Acyl-Coenzyme A Thioesters for Pesticides, Parkinson's, and Metabolism

Nathaniel W Snyder, PhD, MPH Blair Lab August 11, 2014

CENTER OF EXCELLENCE IN ENVIRONMENTAL TOXICOLOGY

Biological Importance of Acyl-CoAs

MS/MS of Acyl-Coenzyme A Thioesters

Snyder, et al. RCM. 2014, Basu, et al. Anal. Chem. 2011, Snyder, et al. In Preparation

Rotenone and Parkinson's Disease

Rotenone

- Widely used pesticide (before 2007)
 - Decades of laboratory/animal studies on toxicity
 - Hypothesized similarity to 1-methyl-4-phenylpyridinium (MPP+) and precursor MPTP
- Exposure associated with Parkinson's disease
 - Agricultural Health Study
 - Farming and Movement Evaluation
- 110 PD cases (confirmed by two neurologist consensus)
- 358 age, sex, state matched controls
- PD associated with rotenone exposure OR = 2.5 (1.3-4.7)

Rotenone and Metabolism

Rotenone Alters Short Chain Acyl-CoA Levels

Basu, et al. Chemical Research in Toxicology. 2011

Rotenone Alters Fatty Acid Metabolism

Worth, et al. In Review JBC. 2014 (see poster TOXI:58. Tu Evening)

Rotenone Reduces Medium Chain Acyl-CoAs

Palmitoylcarnitine Increases with Rotenone

Many Roads to Acetyl-CoA

Reductive Metabolism of Glutamine

Glutamine Support Palmitoyl-CoA Synthesis

Wider Metabolic Perturbations

Rotenone Metabolites

Extracted Ion Chromatogram: 395.1479 - 395.1488 m/z

D-Panthethine

Extracted Ion Chromatogram: 555.2509 - 555.2526 m/z

Basu, et al. Bioanalysis. 2013. Worth, et al. In Preparation

Conclusions

Rotenone

- Association with Parkinson's
- Metabolic compensation from multiple sources revealed through acyl-CoA analysis
- Absolute quantitation has failings
- Tracer studies to show relative contributions from different carbon sources
- Lipid synthesis and β-oxidation?

Summary

Future Directions

- Toxicological/pharmacological mechanisms of action
- Connect to wider metabolism
- Better model systems for disease relevance
- Cause or consequence?
- Other mitochondrial complex inhibitors
- Oxidative stress inducing exposures
- Metabolic rescue

Acknowledgements

- Dr. Ian A. Blair
 - Andrew Worth
 - Dr. Clementina Mesaros
 - Dr. Qingqing Wang
 - Dr. Sankha "Bobby" Basu
 - Christine Shwed
 - Dr. Xiaojing Liu
 - Dr. Stacy Gelhaus
 - Alejandro, Linda, Sonia, Zinan
 - Dr. Suhong Zhang

- Lynch Lab
- Brass Lab
 - Dr. Peisong Ma

- Funding
 - Wharton Innovation Fund
 - NIH Grants
 - R01-CA-158328 to IAB
 - T32-GM-008076
 - P42-ES-023720 Superfund