T0.001, and HAsT<T0. 01; a genotype call rateT<T0.95; or an HWE PT<T1T×T10
−6 

were excluded.  161 

Association analyses and risk locus definition 162 

Genome-wide association testing was based on a linear regression model using PLINK (v.2.0)
50

 163 

and was adjusted for sex, age at enrollment, and the first 10 within-ancestry genetic principal 164 

components (PCs). Due to substantial differences in sample size across ancestral groups, meta-analyses 165 

were performed using a sample-size weighted method in METAL
51

. Variants with PT<T5T×T10
−8

 were 166 

considered genome-wide significant (GWS).  167 

To identify risk loci and their lead variants, we performed LD clumping in FUMA
52

 at a range of 168 

3,000 kb, r
2
 > 0.1, and the respective ancestry 1000 Genomes reference panel

48
. Following clumping, 169 

genomic risk loci within 1 Mb of one another were incorporated into the same locus. We used GCTA 170 

COJO
53

 to define independent variants by conditioning them on the most significant variant within the 171 

locus. After conditioning, significant variants (PT<T5T×T10
−8

) were considered independently associated. 172 

We performed a sign test to compare the direction of SNP effects across individual ancestral datasets. 173 

Independent lead variants in EAs were examined in AAs and HAs and a binomial test used to evaluate 174 

the null hypothesis that 50% of variants have the same effect direction across ancestries. For lead SNPs 175 
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in EAs that were absent in AAs and HAs, we considered proxy GWS SNPs (p < 5×10
-8

) in high LD with the 176 

EA lead variant (r
2
 ≥0.8). 177 

To prioritize credible sets of variants driving our GWAS results, we used FINEMAP
54

 to fine-map 178 

regions defined by LD clumps (r
2
 > 0.1). Because fine-mapping requires data from all markers in the 179 

region of interest
55

, we merged LD clumps that physically overlapped (within a 1-MB window of the lead 180 

variant) and excluded SNPs in the major histocompatibility complex (MHC) region due to its complexity. 181 

FINEMAP credible set reports the likelihood of causality using the marginal posterior probability (PP), 182 

which ranges from 0 to 1, with values closer to 1 being most likely causal. 183 

SNP-based heritability and functional enrichment 184 

We used the linkage disequilibrium score (LDSC) regression
56

 method to estimate the SNP-based 185 

heritability (h
2

SNP) of pain intensity (in both the full and the supplementary samples) in AAs and EAs 186 

based on common SNPs in HapMap3
57

. Due to the small HA sample size, we could not calculate h
2

SNP in 187 

this population. To ensure matching of population LD structure, pre-calculated LD scores for EAs were 188 

derived from the 1000 Genomes European reference population (version 3)
49

 using LDSC
56

. In-sample LD 189 

scores for AAs were calculated from MVP AA genotype data using cov-LDSC
58

.  190 

We used S-LDSC to partition the SNP heritability for pain intensity among EAs and explored the 191 

enrichment of the partitioned heritability by functional genomic categories
59,60

 using three models: (a) a 192 

baseline-LD model that contains 75 overlapping annotations, including coding and regulatory regions of 193 

the genome and epigenomic features
59

 (b) a specific tissue model that examines 10 overlapping cell-194 

type groups derived from 220 cell-type-specific histone marks, including methylated histone H3 Lys4 195 

(H3K4me1), trimethylated histone H3 Lys4 (H3K4me3), acetylated histones H3 Lys4 (H3K4ac) and 196 

H3K27ac
59

 and (c) a multi-tissue model based on gene expression and chromatin datasets generated by 197 

GTEx
61

 and the Roadmap Epigenomics Mapping Consortium
62

. For each model, we excluded multi-allelic 198 

and MHC region variants. Functional categories within each model were considered significantly 199 

enriched based on a Bonferroni-corrected P value.  200 

Gene-set functional characterization 201 

We applied multi-marker analysis of genomic annotation (MAGMA) v.1.08
63

 in FUMA (v1.3.6a)
52

 202 

to identify genes and gene sets associated with the findings from the pain intensity GWAS and meta-203 

analysis. Using the default setting in MAGMA, we mapped GWS SNPs to 18,702 protein-coding genes 204 
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according to their physical position in NCBI build 37. We also used chromatin interaction (Hi-C) coupled 205 

MAGMA (H-MAGMA)
64

 to assign non-coding (intergenic and intronic) SNPs to genes based on their 206 

chromatin interactions. H-MAGMA uses six Hi-C datasets derived from fetal brain, adult brain (N = 3), 207 

induced pluripotent stem cell (iPSC)-derived neurons and iPSC-derived astrocytes
65

. We applied a 208 

Bonferroni correction (MAGMA, α = 0.05/18,702; H-MAGMA, α = 0.05/293157/6) to identify genes 209 

significantly associated with pain intensity, correcting for all genes tested in each analysis (see 210 

Supplementary Tables 15 and 21 for full lists).  211 

To determine the plausible tissue enrichment of mapped genes, we integrated our cross-212 

ancestry and EA GWAS results with gene expression data from 54 tissues (GTEx v8) in FUMA
52

. Next, we 213 

used FUMA to curate gene sets and Gene Ontology terms (from the Molecular Signature Database 214 

v.7.0
66

). We corrected for gene size, density of variants, and LD pattern between genes in each tissue 215 

(Bonferroni-corrected α = 0.05/54). 216 

Enrichment for cell-type specific (CTS) transcriptomic profiles was performed in FUMA
67

 using 13 217 

human single-cell RNA-sequencing (sc-RNAseq) datasets derived from brain (see Supplementary Table 218 

14 for a detailed list). FUMA estimates CTS transcriptomic enrichment from the sc-RNAseq in three 219 

ways: (1) per selected dataset, (2) within datasets using a conditionally independent analysis (based on 220 

stepwise conditional testing of P values for each cell type that passes Bonferroni correction within the 221 

same dataset), and (3) across datasets (testing for proportional significance across the results from step 222 

2). Proportional significance (PS) reports the confidence level for observed cell type enrichment as low 223 

significance: < 0.5, jointly significant: 0.5 – 0.8; and independently significant: > 0.8. We considered CTS 224 

enrichments with conditional independent signals (P < 0.05) and PS > 0.5 to be driven by 225 

joint/independent genetic signals in our pain intensity GWAS results. 226 

Transcriptomic and proteomic regulation 227 

To identify genes and proteins whose expression is associated with pain intensity, we integrated 228 

EA GWAS results with human brain transcriptomic (eQTL, N = 452; and sQTL, N = 452)
68,69

 and proteomic 229 

(N = 722)
62 

data. We also obtained pretrained models of gene expression from GTEx v.8 for five brain 230 

tissues significantly enriched in MAGMA analyses – cerebellum, cerebellar hemisphere, cortex, frontal 231 

cortex, and anterior cingulate cortex
61,71

. Human brain transcriptomic and proteomic data for 232 

dorsolateral prefrontal cortex were derived from the study by Wingo et al
70

. Transcriptome-wide 233 

association study (TWAS) and proteome-wide association study (PWAS) analyses were performed using 234 
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the FUSION pipeline
71

 with Bonferroni correction (α = 0.05/N genes tested) to account for multiple 235 

testing.  236 

We used the colocalization (coloc R package
72

 in FUSION
71

) as our primary method to identify 237 

SNPs that mediate association with pain intensity through effects on gene and protein expression and a 238 

posterior colocalization probability (PP) of 80% to denote a shared causal signal. To test the robustness 239 

of the colocalized signals, we also performed summary-based Mendelian randomization (SMR) 240 

analyses
73

. We applied the HEIDI test
73

 to filter out SMR signals (PHEIDI < 0.05) due to linkage 241 

disequilibrium between pain-associated variants and eQTLs/sQTLs. Human brain cis-eQTL and cis-sQTL 242 

summary data were obtained from Qi et al
74

 and GTEx
61

. For genomic regions containing multiple genes 243 

with significant SMR associations, we selected the top-associated cis-eQTL. We used Bonferroni 244 

correction to correct for multiple testing (α = 0.05/N genes tested). 245 

To explore the enrichment of causal genes and proteins in the dorsal root ganglia (DRG), we 246 

accessed human and mouse RNA-seq data from 13 tissues (6 neural and 7 non-neural) from the DRG 247 

sensoryomics repository
75

. The data contain relative gene abundances in standardized transcripts per 248 

million mapped reads and have been normalized to allow comparison across genes. The proportions of 249 

gene expression in the CNS (neural proportion score) and DRG (DRG enrichment score) in the context of 250 

profiled tissues were calculated, as described in Ray et al
75

. Scores ranging from 0 to 1 were used to 251 

denote the strength of tissue enrichment. 252 

Drug repurposing 253 

We examined the drug repurposing status of genes in EAs (N = 156) with high causal probability 254 

from fine mapping and transcriptomic and proteomic analyses, using the Druggable Genome database
76

. 255 

For completeness, we also included the significantly associated genes mapped to GWS variants and 256 

MAGMA results in AAs (N = 7) and HAs (N = 2). The Druggable Genome database contains 4,479 coding 257 

gene sets with the potential to be modulated by a drug-like small molecule based on their nucleotide 258 

sequence and structural similarity to targets of existing drugs
76

. This druggable genome was divided into 259 

three tiers. Tier 1 (N = 1,427) contains targets of licensed small molecules and biotherapeutic drugs 260 

(curated from the ChEMBL database
77

) and drugs in clinical development. Tier 2 (N = 682) includes 261 

targets with verified bioactive drug-like small molecule binding partners and > 50% identity with 262 

approved drug targets based on their nucleotide sequence. Tier 3 (N = 2,370) comprises targets or 263 

secreted proteins with more distant similarity with an approved drug and members of active protein 264 
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complexes not included in Tiers 1 and 2. All causal genes and those reported in any of the three tiers of 265 

the Druggable Genome were also examined for interaction with prescription drug targets in clinical 266 

development using the Drug-Gene Interaction database (DGIdb)78, which compiles clinical trial 267 

information from the FDA, PharmGKB, Therapeutic Target Database, and DrugBank databases, among 268 

others. We categorized each prescription drug identified using the Anatomical Therapeutic Chemical 269 

classification system, retrieved from the Kyoto Encyclopedia of Genes and Genomics 270 

(https://www.genome.jp/kegg/drug/). 271 

Genetic correlation 272 

We used LDSC56 to calculate the rg of pain intensity with (a) 89 other published pain, substance 273 

use, medication use, psychiatric, and anthropometric traits from EA datasets selected using prior 274 

epidemiological evidence and (b) 12 psychiatric, substance use, and anthropometric traits based on 275 

available AA GWAS summary data (see Supplementary Tables 24 and 26 for detailed lists). In EAs, all 276 

traits were tested using pre-computed LD scores for HapMap357, while in AAs, LD scores derived using 277 

cov-LDSC58 from MVP AA genotype data were used. In a hypothesis-neutral manner, we also calculated 278 

rgs of pain intensity with 1344 published and unpublished traits from the UKBB using the Complex Trait 279 

Virtual Lab (CTG-VL) (https://genoma.io/).  CTG-VL is a free open-source platform that incorporates 280 

publicly available GWAS data that allow for the calculation of rg for complex traits using LDSC79. Each set 281 

of rg analyses was Bonferroni corrected to control for multiple comparisons (α = 0.05/number of traits 282 

tested).  283 

We also estimated the cross-ancestry rgs for pain intensity between AAs, EAs and HAs using 284 

Popcorn80, a computational method that determines the correlation of causal-variant effect sizes at 285 

SNPs common across population groups using GWAS summary-level data and LD information. Ancestry-286 

specific LD scores were derived from the 1000 Genomes reference population48. 287 

Polygenic risk score-based phenome-wide association studies 288 

We calculated polygenic risk scores (PRS) for pain intensity and performed a PheWAS analysis in 289 

two samples – the Yale-Penn sample and the Penn Medicine Biobank (PMBB). The Yale-Penn sample81 290 

was deeply phenotyped using the Semi-Structured Assessment for Drug Dependence and Alcoholism 291 

(SSADDA), a comprehensive psychiatric instrument that assesses physical, psychosocial, and psychiatric 292 

aspects of SUDs and comorbid psychiatric traits82,83. As described in detail previously81, genotyping was 293 

performed using the Illumina HumanOmni1-Quad microarray, the Illumina HumanCoreExome array, or 294 
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the Illumina Multi-Ethnic Global array, followed by imputation using Minimac384  and the 1000 Genomes 295 

Project phase3 reference panel48 implemented on the Michigan imputation server 296 

(https://imputationserver.sph.umich.edu). SNPs with imputation quality (INFO) scoreG<G0.7, MAF < 297 

0.01, missingness > 0.01, or an allele frequency difference between batches > 0.04; and individuals with 298 

genotype call rateG<G0.95, or related individuals with pi-hat > 0.25 were excluded. PCs were used to 299 

determine genetic ancestry based on the 1000 Genomes Project phase348. The resulting dataset 300 

included 4,922 AAs and 5,709 EAs. 301 

The PMBB85 is linked to EHR phenotypes. PMBB samples were genotyped with the GSA 302 

genotyping array. Genotype phasing was done using EAGLE84 and imputation was performed using 303 

Minimac384 on the TOPMed Imputation server47. Following QC (INFO< 0.3, missingness >0.95, MAF > 0.5, 304 

sample call rate > 0.9), PLINK 1.90 was used to identify and remove related individuals based on identity 305 

by descent (Pi-hat > 0.25). To estimate genetic ancestry, PCs were calculated using SNPs common to the 306 

PMBB and the 1000 Genomes Project phase348 and the smartpca module of the Eigensoft package 307 

(https://github.com/DReichLab/EIG). Participants were assigned to an ancestral group based on the 308 

distance of 10 PCs from the 1000 Genomes reference populations. The resulting dataset included 10,383 309 

AAs and 29,355 EAs. 310 

PRSs for pain intensity were calculated in the Yale-Penn and the PMBB datasets using PRS-311 

Continuous shrinkage software (PRS-CS)86, with the default setting used to estimate the shrinkage 312 

parameters and the random seed fixed to 1 for reproducibility. To identify associations between the 313 

pain intensity PRSs and phenotypes, we performed a PheWAS in each dataset by fitting logistic 314 

regression models for binary traits and linear regression models for continuous traits. Analyses were 315 

conducted using the PheWAS v0.12 R package87 with adjustment for sex, age at enrollment (in PMBB) or 316 

at interview (in Yale-Penn) and the first 10 PCs within each genetic ancestry. We Bonferroni corrected 317 

each ancestry-specific analysis (Yale-Penn EAs and AAs: P < 8.10 × 10-5, PMBB EAs and AAs: P < 3.68 × 10-318 

5). 319 

Mendelian Randomization 320 

We used two-sample Mendelian randomization88 to evaluate causal associations between 16 321 

genetically correlated traits and pain intensity among EAs only because the two other population groups 322 

provided inadequate statistical power for the analysis. We inferred causality bidirectionally using three 323 

methods: weighted median, inverse-variance weighted (IVW) and MR-Egger, followed by a pleiotropy 324 

test using the MR Egger intercept. Instrumental variants were associated with the exposure 325 
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at PG<G1G×G10−5 and a clumping threshold of r2 = 0.01. Potential causal effects were those for which at 326 

least two MR tests were significant after multiple correction (P = 3.13G×G10-3, 0.05/16) and did not 327 

violate the assumption of horizontal pleiotropy (MR-Egger intercept PG>G0.05). 328 

Results 329 

Description of the sample  330 

The study sample comprised 598,339 individuals (AA = 112,968, EA = 436,683, HA = 48,688), of 331 

whom 91.2% were male (Supplementary Table 1). The supplementary analyses from which individuals 332 

with a lifetime OUD diagnosis were excluded were reduced by 5% across population groups (AA = 333 

104,050, EA = 415,740, HA = 46,169) (Supplementary Table 1). The median ages were 61.4 (s.d = 14.0) 334 

and 61.7 (s.d = 14.1) in the full and supplementary samples, respectively. About half of individuals in 335 

both the full sample (51.2%) and the supplementary sample (52.7%) reported a median NRS of 0, i.e., no 336 

pain. Mild (NRS 1-3), moderate (NRS 4-6) and severe pain (NRS 7-10) were reported by 24.4%, 19.2%, 337 

and 4.5%, respectively in the full sample, and 24.6%, 18.2%, and 4.0%, respectively in the supplementary 338 

sample. 339 

Identification of pain intensity risk loci 340 

In our cross-ancestry meta-analysis of AA, EA, and HA samples, we identified 4,416 GWS variants 341 

represented by 158 LD-clumped index variants (r2 > 0.1) (Figure 1).  Analyses conditioned on the lead 342 

SNP left 125 independent association signals (Supplementary Table 2), 42 of which have previously been 343 

reported as pain-related loci23,25 and 82 of which are novel (Supplementary Table 2). Eight independent 344 

variants are exonic, 84 reside within a gene transcript, and 33 are intergenic. Of the 8 exonic variants, 2 345 

have likely damaging (PolyPhen > 0.5, CADD > 15) effects (SLC39A8-rs13107325 and WSCD2-rs3764002) 346 

and 5 are potentially deleterious (CADD > 15; ANAPC4-rs34811474, MIER-rs2034244, NUCB2-rs757081, 347 

AKAP10-rs203462 and APOE-rs429358) (Supplementary Table 2). The GWAS in EAs yielded 103 LD 348 

clumps (r2 > 0.1) across 86 independent loci (Supplementary Figure 2, Supplementary Table 3). Of these, 349 

15 were not GWS in the cross-ancestry meta-analysis (Supplementary Table 3). We also identified 2 350 

GWS variants in 1 locus (nearest gene PPARD; chr 6) in AAs, and 15 GWS variants in 2 loci (nearest genes 351 

RNU6-461P; chr 3 and RNU6-741P; chr 15) in HAs (Supplementary Table 4).  352 

[Insert Figure 1 here] 353 
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We used a sign test to examine the 86 independent EA index variants in AAs and HAs, of which 354 

57 and 74, respectively, were directly analyzed or had proxy SNPs in these populations (Supplementary 355 

Table 5). Most variants had the same direction of effect in both populations (NSNPs AAs = 41, HAs = 61; 356 

sign test AAs P =G.0013, HAs P =G1.39G×G10−8). Only 15 variants (NSNPs AAs = 2, HAs = 13) were nominally 357 

associated (P <G0.05) and none survived multiple test correction (Supplementary Table 5). The cross-358 

ancestry genetic-effect correlation (ρpe) was 0.71 (SE = 0.13, P = 2.12 × 10-2) between EAs and AAs and 359 

0.74 (SE = 0.08, P = 6.81 × 10-4) between EAs and HAs. The cross-ancestry heritability estimates between 360 

AAs and HAs were  too low to calculate ρpe between those ancestries. 361 

In the supplementary analysis that excluded participants with a lifetime OUD diagnosis, we 362 

identified 3,400 SNPs in 101 LD-independent risk loci (Supplementary Table 6). Of these, 87 were GWS, 363 

13 were p < 10-6 in the primary GWAS, and 18 were ancestry specific (17 in EAs and 1 in AAs) 364 

(Supplementary Tables 7 & 8).  365 

Single-nucleotide polymorphism heritability and enrichment 366 

The proportion of variation in pain intensity explained by common genetic variants (h2
SNP) was 367 

similar both for the full samples (AAs: 0.06 ± 0.009 and EAs: 0.08 ± 0.003) and the supplementary 368 

samples without OUD (AAs: 0.07 ± 0.009 and EAs: 0.08 ± 0.003) (Supplementary Table 9).  369 

Partitioning the SNP heritability for pain intensity revealed significant tissue-group enrichment 370 

in central nervous system (CNS) (PG=G1.47G×G10−12), adrenal (PG=G8.97G×G10−5), liver 371 

(PG=G3.15G×G10−4), skeletal (PG=G8.50G×G10−4) and cardiovascular (PG=G.001) tissues (Figure 2A & B, 372 

Supplementary Table 10). In gene expression datasets derived from multiple tissues, we observed 373 

predominant h2
SNP effects in brain (PG=G2.87G×G10−5), including hippocampus (PG=G1.00G×G10−4) and 374 

limbic system (P = 1.15G×G10−4) (Figures 2C & D, Supplementary Table 11). SNP-based heritability in 375 

histone modification data also showed robust enhancer (H3K27ac and H3K4me1) and active promoter 376 

(H3K4me3 and H3K9ac) enrichments in brain tissues, including the dorsolateral prefrontal cortex 377 

(PG<G1.32G×G10−4), inferior temporal lobe (PG< 3.09G×G10−4), angular gyrus (PG=G8.42G×G10−5), and 378 

anterior caudate (PG=G1.12G×G10−4) (Figure 2E, Supplementary Table 12). Similar results were obtained 379 

for the partitioned heritability analysis of the supplementary GWAS (Supplementary Tables 11 & 12), 380 

though it also included significant expression effects in the cortex and cerebellum.  381 
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Although the SNP-based heritability and enrichment for the full and supplementary GWASs 382 

were similar, because the full sample yielded more risk loci, we based all downstream analyses (except 383 

genetic correlation [rg] analyses) on the GWAS results from that sample.  384 

[Insert Figure 2 here] 385 

Gene-set enrichment in tissue and cell types 386 

To clarify the potential transcriptomic mechanism of each GWS pain locus, we mapped GWAS 387 

variants to genes via expression quantitative trait locus (eQTL) association in GTEx61 and assessed the 388 

tissue enrichment of mapped genes in FUMA52. After correcting for multiple testing (PG=G9.25G×G10−4) 389 

in the cross-ancestry and EA-specific GWASs, we uncovered significant transcriptomic enrichment only 390 

in brain tissues (Supplementary Figure 3). Consistent with previous findings of brain tissue enrichment 391 

across different pain phenotypes in EAs22,25,27, both our EA and cross-ancestry analyses showed notable 392 

enrichment in the cerebellum (cross-ancestry, PG=G2.48G×G10−7; EA, PG=G2.90G×G10−6), cerebellar 393 

hemisphere (cross-ancestry, PG=G4G×G10−7; EA, PG=G6.23G×G10−6), cortex (cross-ancestry, 394 

PG=G2.79G×G10−6; EA, PG=G3G×G10−4), and frontal cortex (cross-ancestry, PG=G2.82G×G10−6; EA, 395 

PG=G4.17G×G10−4) (Supplementary Figure 3). Among AAs there were no significantly enriched tissues 396 

(Supplementary Table 13). 397 

To investigate enrichment at the level of the cell type in the EA GWAS results, we conducted 398 

FUMA cell-type specific analysis67 in a collection of cell types in 13 human brain sc-RNAseq datasets. 399 

After adjusting for possible confounding due to correlated expression within datasets using a stepwise 400 

conditional analysis, we detected jointly significant cell-type enrichments (proportional significance, PS > 401 

0.5) for GABAergic neurons largely in the human adult mid-brain (PG=G0.003 β = 0.206, s.e. = 0.075, PS 402 

0.56) and to a lesser extent in the prefrontal cortex (PG=G0.044, β = 0.045, s.e. = 0.016, PS 0.39) 403 

(Supplementary Table 14). 404 

Prioritization of candidate genes 405 

To facilitate the biological interpretation and identification of druggable targets, we used a 406 

combination of MAGMA and fine-mapping, transcriptomic, proteomic, and chromatin interaction 407 

models to prioritize high-confidence variants and genes that most likely drive GWAS associations. 408 

Assigning SNPs to genes using physical proximity, MAGMA gene-based analyses63 identified 6 GWS 409 

genes in AAs, 203 in EAs, and 125 in the cross-ancestry results (Supplementary Figure 4, Supplementary 410 

Table 15), but none in HAs. MAGMA gene-set analysis63 using cross-ancestry GWAS results identified 411 
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significantly enriched biological processes in catecholamine uptake (GO:0051944; Bonferroni PG=G0.019) 412 

and startle response (GO:0001964; Bonferroni PG=G0.024). Negative regulation of synaptic transmission 413 

(GO:0050805; Bonferroni PG=G0.016) was related to pain intensity in EAs (Supplementary Table 16).  414 

For consistency with available reference data, we based the fine mapping procedure on EA 415 

GWAS results using 78 genomic regions (spanning 103 index variants) (Supplementary Table 17) defined 416 

by the maximum physical distance between the LD block of independent lead SNPs (Methods). 417 

Functional genomic prediction models used the full EA GWAS results (Supplementary Figure 1). 418 

We fine-mapped the 78 regions using the Bayesian method implemented in FINEMAP54 419 

(Methods). For each region with independent causal signals (Supplementary Table 17), credible sets of 420 

variants (PP > 0.5) were constructed to capture 95% of the regional posterior probability (k ≤ 5, 421 

Supplementary Table 18). Of these regions, 4 harbored 1 SNP (potentially indicating the causal variant), 422 

20 regions 2 SNPs and 44 regions 3 or more SNPs (Supplementary Table 18). In total, FINEMAP 423 

prioritized 76 unique credible variants (N = 108, Figure 3A), including 26 independent lead SNPs and 18 424 

novel pain loci (Figure 3B). Most (50/76) of the credible variants map to protein-coding genes and are 425 

mostly eQTLs (Supplementary Table 18), and five harbor missense variants, of which three (ANAPC4, 426 

APOE, and SLC39A8) are known pain loci25,31 and two (RYR2 and AKAP10) are novel (Figure 3B). This 427 

small proportion of missense variants and high eQTL enrichment are consistent with an increased 428 

probability that the credible variants influence liability to pain intensity through gene expression 429 

modulation.  430 

We performed TWAS and PWAS analyses to determine whether risk variants exert their effects 431 

via gene and/or protein expression. After correction for multiple testing, 196 unique genes (TWAS eQTL 432 

– 294, TWAS sQTL – 67 and PWAS – 32) were associated with pain intensity (Supplementary Tables 19 & 433 

20). Of these, 69 represent novel associations (based on a window from the index GWAS locus > 1 MB). 434 

PWAS showed significant associations in the dorsolateral prefrontal cortex (dlPFC) that overlapped for 435 

22 unique genes across multiple brain tissues in the TWAS (eQTL – 16, sQTL – 8) (Figure 3C). 436 

[Insert Figure 3 here] 437 

Chromatin interaction mapping using Hi-C data in adult and fetal brain identified 512 unique 438 

significantly interacting genes (PG=G2.84G×G10−8) (Supplementary Table 21), of which 60 are associated 439 

with all six chromatin annotations (Supplementary Figure 5) and 20 overlap with TWAS and/or PWAS 440 
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findings, including DPYSL5, KHK, MAPRE3, MST1R, NEK4, GNL3, GRK4, UHRF1BP1 and VKORC1 (Figure 441 

3C, Supplementary Tables 19, 20 & 21).  442 

Based on concordant evidence from colocalization analyses in TWAS and PWAS (COLOC PP4 > 443 

0.80), 104 unique genes (TWAS eQTL – 139, TWAS sQTL – 20 and PWAS – 14) were putatively causal for 444 

pain intensity (Supplementary Tables 19 & 20), of which 10 (including DPYSL5, GRK4, KHK and MST1R) 445 

were validated by SMR analysis (PHEIDI > 0.05) (Figure 3D, Supplementary Table 22). Among the 104 446 

genes, 6 (CHMP1A, GRIA1, GRK4, MST1R, STMN3 and TRAF3) captured 50% or more of the FINEMAP 447 

posterior probability (Supplementary Table 18). Notably, the MST1R intronic locus (rs9815930), which is 448 

in a credible set that harbors four other variants in high LD with the novel index variant rs2247036 449 

(nearest gene – TRAIP) (Supplementary Figure 6), displayed the most robust causal effects from COLOC 450 

and SMR in more than one brain tissue (Figure 3D).  451 

We also explored enrichment of causal genes and proteins in the dorsal root ganglia (DRG), 452 

which are important for transduction of nociceptive signals from the periphery to the CNS. None of the 453 

causal genes or proteins (N = 104) were enriched in human or mouse DRG (DRG enrichment score > 0.5) 454 

(Supplementary Figure 7A). Supporting results from TWAS and PWAS, 63 unique genes (human – 38 and 455 

mouse – 49) were primarily enriched in the CNS, of which 22 (including GRK4, GRIA1, MAPRE3, NEK4, 456 

STMN3 and TRAF3) showed common enrichment patterns across species (Supplementary Figure 7B). 457 

Integrating FINEMAP, colocalization and SMR prioritized 156 high-confidence genes underlying 458 

the pain intensity GWAS association, of which 5 are exonic and missense (Supplementary Table 23), and 459 

151 exert their effect via gene or protein expression.  460 

Phenotypic correlates of pain intensity 461 

As expected, the strongest positive genetic correlations of pain intensity were with other pain 462 

phenotypes (e.g., multisite chronic pain rg=0.789, osteoarthritis rg=0.710, neck/shoulder pain rg=0.669, 463 

back pain rg=0.697, hip pain rg=0.729, knee pain rg=0.637; Figure 4A). Of 72 medical, anthropometric, or 464 

psychiatric traits associated epidemiologically with pain severity and mortality, 56 were significantly 465 

genetically correlated with pain intensity in EAs (Bonferroni P < 5.62G×G10−4) (Figure 4A, Supplementary 466 

Table 24). 467 

[Insert Figure 4 here] 468 
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Notably, the liability to pain intensity was significantly positively genetically correlated with 469 

neuroticism, depression, insomnia, a variety of smoking-related measures, cannabis use disorder (CUD), 470 

alcohol dependence, OUD, and overweight and obesity (Figure 4A). As in prior studies24,29,89, pain 471 

intensity was significantly negatively correlated with educational attainment, cognitive performance, 472 

intelligence, and age of smoking initiation (Figure 4A). Relevant to drug repurposing, pain intensity was 473 

also positively correlated with the use of a variety of analgesic and anti-inflammatory drugs (Figure 4A). 474 

We also found significant rgs with pain intensity for several medical conditions and health outcomes in 475 

the UKBB (including genitourinary disease, chronic bronchitis, angina, etc., Bonferroni P < 3.72G×G10−5, 476 

Supplementary Table 25). In AAs, pain intensity was positively genetically correlated with PTSD-related 477 

features (e.g., re-experiencing, hyperarousal) and nominally associated (p < 0.05) with substance use 478 

traits (e.g., maximum alcohol intake and smoking trajectory, Supplementary Table 26). 479 

In the Yale-Penn sample, we calculated PRS for 4,922 AAs and 5,709 EAs. Among AAs, none of 480 

the associations survived Bonferroni correction, likely due to the smaller discovery sample than for EAs 481 

(Supplementary Figure 8, Supplementary Table 27). In EAs, PheWAS identified 147 phenotypes, 482 

including 107 in the substance-related domain (40 opioid-related, 30 cocaine-related, 20 tobacco-483 

related, 12 alcohol-related, and 6 cannabis-related) and 39 in other domains (9 medical, 18 psychiatric 484 

[9 PTSD, 5 ADHD, 2 conduct disorder, and 2 antisocial], 7 early childhood environmental, and 5 485 

demographic phenotypes) that were significantly associated with the pain PRS (Supplementary Figure 9, 486 

Supplementary Table 27). The most significant findings were a negative association of the pain severity 487 

PRS with educational attainment (PG=G2.39G×G10-26) and a positive association with the Fagerström Test 488 

for Nicotine Dependence (PG=G4.71 ×G10-25). Opioid dependence was also positively associated with the 489 

pain PRS (PG=G3.87 ×G10-12), and remained significant when using a PRS based on the supplementary 490 

GWAS that excluded individuals with an OUD diagnosis (OR = 1.27, PG=G1.35 ×G10-6). 491 

In PMBB, we calculated PRS for 10,383 AAs and 29,355 EAs. In AAs, no association with the pain 492 

PRS survived Bonferroni correction (Supplementary Figure 10, Supplementary Table 28). In EAs, the pain 493 

severity PRS was associated with 63 phenotypes, including 7 pain phenotypes and 6 psychiatric 494 

disorders (i.e., substance-, depression-, and anxiety-related traits). Other phenotypic categories with 495 

associations with the pain severity PRS were circulatory system (n=11), infectious diseases (n=4), 496 

endocrine/metabolic (n=8), genitourinary (n=2), musculoskeletal (n=3), and neoplasms (n=4). The most 497 

significant findings were positive correlations with obesity (PG=G1.97G×G10-45) and tobacco use disorder 498 
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(PG=G1.55G×G10-24) and a negative association with benign neoplasm of skin (PG=G2.67G×G10-26) 499 

(Supplementary Figure 11, Supplementary Table 28).  500 

Two-sample MR between genetically correlated traits (N = 16) and pain intensity yielded 10 501 

traits with evidence of causal association, 8 of which were bidirectional (Supplementary Table 29). 502 

Genetically predicted higher opioid use (N02A), depressed affect subcluster, major depressive disorder, 503 

neuroticism, use of drugs to treat peptic ulcer, and smoking cessation (coded as current smoking) had a 504 

significant positive bidirectional causal effect with pain intensity, whereas educational attainment and 505 

cognitive performance had a significant negative bidirectional causal effect (Supplementary Table 29). 506 

Further, increased risk of pain intensity positively predicted smoking initiation and cigarettes per day. 507 

Genetically inferred drug repurposing 508 

 Of the 156 genes in EAs with evidence supporting causality from fine-mapping and functional 509 

genomic prediction, 20 were present in the druggable genome database76 (Supplementary Table 30). Of 510 

these druggable candidate genes, 11 (including GRIA1, GRK4 and MST1R) are tier-1 candidates, which 511 

includes targets of licensed drugs and drugs in clinical trial, 4 genes (e.g., NEK4 and RYR2) are in tier 2, 512 

and 4 are in tier 3 (Supplementary Table 30). Within tier 1, drugs that interact with GRK4 (a credible pain 513 

gene locus in moderate LD with the novel index variant NOP14*rs71597204 – Supplementary Figure 12) 514 

are beta-blockers (atenolol and metoprolol) and a calcium-channel blocking agent (verapamil) (Figure 515 

4B), which have analgesic effects in osteoarthritis90,91 and migraine92. Another tier-1 candidate gene – 516 

GRIA1 – is targeted by anesthetics (sevoflurane, isoflurane, desflurane), antiepileptics (topiramate, 517 

perampanel), analgesics (methoxyflurane), psychoanaleptics (piracetam, aniracetam), and a diuretic 518 

(cyclothiazide) (Figure 4B). Drug classes for pain intensity also included anti-hemorrhagic agents (e.g., 519 

fostamatinib [tier 1: MST1R and FYN; tier 2: NEK4] and menadione [VKORC1]) (Figure 4B, Supplementary 520 

Table 30). 521 

Of the 7 genes associated with pain intensity in AAs, PPARD, which harbors the new genetic 522 

signal discovered in this study, is a tier-1 druggable candidate with 30 interacting drug classes 523 

(Supplementary Table 30). The PPARD negative modulator sulindac is an approved non-steroidal anti-524 

inflammatory and antirheumatic drug used to treat osteoarthritis. 525 

 526 

Discussion 527 
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We conducted the largest multi-ancestry, single-sample GWAS of pain intensity to date, 528 

comprising 112,968 AA, 436,683 EA, and 48,688 HA individuals. Cross-ancestry analyses identified 125 529 

independent risk loci, of which 82 have not previously been associated with any pain phenotype. 530 

Although prior GWASs for chronic pain phenotypes have identified 99 loci23–27,32, the study samples have 531 

largely been limited to EA individuals. The diversity of the MVP sample enabled us to identify novel 532 

association signals in both AAs (PPARD*rs9470000) and HAs (nearest genes RNU6-461P*rs146862033, 533 

RNU6-741P*rs1019597899).  534 

Findings from gene set analysis, tissue enrichment, and cell-type specificity highlight novel 535 

biological pathways linking genetic variation to the etiopathology of pain. These functional analyses all 536 

implicate the brain, providing genetic support to the current understanding of the pathophysiology of 537 

pain severity93. Genes predominantly expressed in the CNS, particularly in the cerebellum, cerebellar 538 

hemisphere, and cortex region, rather than in the DRG, appear to play a salient role in modulating the 539 

intensity of pain, consistent with prior associations of sustained chronic pain intensity with increased 540 

activity in these brain regions94–96. Our findings are also consistent with prior reports24,25,97,98 of enriched 541 

gene expression in brain that contribute to pain intensity in a dose- and time-dependent manner and 542 

may involve specific neuronal processes in brain regions implicated in emotional processing93. Evidence 543 

that GABAergic neurons are cells of specific interest is a key novel finding. GABA has long been 544 

implicated in the modulation and perception of pain99–101 and previous work has implicated specific 545 

GABAergic activity in the midbrain as a modulator of pain and anxiety102. Altered GABA levels have been 546 

reported in individuals with various types of pain103,104, and have been associated with greater self-547 

reported pain105. Targeting GABA functioning (e.g.,106), particularly in the brain regions enriched for pain 548 

intensity, may represent a novel therapeutic strategy.  549 

Eleven of 156 prioritized genes encode druggable small molecules that are targets of licensed 550 

drugs or those in clinical trials, representing drug repurposing opportunities for treating chronic pain. 551 

We highlight GRK4 and GRIA1, each with at least three lines of evidence supporting their involvement in 552 

chronic pain. GRK4 encodes G protein-coupled receptor kinase 4 and has been linked with 553 

hypertension107, which is associated with chronic pain at the population level108,109. Of note, GRK4 554 

showed significant upregulation in the cerebellar hemisphere, fine maps to an intronic variant with > 555 

95% PP, and is a target of beta-blockers. The use of beta-blockers has been associated with reduced 556 

osteoarthritis pain scores, prescription analgesic use90 and consultations for knee osteoarthritis, knee 557 

pain, and hip pain91. GRIA1 encodes an ionotropic glutamate receptor subunit, an excitatory 558 
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neurotransmitter receptor at many synapses in the CNS. Loss-of-function mutations in GRIA1 are linked 559 

to neurodevelopmental impairments110,111. The GRIA1 antagonist sevoflurane reduced pain in patients 560 

suffering from chronic venous ulcer112. However, clinical trials of topiramate (another drug target for 561 

GRIA1) for treating neuropathic chronic pain are inconclusive113. Research on the mechanisms that 562 

underlie the biology of these potential drug targets for GRK4 and GRIA1 and their effects on the onset 563 

and severity of chronic pain are warranted. 564 

Pain intensity was strongly genetically correlated with other chronic pain phenotypes. 565 

Corroborating existing epidemiological studies on the comorbid nature of different pain conditions33, the 566 

strongest genetic correlations of pain intensity were with multisite chronic pain, followed by pain in 567 

specific bodily locations. In line with previous observations in GWASs of other pain-related 568 

phenotypes24,25,27,28,89, there were also positive genetic correlations of pain intensity with psychiatric 569 

disorders, substance use and use disorders, and anthropometric traits.  570 

PheWAS findings in both the Yale-Penn sample – enriched for individuals with substance-related 571 

traits – and the PMBB – comprising a medical population – were prominent in EAs. These findings 572 

underscore the important influence of co-occurring substance-related, psychiatric, and medical 573 

pathology and educational achievement on the intensity of the pain experience. In contrast, the PRS 574 

generated from the pain intensity discovery sample in AAs yielded few associations in either of the 575 

target samples, which underscores the need for larger non-European samples to elucidate the genetic 576 

architecture of pain intensity. 577 

Two-sample MR analysis supported causal associations between pain and multiple traits. 578 

Smoking has previously been associated with greater pain intensity, but studies can be confounded by 579 

socioeconomic factors, and a bi-directional relationship has been proposed114. Here, we show evidence 580 

for a causal relationship of pain on the number of cigarettes smoked per day, smoking initiation, and 581 

smoking cessation. In line with previous findings25,33,35,36, pain intensity had a bidirectional causal effect 582 

on the risk of both depression and neuroticism, suggesting that greater pain could predispose 583 

individuals to increased risk for these psychiatric disorders and vice versa. Supporting the positive 584 

genetic correlation between opioid use and pain intensity, MR showed evidence of a bidirectional causal 585 

effect between pain intensity and opioid use. 586 

Our findings underscore the complex nature of pain intensity, with the hundreds of genetic loci 587 

contributing to the experience of pain identified here and in prior studies reflecting a substantial genetic 588 
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contribution to pain-related traits. The evidence adduced here of pleiotropy of pain intensity with 589 

psychiatric traits such as neuroticism and depression reflects the contribution of non-physical factors to 590 

the experience of pain intensity. This is consistent with the observed significant tissue-group enrichment 591 

in CNS, the predominant gene expression findings in brain (including the hippocampus and limbic 592 

system), and the SNP-based enhancer enrichments in histone modification in brain tissues (including the 593 

dorsolateral prefrontal cortex, inferior temporal lobe, angular gyrus, and anterior caudate). 594 

A limitation of the present study concerns the NRS phenotype. Although such a quantitative trait 595 

is more informative than a binary one (e.g., the presence of a specific pain diagnosis), it is based on 596 

subjective report. However, because the subjective experience of pain is a key defining feature of the 597 

clinical phenomenon1,115 the phenotype has high public health significance. Pain scores recorded by 598 

clerks and nurses in the clinical setting may consistently under report the patient’s response. In earlier 599 

work that compared self-reported pain from a direct patient survey to scores recorded in a VA clinical 600 

setting117, we found that, despite lower scores recorded in the clinic the two reports correlated well. 601 

Nonetheless, the imprecise measurement of pain intensity likely yields lower power for gene discovery.  602 

The routine assessment of pain severity provided a very large number of pain scores, which we reduced 603 

by taking the median of medians for each individual as a trait for GWAS. In subsequent analyses, we plan 604 

to evaluate alternative methods for characterizing pain severity (e.g., pain trajectories). Another 605 

limitation is that our sample comprises predominantly male veterans, which in view of well 606 

demonstrated sex differences in the experience and frequency of pain26, limits the application of the 607 

findings to the general population. Finally, although our sample was more diverse than prior GWAS of 608 

pain traits, analyses in the AA and HA samples were underpowered. 609 

Despite these limitations, the large MVP sample and informative quantitative trait measured 610 

repeatedly within subjects enabled us to generate a proxy for chronic pain and identify many novel loci 611 

contributing to the trait. Downstream analyses localize the genetic effects largely to four CNS regions 612 

and using available single-cell RNAseq data specifically to GABAergic neurons. Combined with drug 613 

repurposing findings that implicate 20 druggable targets, the study provides a basis for studies of novel, 614 

non-opioid medications for use in alleviating chronic pain. 615 

 616 

 617 

 618 
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Figure Legends 619 

Figure 1. Manhattan plot for the pain intensity cross-ancestry GWAS meta-analysis. This identified 125 620 

independent index variants. SNPs above the red line are GWS after correction for multiple testing 621 

(PG<G5G×G10−8) 622 

 623 

Figure 2. Enrichment of pain intensity in the brain. A, Partitioning heritability enrichment analyses using 624 

LDSC showing enrichment for pain intensity in the CNS, adrenal, liver, cardiovascular, and skeletal 625 

tissues. The dashed black lines indicate Bonferroni-corrected significance (PG<G0.005). B, Proportion of 626 

heritability shows robust enrichment for SNPs in brain and immune-related tissues. Heritability 627 

enrichment analyses for gene expression (C & D) and chromatin interaction (top 35 annotations are 628 

shown in E, see supplementary Table 12 for full details) using GTEx data show enrichment for pain 629 

intensity in brain regions previously associated with chronic pain. Bonferroni correction was applied 630 

within each tissue conditioned on the number of genes tested. 631 

 632 

Figure 3. Gene prioritization for pain intensity. A, Genomic annotation of credible sets using FINEMAP 633 

shows enrichment largely in non-coding regions and to a lesser extent in exons. B, Annotation of known 634 

and novel credible genes. Dashed lines indicate posterior probability > 0.5. C, Number of overlapping 635 

genes across functional prediction models. D, Tissue enrichment of prioritized genes using SMR and 636 

GTEx data show enrichment in brain regions. Size of circle reflects −log10P. Bonferroni correction was 637 

applied within each tissue conditioned on the number of genes tested. 638 

 639 

Figure 4. Genetic correlation and drug repurposing. A, Genetic correlation for pain intensity using LDSC. 640 

All points passing Bonferroni correction (Bonferroni correction threshold = 5.62G×G10−4 [0.05/89]) are 641 

plotted. The color of the circle indicates the phenotypic category. B, Druggable targets and drug 642 

interactions for 8 credible genes associated with pain intensity. For a full list of credible drug targets see 643 

Supplementary Table 30.  644 

 645 

 646 
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Data Availability. The full summary statistics from the meta-analyses will be available through dbGaP 647 

upon publication.  648 

 649 

Code Availability. Imputation was performed using Minimac3 650 

(https://genome.sph.umich.edu/wiki/Minimac3). GWAS was performed using PLINK2 (https://www.cog-651 

genomics.org/plink2). Meta-analyses were performed using METAL 652 

(https://genome.sph.umich.edu/wiki/METAL_Documentation). GCTA-COJO 653 

(https://cnsgenomics.com/software/gcta/#Overview) was used for identification of independent loci. 654 

FUMA (https://fuma.ctglab.nl/) was used for gene association, functional enrichment and gene-set 655 

enrichment analyses. Transcriptomic and proteomic analyses were performed using FUSION 656 

(https://github.com/gusevlab/fusion_twas). Chromatin accessibility analyses were performed using H-657 

MAGMA (https://github.com/thewonlab/H-MAGMA). LDSC (https://github.com/bulik/ldsc) was used for 658 

heritability estimation, genetic correlation analysis (also using the CTG-VL; https://genoma.io) and 659 

heritability enrichment analyses. Trans-ancestry genetic correlation was estimated using Popcorn 660 

(https://github.com/brielin/Popcorn). PRS analyses were performed using PRS-CS 661 

(https://github.com/getian107/PRScs). PheWAS analyses were run using the PheWAS R package 662 

(https://github.com/PheWAS/PheWAS). The MendelianRandomization R package (https://cran.r-663 

project.org/web/packages/MendelianRandomization/index.html) was used for MR analyses.  664 
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