Tucker-Davis Symposium on Advances and Perspectives in Auditory Neurophysiology (APAN VIII)

Friday, November 12, 2010

San Diego Marriott Hotel and Marina, Room: Marina Ballroom Salons F & G 333 West Harbor Drive, San Diego, CA 92101 www.marriott.com/hotels/travel/sandt-san-diego-marriott-hotel-and-marina

Scientific Program

- 8:30-9:00 Registration and Poster set-up (all posters)
- 9:00-9:05 Introduction (Andrew King)
- 9:05-10:00 Keynote lecture: Norman Weinberger (University of California at Irvine) Auditory Cortex: Past, Present and Future
- 10:00-11:30 Poster Session & Coffee Break

Slide Session (Chair: Liz Romanski)

- 11:30-11:45 Wireless multi-channel single unit recordings from the pre-motor cortex of freely roaming and vocalizing marmosets SABYASACHI ROY & XIAOQIN WANG Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, MD
- 11:45-12:00 **Cortical mechanisms of auditory feedback effecting human vocal motor control** EDWARD CHANG, SRIKANTAN NAGARAJAN & JOHN HOUDE Departments of Neurological Surgery and Physiology, Keck Center for Integrative Neuroscience, University of California, San Francisco
- 12:00-12:15 **Responses of amygdalar neurons to social vocalizations in big brown bats** *M. A. GADZIOLA^{1,2} & J. J. WENSTRUP^{1,2} ¹Anat. & Neurobio., NE Ohio Universities Col. of Med., Rootstown, OH; ²School of Biomed. Sci., Kent State Univ., Kent, OH
- 12:15-12:30 Neural encoding of natural sounds in macaque auditory cortex probed with microelectrocorticographic arrays M. FUKUSHIMA, R.C. SAUNDERS, D.A. LEOPOLD, M. MISHKIN & B.B. AVERBECK Lab. Neuropsychology, NIMH/NIH, Bethesda, MD
- 12:30-12:45 **Cortical regions sensitive to sound movement in the monkey brain** C. POIRIER, S. BAUMANN, C. I. PETKOV & T. D. GRIFFITHS Newcastle Univ., Newcastle upon Tyne, United Kingdom
- 12:45-1:45 Lunch (on your own)

Workshop: Quantitative Approaches to Studying Auditory Function (Chairs: Robert Liu & Tim Griffiths)

- 1:45-2:10Israel Nelken, Alexander Silberman Institute of Life Sciences, Jerusalem
Using Information-theoretic Methods to Study Auditory Processing
- 2:10-2:35 Jennifer Linden, University College London

Modelling Responses to Complex Sounds

- 2:35-3:00 Cyrus Billimoria, Boston University Using Spike Timing-Based Stimulus Filtering to Characterize Auditory Neurons
- 3:00-3:15 Break
- 3:15-3:40 Laurel Carney, Rochester University Computational studies of "Molecular" Behavior and Physiology: Using Reproducible Noise Maskers to Reveal Neural Mechanisms
- 3:40-4:05 Jonathan Simon, University of Maryland Auditory Neuroscience with Magnetoencephalography: New Quantitative Approaches
- 4:05-4:30 Ingrid Johnsrude, Queen's University, Kingston, Ontario Optimizing the Sensitivity of fMRI data in the Study of Language Processing

4:30-6:00 Poster Session (continued) plus Cash Bar

1. Integration of eeg-fmri in an auditory oddball paradigm using joint-independent component analysis

*J. MANGALATHU ARUMANA^{1,2}, E. LIEBENTHAL^{1,3} & S. BEARDSLEY^{2,4} ¹Dept. of Neurol., Med. Col. of Wisconsin, Milwaukee, WI; ²Dept. of Biomed. Engin., Marquette Univ., Milwaukee, WI; ³Natl. Res. Council Inst. for Biodiagnostics, Winnipeg, MB, Canada; ⁴Dept. of Biomed. Engin., Boston Univ., Boston, MA

2. Brain bases for auditory figure-ground segregation

SUNDEEP TEKI^{1, 2}, MARIA CHAIT³, SUKHBINDER KUMAR^{1, 2}, KATHARINA VON KRIEGSTEIN^{1, 4}, & TIMOTHY D. GRIFFITHS^{1, 2}

¹ Wellcome Trust Centre for Neuroimaging, University College London, London WC1N 3BG, United Kingdom; ² Newcastle Auditory Group, Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom; ³ UCL Ear Institute, University College London, London WC1X 8EE, United Kingdom; ⁴ Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany.

- The effect of temporal-lobe lesions on the perception of spectrotemporal modulation *M. GRUBE¹, T.D. GRIFFITHS¹, S.K. SHIVAPOUR¹ & S. ANDERSON²
 ¹Med. Sch., Newcastle Univ., Newcastle-upon-Tyne, United Kingdom; ³ Department of Neurology, University of Iowa, Iowa, IA, USA
- Detection of amplitude modulation as a function of modulation frequency and stimulus duration: Comparisons between macaques and humans.
 K. N. O'CONNOR^{1,2,3}, J. S. JOHNSON^{2,1}, M. NIWA^{1,2}, N. C. NORIEGA^{1,2}, E. A. MARSHALL^{1,2} & M. L. SUTTER^{1,2,3}
 ²Ctr. for Neurosci., ³Neurobiology, Physiol. and Behavior, ¹UC Davis, CA
- 5. Effects of noise on the behavioral detection of tones by nonhuman primates MARGIT DYLLA, CHRISTOPHER RICE & RAMNARAYAN RAMACHANDRAN Dept. Neurobiol & Anat, Wake Forest University Health Sciences, Winston-Salem, NC
- 6. Developmental changes in CBA/CaJ mouse vocalizations: an analysis of song structure JASMINE GRIMSLEY, JESSICA MONAGHAN & JEFFREY WENSTRUP Anatomy and Neurobiology, NEOUCOM, Ohio.

7. Wireless multi-channel single unit recordings from the pre-motor cortex of freely roaming and vocalizing marmosets

SABYASACHI ROY & XIAOQIN WANG Dept. of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.

- 8. Cortical mechanisms of auditory feedback effecting human vocal motor control EDWARD CHANG, SRIKANTAN NAGARAJAN & JOHN HOUDE Departments of Neurological Surgery and Physiology, Keck Center for Integrative Neuroscience, University of California, San Francisco
- **9.** Responses of amygdalar neurons to social vocalizations in big brown bats *M. A. GADZIOLA^{1,2} & J. J. WENSTRUP^{1,2}
 ¹Anat. & Neurobio., NE Ohio Universities Col. of Med., Rootstown, OH; ²School of Biomed. Sci., Kent State Univ., Kent, OH
- 10. Visual influences on voice-sensitive neurons

C. PERRODIN¹, C. KAYSER¹, N.K. LOGOTHETIS^{1,2} & C.I. PETKOV^{1,3} ¹ Dept. Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, ² Imaging Science and Biomedical Engineering, University of Manchester, U.K., ³ Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, U.K.

- A brain region consisting of neurons with moderate sensitivity for voices
 C. PERRODIN¹, C. KAYSER¹, N.K. LOGOTHETIS^{1,3} & C.I. PETKOV^{1,2}
 ¹ Dept. Physiology of Cognitive Processes, Max-Planck Institute for Biological Cybernetics, Tübingen, Germany, ² Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, U.K., ³ Imaging Science and Biomedical Engineering, University of Manchester, Manchester, U.K.
- 12. Factors affecting neuronal activity in the primate ventral frontal lobe during discrimination tasks of emotional faces and vocalizations
 M. M. DIEHL, M. D. DILTZ & L. M. ROMANSKI.
 University of Rochester Medical Center, Rochester, NY
- **13.** Effects of face and motion stimuli on auditory processing in the ventrolateral prefrontal cortex JAEWON HWANG¹ & LIZABETH M. ROMANSKI² ¹Brain & Cognitive Sciences, University Rochester, Rochester, NY; ²Department of Neurobiology & Anatomy, University of Rochester, NY
- 14. Behavioral and neural integration of faces and voices in macaque monkeys CHANDRAMOULI CHANDRASEKARAN^{1, 2}, LUIS LEMUS^{1, 2}, MATTHIAS GONDAN³ & ASIF A GHAZANFAR^{1, 2,4}
 ¹Neuroscience Institute and Departments of ²Psychology and ⁴Ecology & Evolutionary Biology Princeton University, Princeton, NJ 08540, USA

³Department of Psychology, University of Regensburg, D-93050, Regensburg, Germany

- 15. Band-specific modulations of neural oscillations during habituation to vocalizations in the primate ventrolateral prefrontal cortex JOJI TSUNADA¹, ALLISON E. BAKER², KATE L. CHRISTISON-LAGAY¹ & YALE E. COHEN¹ ¹Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania School of Medicine; ²Department of Neurobiology, Harvard University
- **16.** Coding of vocalization variance in the auditory-cortex lateral belt J. LEE, K. CHRISTISON-LAGAY & Y.E. COHEN Univ. of Pennsylvania Sch. of Med., Philadelphia, PA

17. Acoustic-phonetic processing and temporal complexity in the auditory ventral stream: a metaanalysis

IAIN DEWITT & JOSEF P. RAUSCHECKER Georgetown University Medical Center

18. Discriminating communication calls through selective versus differential responses in auditory cortex

KATHRYN N. SHEPARD¹, FRANK LIN^{1,2} & ROBERT C. LIU¹ ¹ Emory University, Atlanta, GA² Georgia Institute of Technology, Atlanta, GA

- 19. Effect of presentation rate on speech discrimination in the adult rat ROSEN, T.M., SLOAN, A. M., ENGINEER, C., RENNAKER, R., ABDULALI, Z.M., CHEUNG, R.J. & KILGARD, M.P. The University of Texas at Dallas, 800 West Campbell Rd, Richardson, TX 75080-3021
- 20. Responses to communication sounds in the guinea pig auditory cortex during partial removal of intracortical inhibitions

EDELINE JEAN-MARC, HUETZ CHLOÉ, GOURÉVITCH BORIS & GAUCHER QUENTIN CNPS, UMR CNRS 8195, Bat 446, Université Paris-Sud, 91405 Orsay cédex.

- **21. Multiple, simultaneous recordings in the auditory cortex of the awake, behaving primate** ELLIOT SMITH & BRADLEY GREGER University of Utah
- **22.** Dual pathways for sound discrimination in the rat auditory cortex MASAHARU KUDOH¹, GO OGAWA¹ & YOKO NISHIDA^{1, 2} ¹Dept Physiol, Teikyo Univ Sch Med, ²Teikyo Heisei Univ, Tokyo, Japan
- 23. Tone-elicited response patterns recorded directly from human auditory cortex on the posterior lateral superior temporal gyrus
 M. STEINSCHNEIDER*¹, K. NOURSKI², H. KAWASAKI², H. OYA² & M. HOWARD²
 A Einstein Coll. Med.¹, Bronx, NY and Univ. of Iowa Coll. Med.², Iowa City, IA.
- 24. Temporal sensitivity of cochleotopic fields in human auditory cortex LEAVER AM & RAUSCHECKER JP Georgetown University Medical Center
- 25. Neural encoding of natural sounds in macaque auditory cortex probed with microelectrocorticographic arrays M. FUKUSHIMA, R.C. SAUNDERS, D.A. LEOPOLD, M. MISHKIN & B.B. AVERBECK; Lab. Neuropsychology, NIMH/NIH, Bethesda, MD;
- 26. The caudomedial area of rhesus monkey auditory cortex revisited KUŚMIEREK P & RAUSCHECKER JP Georgetown University Medical Center, Washington, DC, USA
- 27. Mapping the macaque auditory system using magnetic resonance imaging and complex sounds

*M. ORTIZ¹, D. A. ARTCHAKOV¹, I. DEWITT¹, P. KUSMIEREK¹, J. VANMETER² & J. P. RAUSCHECKER¹

¹Dept. of Physiol. and Biophysics, Georgetown Univ., WASHINGTON, DC; ²Ctr. for Functional and Mol. Imaging, Med. Ctr., Georgetown Uni, Washington, DC

28. Anatomical connections of the rostral supratemporal plane in rhesus monkeys SCOTT, B.H., VINAL, H., MISHKIN, M. & SAUNDERS, R.C.

Laboratory of Neuropsychology, NIMH, NIH, Bethesda, MD 20892

29. Combined lesions of rostral superior temporal gyrus and rhinal cortex nearly abolish shortterm memory in monkeys

J. B. FRITZ¹, M. MISHKIN² & R. C. SAUNDERS² ¹Neural Systems Lab, Inst. for Systems Res., Univ. of Maryland, College Park, MD; ²Lab of Neuropsychology, NIMH, Bethesda, MD

30. Prefrontal neuronal population activity during auditory recognition memory demand in nonhuman primates

BETHANY PLAKKE¹, CHI-WING NG¹, AND RYAN OPHEIM¹ & AMY POREMBA^{1,2} ¹Department of Psychology, Division of Behavioral and Cognitive Neuroscience, University of Iowa, Iowa City, IA 52242, ²Neuroscience Program, University of Iowa, Iowa City, IA 52242.

31. Local field potential activity in monkey dorsal temporal pole during auditory delayed matching-to-sample

JAMES BIGELOW¹, CHI-WING NG¹ & AMY POREMBA^{1,2}

¹ Department of Psychology, Division of Behavioral and Cognitive Neuroscience, University of Iowa, Iowa City, IA 52242; ² Neuroscience Program, University of Iowa, Iowa City, IA 52242.

32. Neuronal population encoding of auditory recognition memory within the primate temporal polar cortex

CHI-WING NG¹, BETHANY PLAKKE¹ & AMY POREMBA^{1,2} ¹Department of Psychology, Division of Behavioral and Cognitive Neuroscience, University of Iowa, Iowa City, IA 52242, ²Neuroscience Program, University of Iowa, Iowa City, IA 52242.

33. Task-related neuronal activity in primate primary auditory cortex during auditory delayed matching-to-sample task performance

RYAN OPHEIM¹ & AMY POREMBA^{1,2} ¹Department of Psychology, Division of Behavioral and Cognitive Neuroscience, University of Iowa, Iowa City, IA 52242, ²Neuroscience Program, University of Iowa, Iowa City, IA 52242.

34. Feature representation in the auditory and prefrontal cortices

A.S. LIU¹, J. MCDANIEL², T. PATEL² & Y. E. COHEN³; ¹Bioengineering, ²Dept. of Bioengineering, ³Dept. of Otorhinolaryngology, Univ. of Pennsylvania, Philadelphia, PA

35. Repetition suppression for a pitch stimulus

SUKHBINDER KUMAR, COLLINE POIRIER, SIMON BAUMANN & TD GRIFFITHS Newcastle Auditory Group, Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom

36. The role of interactions between excitatory and inhibitory receptive field components in encoding harmonic structures in auditory cortex of awake marmosets LEI FENG & XIAOQIN WANG

Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland

- 37. Anterior auditory core areas in macaques are specifically responsive to regular interval noise (RIN) at rates associated with human pitch perception BAUMANN S, KUMAR S, SUN L, THIELE A & GRIFFITHS TD Newcastle Auditory Group, Medical School, Newcastle University, Newcastle-upon-Tyne NE2 4HH, United Kingdom
- 38. Simultaneous neural and behavioural assessment of pitch discrimination in freely moving ferrets

*J. K. BIZLEY, K. M. WALKER, F. R. NODAL, A. J. KING & J. W. SCHNUPP Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom

39. Nonlinear temporal processing of natural sounds in auditory cortex S.V. DAVID & S.A. SHAMMA

Institute for Systems Research, University of Maryland, College Park

40. Fast-spiking and regular-spiking neurons in A1 of the awake macaque: Laminar variability and response latencies

C.R. CAMALIER^{1,2}, LISA A DE LA MOTHE³, ANGELA C. VOYLES¹, MICHAEL L. GARCIA¹, SHU-EN LIM¹ & TROY A. HACKETT^{1,2, 3}

¹Ctr. Integrative and Cognitive Neuroscience, Dept. of Psychology, ²Vanderbilt Brain Institute, ³Dept. of Speech and Hearing Science; Vanderbilt University, Nashville TN

41. Corticofugal influence on temporal modulation processing in auditory thalamus of awake marmosets

MARCUS JESCHKE^{1,2}, FRANK W. OHL^{2,3} & XIAOQIN WANG¹ ¹Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland; ²BioFuture Res. Group, Leibniz Inst. for Neurobiology, Magdeburg, Germany; ³Inst. for Biol., Otto-von-Guericke Univ. Magdeburg, Magdeburg, Germany

- **42. Cortical regions sensitive to sound movement in the monkey brain** C. POIRIER, S. BAUMANN, C. I. PETKOV & T. D. GRIFFITHS Newcastle Univ., Newcastle upon Tyne, United Kingdom
- 43. Inhibition modulates spatial response properties of neurons in the primary auditory cortex of awake marmoset
 - YI ZHOU & XIAOQIN WANG

Laboratory of Auditory Neurophysiology, Dept of Biomedical Engineering, Johns Hopkins University, Baltimore, MD

44. Neural responses to simulated echoes in the auditory cortex of the ferret

SANDRA TOLNAI¹, NEIL C RABINOWITZ¹, BEN D WILLMORE¹, RUTH Y LITOVSKY² & ANDREW J KING¹

¹ Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom; ² University of Wisconsin, Madison

45. Time course of adaptation to stimulus statistics in the perception and neural representation of auditory space

JOHANNES C DAHMEN, PETER KEATING & ANDREW J KING Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom

- **46.** Contrast gain control in auditory cortex BEN D. WILLMORE, NEIL C. RABINOWITZ, JAN. W. H. SCHNUPP & ANDREW J. KING; Department of Physiology, Anatomy and Genetics, University of Oxford, United Kingdom
- **47. Adaptation to global temporal statistical structure of sounds in the mammalian auditory cortex** MARIA N. GEFFEN University of Pennsylvania School of Medicine
- 48. The interplay of excitation and inhibition in the inferior colliculus and its relationship to adaptation for naturalistic stimuli NADJA SCHINKEL-BIELEFELD¹, MAI EL-ZONKOLY¹, NICHOLAS LESICA², BENEDIKT GROTHE³ & DANIEL A, BUTTS¹

¹Department of Biology, University of Maryland, College Park, MD, USA ; ²Ear Institute, University College London, London, United Kingdom; ³Division of Neurobiology, Department Biology II, Ludwig Maximilians University Munich, Munich, Germany

49. Phase-locked neural oscillation predicts human auditory brainstem responses to musical intervals

E. W. LARGE & F. V. ALMONTE Ctr. for Complex Systems & Brain Sci., Florida Atlantic Univ., Boca Raton, FL

50. Selective responses to salient acoustic stimuli in nucleus basalis of the behaving ferret NICHOLAS D. LEACH¹, VICTORIA M. BAJO¹, ANDREW J. KING¹, STEPHEN V. DAVID², SHIHAB A. SHAMMA², MICHAEL BROSCH³ & JONATHAN B. FRITZ² ¹ Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom, ²

Neural Systems Lab, Institute for Systems Research, University of Maryland, College Park, MD, ³ Leibniz Institute for Neurobiology, Magdeburg, Germany.

- 51. Control of auditory cortical plasticity by the prefrontal cortex in the mouse DANIEL E. WINKOWSKI, SHARBA BANDYOPADHYAY, SHIHAB A. SHAMMA & PATRICK O. KANOLD Institute for Systems Research, University of Maryland, College Park, MD
- **52.** Strength of extinction memory is accounted for by loss of cortical representational area K.M. BIESZCZAD* & N.M. WEINBERGER Center for the Neurobiology of Learning and Memory and Dept. of Neurobiology and Behavior, University of California, Irvine, CA.
- 53. Enhancement of gamma band activation parallels behavioral and physiological correlates across training sessions D.B. HEADLEY & N. M. WEINBERGER

Dept. of Neurobiology and Behavior, University of California, Irvine, CA.

- 54. Basolateral amygdala induced cortical memory traces are discriminative CHAVEZ, C.M., MCGAUGH, J.L. & WEINBERGER, N.M. Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, UCI, Irvine, CA
- **55. Hierarchical processing of vocalization signals in the auditory forebrain** JAMES JEANNE, TATYANA SHARPEE & TIMOTHY GENTNER University of California, San Diego /Salk Institute
- 56. Neural correlates to auditory vocal recognition and learning in behaving European starlings DANIEL KNUDSEN¹ & TIMOTHY GENTNER² ¹Neurosciences Graduate Program, University of California, San Diego ²Department of Psychology, University of California, San Diego
- 57. Learning-dependent and independent effects of noise on the representation of vocal communication signals across multiple regions of the auditory forebrain EMILY CAPORELLO¹ & TIMOTHY Q. GENTNER^{1,2}
 ¹Neuroscience Graduate Program, ²Department of Psychology University of California, San Diego
- 58. Manipulating physiological and environmental conditions to restore the sensory sensitivephase for song learning NOOPUR AMIN & FREDERIC E. THEUNISSEN U.C. Berkeley

- **59.** Age related changes in spectro-temporal receptive fields in the guinea pig auditory cortex B. GOURÉVITCH & J.-M. EDELINE; CNPS UMR CNRS 8195, Univ. Paris-Sud, Orsay Cedex, France
- 60. Auditory processing in normal versus aged animals assessed at the population level under challenging listening conditions ARAVINDAKSHAN PARTHASARATHY¹, PAUL CUNNINGHAM² & EDWARD BARTLETT^{1, 2} ¹Department of Biological sciences, Purdue University; ²Weldon School of biomedical engineering, Purdue University
- 61. Cortical responses to cochlear implant stimulation in the awake marmoset *L. A. JOHNSON¹, C. C. DELLA SANTINA^{1,2} & X. WANG¹ ¹Dept Biomed Eng, Johns Hopkins Univ., Baltimore, MD; ²Dept of Otolaryngology-Head & Neck Surgery, Johns Hopkins Univ., Baltimore, MD
- 62. Effects of microstimulation in the inferior colliculus on auditory perception in non-human primates: implications for the auditory midbrain implant DEBBIE ROSS & JENNIFER M. GROH Duke University