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SUMMARY

Transcription factors establish neural diversity and
wiring specificity; however, how they orchestrate
changes in cell morphology remains poorly under-
stood. The Drosophila Roundabout (Robo) receptors
regulate connectivity in the CNS, but how their
precise expression domains are established is un-
known. Here, we show that the homeodomain tran-
scription factor Hb9 acts upstream of Robo2 and
Robo3 to regulate axon guidance in the Drosophila
embryo. In ventrally projecting motor neurons, hb9
is required for robo2 expression, and restoring
Robo2 activity in hb9 mutants rescues motor axon
defects. Hb9 requires its conserved repressor
domain and functions in parallel with Nkx6 to regu-
late robo2. Moreover, hb9 can regulate the medio-
lateral position of axons through robo2 and robo3,
and restoring robo3 expression in hb9 mutants res-
cues the lateral position defects of a subset of neu-
rons. Altogether, these data identify Robo2 and
Robo3 as key effectors of Hb9 in regulating nervous
system development.
INTRODUCTION

Combinations of transcription factors specify the tremendous di-

versity of cell types in the nervous system (Dasen, 2009; Hobert,

2011; Shirasaki and Pfaff, 2002). Many studies have identified re-

quirements for transcription factors in regulating specific events

in circuit formation as neurons migrate, form dendritic and

axonal extensions, and select their final synaptic targets (re-

viewed in Polleux et al., 2007; Zarin et al., 2014). In most cases,

the downstream effectors through which transcription factors

control changes in neuronal morphology and connectivity

remain unknown, although several functional relationships

have been demonstrated (van den Berghe et al., 2013; Jinushi-

Nakao et al., 2007; Labrador et al., 2005; Luria et al., 2008; Mar-

cos-Mondéjar et al., 2012; Nóbrega-Pereira et al., 2008; Wilson

et al., 2008).
Conserved homeodomain transcription factors regulate motor

neuron development across phyla. Studies in vertebrates and in-

vertebrates have shown that motor neurons that project to com-

mon target areas often express common sets of transcription

factors, which act instructively to direct motor axon guidance

(Kania and Jessell, 2003; Kania et al., 2000; Landgraf et al.,

1999; Thor and Thomas, 1997). In mouse and chick, Nkx6.1/

Nkx6.2 and MNR2/Hb9 are required for the specification of spi-

nal cord motor neurons, and for axon pathfinding and muscle

targeting in specific motor nerves (Arber et al., 1999; De Marco

Garcia and Jessell, 2008; Sander et al., 2000; Thaler et al.,

1999; Vallstedt et al., 2001). InDrosophila, Nkx6 and Hb9 are ex-

pressed in embryonic motor neurons that project to ventral or

lateral body wall muscles, and although they are not individually

required for specification, they are essential for the pathfinding of

ventrally projecting motor axons (Broihier and Skeath, 2002;

Broihier et al., 2004; Odden et al., 2002). Axons that project to

dorsal muscles express the homeodomain transcription factor

Even-skipped (Eve), which regulates guidance in part through

the Netrin receptor Unc5 (Fujioka et al., 2003; Labrador et al.,

2005; Landgraf et al., 1999). Eve exhibits cross-repressive inter-

actions with hb9 and nkx6, which function in parallel to repress

eve and promote islet and lim3 expression (Broihier and Skeath,

2002; Broihier et al., 2004). Hb9 and Nkx6 act as repressors to

regulate transcription factors in the spinal cord (Lee et al.,

2008; Muhr et al., 2001; William et al., 2003); however, guidance

receptors that act downstream of Hb9 and Nkx6 have not been

characterized. Interestingly, in both flies and vertebrates, Hb9

and Nkx6 are also expressed in a subset of interneurons, and

knockdown experiments in Drosophila have suggested a role

for hb9 in regulating midline crossing (Broihier et al., 2004;

Odden et al., 2002; Sander et al., 2000; Vallstedt et al., 2001;Wil-

son et al., 2005).

Roundabout (Robo) receptors regulate midline crossing and

lateral position within the developing CNS of invertebrates and

vertebrates (Jaworski et al., 2010; Kastenhuber et al., 2009;

Kidd et al., 1998; Long et al., 2004; Rajagopalan et al., 2000a,

2000b; Sabatier et al., 2004; Simpson et al., 2000a, 2000b).

Two recent studies in mice have also identified a role for Robos

in regulating motor axon guidance in specific motor neuron

populations (Bravo-Ambrosio et al., 2012; Jaworski and Tess-

ier-Lavigne, 2012). The three Drosophila Robo receptors have

diversified in their expression patterns and functions. Robo,
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hereafter referred to as Robo1, is broadly expressed in the

ventral nerve cord and prevents inappropriate midline crossing

by signaling repulsion in response to midline-derived Slit (Kidd

et al., 1998, 1999). Robo2 is initially expressed in many ipsilateral

pioneers and also contributes to Slit-mediated repulsion (Raja-

gopalan et al., 2000a; Simpson et al., 2000b). Subsequently,

robo2 expression is more restricted, and it is required to specify

the medio-lateral position of axons (Rajagopalan et al., 2000b;

Simpson et al., 2000a). Robo3 is expressed in a subset of CNS

neurons and also regulates lateral position (Rajagopalan et al.,

2000b; Simpson et al., 2000a).

Characterization of the expression domains of the Drosophila

Robos revealed an intriguing pattern, in which Robo1 is ex-

pressed on axons throughout the width of the CNS, Robo3 is

found on axons in intermediate and lateral zones, and Robo2 is

enriched on the most lateral axons (Rajagopalan et al., 2000b;

Simpson et al., 2000a). These patterns are transcriptional in

origin, as replacing any robo gene with the coding sequence

of another Robo receptor results in a protein distribution that

matches the endogenous expression of the replaced gene

(Spitzweck et al., 2010) (C.S., T. Evans, and G.J.B., unpublished

data). A phenotypic analysis of these gene-swap alleles revealed

the importance of transcriptional regulation for the diversification

of robo gene function (Spitzweck et al., 2010). Robo2 and

robo3’s roles in regulating lateral position are largely dependent

on their expression patterns, although unique structures within

the Robo2 receptor are also important for its function in lateral

position (Evans and Bashaw, 2010; Spitzweck et al., 2010). In

the peripheral nervous system, the atonal transcription factor

regulates robo3 in chordotonal sensory neurons, directing the

position of their axon terminals (Zlatic et al., 2003). In the CNS,

the transcription factors lola andmidline contribute to the induc-

tion of robo1 (Crowner et al., 2002; Liu et al., 2009). However,

how the expression patterns of robo2 and robo3 are established

to direct axons to specific medio-lateral zones within the CNS

remains unknown.

This study identifies a functional relationship betweenHb9 and

the Robo2 and Robo3 receptors in multiple contexts. We show

that Hb9 acts through Robo2 to regulate motor axon guidance

and can direct the medio-lateral position of axons in the nerve

cord through its effects on robo2 and robo3. Furthermore, hb9

interacts genetically with nkx6 and requires its conserved

repressor domain to regulate robo2. Together, these data estab-

lish a link between transcriptional regulators and cell surface

guidance receptors, providing an example of how upstream fac-

tors act through specific guidance receptors to direct circuit

formation.

RESULTS

Robo2 Is Required in Neurons for Motor Axon
Pathfinding
Hb9 regulates motor axon pathfinding across species, but its

downstream effectors remain unknown. In Drosophila, hb9 is

required for the formation of the ISNb nerve, which innervates

a group of ventral muscles (Broihier and Skeath, 2002). In our

hands, approximately 20% of hemisegments in hb9 mutant

embryos lack innervation at the muscle 6/7 cleft, whereas these
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defects are rarely observed in wild-type animals or hb9 heterozy-

gotes (Figure 1). To identify potential targets of hb9, we exam-

ined the expression patterns of axon guidance genes by in situ

hybridization. We found that during the stages when motor

axons navigate the muscle field, robo2 mRNA is enriched in

ventrally projecting motor neurons (Figure S1).

To determine whether robo2 regulates motor axon guidance,

we examined robo2 mutant embryos for innervation defects. In

20% of hemisegments in robo2 mutants, the axon that normally

innervates the muscle 6/7 cleft is either absent or stalled at the

main ISNb trunk (Figure 1). This phenotype is similar to that of

hb9 mutants and is observed using multiple robo2 alleles (Fig-

ure 1; data not shown). Robo2 heterozygotes and robo2/+;

hb9/+ double heterozygotes do not have significant defects (Fig-

ure 1; data not shown). Robo2mutants have no defects in axons

forming the ISN, SNa, SNc, TN, or ISNd nerves. Importantly,

restoring one copy of an 83.9 kb bacterial artificial chromosome

(BAC) transgene that contains the robo2 locus and its flanking

genomic sequence fully rescues the 6/7 innervation defects of

robo2 mutants (Figure 1B).

Robo2 is expressed in ventral muscles and in motor neurons

(Figure S1). To determine if robo2 acts in neurons to regulate

motor axon pathfinding, we expressed aUAS-Robo2RNAi trans-

gene using ftzng-GAL4, which drives expression in many motor

neurons and their precursors (Thor et al., 1999). Expressing

UAS-Robo2RNAi with ftzng-GAL4 in an otherwise wild-type

background produces no effect but causes significant 6/7 inner-

vation defects when expressed in robo2 heterozygotes (Fig-

ure 1B). Conversely, expressing UAS-Robo2 RNAi in robo2

heterozygotes using the pan-muscle driver 24bGAL4 has no

effect (Figure 1B). Together, these data suggest that robo2 is

required neuronally to regulate ISNb pathfinding.

Hb9 Is Required for robo2 Expression in the RP Motor
Neurons
To test if hb9 regulates robo2 in ventrally projecting motor neu-

rons, we examined robo2’s expression pattern in hb9 mutants.

In stage 16 wild-type or hb9 heterozygote embryos, robo2

mRNA is readily detected in the raw prawn (RP) motor neurons

(Figures S1 and 1C). In particular, robo2 transcript is enriched

in RP3, the neuron that innervates the muscle 6/7 cleft (Fig-

ure 1C). In hb9 mutants, robo2 mRNA is significantly decreased

in the RP motor neurons (Figure 1D). An average of 83% of RP3

neurons in hb9kk30/+ heterozygous embryos, but only 49% of

RP3 neurons in hb9kk30/hb9jj154e mutants, express detectable

robo2 at stage 16 (p < 0.001, Student’s t test) (Figure 1D). This

difference is observed as early as stage 14, when robo2 mRNA

begins to accumulate in RP3, and is detected using multiple

hb9 alleles (Figures 1 and 3; data not shown). Interestingly, hb9

mutants show no change in the expression of robo1, which is

broadly expressed in many motor neurons including the RPs

(data not shown). To quantify the fluorescent robo2mRNA signal

in RP3 neurons, we measured pixel intensity and normalized the

mRNA signal to the myc signal from islet-tau-myc. The average

relative fluorescence intensity of robo2 mRNA in hb9 heterozy-

gotes is more than twice the average value measured in hb9mu-

tants (p < 0.01, Student’s t test) (Figure 1D). We conclude that

hb9 is an essential regulator of robo2 in the RP motor neurons.



Figure 1. Robo2 and hb9 Mutants Have Similar Motor Axon Guidance Defects, and hb9 Is Required for robo2 Expression in the RP Motor

Neurons

(A) Stage 17 embryos stained for FasII. Anterior is left. Arrows point to the muscle 6/7 innervation, which is often absent in hb9 or robo2 mutants (asterisks).

(B) The percentage of hemisegments lacking the 6/7 innervation is shown; asterisks indicate a significant difference (Student’s t test, *p < 0.01). Error bars, SEM.

(C) Fluorescent in situ for robo2mRNA in stage 16 embryos. Anterior is up. The RP3 motor neurons are labeled by the islet-tau-myc transgene and circled in the

single-channel images. Most RP3 neurons express robo2 in hb9 heterozygotes (filled arrowheads), whereas many RP3 neurons do not express robo2 in hb9

mutants (empty arrowheads). YZ and XZ cross-sections are shown; hash marks indicate the planes of the sections.

(D) Left: RP3 neurons were scored as positive or negative for robo2. Hb9 mutants have significantly fewer robo2+ RP3 neurons than heterozygous siblings

(Student’s t test, p < 0.001). Error bars, SEM. Right panel shows that the average relative fluorescence intensity of robo2 mRNA is significantly lower in hb9

mutants than in hb9 heterozygotes (Student’s t test, p < 0.01). The mean gray value of the robo2mRNA signal in RP3 neurons was normalized to the mean gray

value of the myc signal. Error bars, SEM. Numbers of embryos and neurons analyzed are shown in parentheses.

Scale bars represent 10 mm. Robo2 �/� robo2 BAC rescue denotes robo2123, 22K18robo2BAC/ robo233. Hb9 +/� denotes hb9kk30, isl-taumyc/TM3. Hb9 �/�
denotes hb9kk30, isl-taumyc/hb9jj154e. See also Figure S1.
Robo2’s Activity in Motor Axon Guidance Depends on
Unique Features of Its Cytodomain
Robo2 has multiple activities in the embryonic CNS, some of

which cannot be substituted for by the other Robo receptors

(Evans and Bashaw, 2010; Spitzweck et al., 2010). To determine

whether Robo2’s activity in motor axon guidance is a unique

property of Robo2, we examined knockin alleles in which the
coding sequences of Robo1, Robo2, or Robo3 are knocked

into the robo2 locus, hereafter referred to as robo2X, where X

represents the inserted coding sequence (Spitzweck et al.,

2010). Embryos homozygous for the robo2robo2 allele have no

significant defects in motor axon pathfinding, whereas embryos

homozygous for either robo2robo1 or robo2robo3 have as many

RP3 innervation defects as robo2mutants (Figure 2B). To define
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Figure 2. Restoring Robo2 Activity in hb9 Mutants Rescues Motor

Axon Guidance Defects

(A) Schematic of the Robo receptors analyzed for their ability to replace

endogenous Robo2.

(B) Embryos homozygous for knockin alleles in which the coding sequences of

Robo2, Robo3, Robo1, Robo2-1, or Robo1-2 are inserted in the robo2 locus

were analyzed for motor axon guidance defects. Only Robo2 and Robo1-2 can

restore muscle 6/7 innervation. Asterisks indicate a significant difference

(Student’s t test, *p < 0.01). Error bars, SEM.

(C)Hb9mutant embryos overexpressingUAS-HARobo1-2 have fewer defects

than mutants lacking the transgene (Student’s t test, p < 0.05). All hb9mutants

were scored blind to genotype. Error bars, SEM.

See also Figure S2.
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the protein domains required for Robo2’s activity in motor axon

guidance, we examined knockin alleles encoding either of two

chimeric receptors: Robo2-1 (Robo2’s ectodomain and Robo1’s

cytodomain); or Robo1-2 (Robo1’s ectodomain and Robo2’s

cytodomain) (Spitzweck et al., 2010) (Figure 2A). We found that

robo2robo2-1 embryos have as strong a motor axon phenotype

as robo2mutants, whereas robo2robo1-2 embryos are phenotyp-

ically normal (Figure 2B). Together, these results suggest that

neither Robo1 nor Robo3 can substitute for Robo2 in motor

axon guidance and that this Robo2-specific activity maps to its

cytodomain.

Restoring Robo2 Activity in hb9Mutants Rescues Motor
Axon Guidance Defects
To determine if Robo2 acts as an effector of Hb9 during motor

axon guidance, we tested whether overexpressing robo2 in

hb9mutants rescues their muscle 6/7 innervation defects. How-

ever, overexpressing aUAS-Robo2 transgene using hb9GAL4 in

otherwise wild-type embryos produces severe motor axon de-

fects, affecting RP3 innervation in more than 50% of hemiseg-

ments (Figure S2). We therefore sought to identify a variant of

the Robo2 receptor that retains its endogenous activity in ISNb

pathfinding but does not generate defects when overexpressed.

Because our results with the knockin alleles indicate a require-

ment for Robo2’s cytodomain in motor axon guidance (Fig-

ure 2B), we tested whether overexpression of a chimeric

receptor that contains the ectodomain of Robo1 and the cytodo-

main of Robo2 (Robo1-2) results in motor axon guidance de-

fects. We found that overexpression of UAS-Robo1-2 with

hb9GAL4 does not result in 6/7 innervation defects, whereas ex-

pressing the reciprocal chimera (Robo2-1) produces significant

errors in motor axon pathfinding (Figure S2).

We could now test if expressing a receptor that is functional in

robo2’s endogenous context (Robo1-2) rescues motor axon

guidance in hb9 mutants. We used the hb9GAL4 enhancer trap

to perform this experiment (Broihier and Skeath, 2002) because

we have found that when placed over a null hb9 allele, this allelic

combination results in nearly undetectable levels of hb9 protein

and has as strong a motor axon phenotype as the null itself (Fig-

ure 2C; data not shown). Overexpressing UAS-Robo1-2 in hb9

mutantsusinghb9GAL4 significantly rescuesRP3 innervationde-

fects (22% of hemisegments to 13%; p = 0.03, Student’s t test)

(Figure 2C). A similar result is observed using the lim3bGAL4

driver (Certel and Thor, 2004) and a different hb9 allelic combina-

tion (18% to 10%; p = 0.04, Student’s t test) (Figure 2C). The

incomplete rescuemaybeaconsequenceof the timingorexpres-

sion levels caused by GAL4-driven expression. Alternatively,

robo2 may be one of multiple downstream targets of hb9, and

restoring Robo2 activity might not be sufficient to fully rescue

hb9 mutants. Nevertheless, together with the loss-of-function

phenotypes and the requirement for hb9 in promoting robo2

expression, these results strongly suggest that Robo2 acts as a

downstream effector of Hb9 during motor axon guidance.

Hb9 Requires Its Conserved Repressor Domain and
Functions in Parallel with Nkx6 to Regulate robo2

Vertebrate Hb9 acts as a repressor to regulate gene expression

when overexpressed in the spinal cord, but the requirement for



Figure 3. Hb9’s Eh Domain Is Required for Its Activity in Motor Axon Guidance and for robo2 Regulation

(A) Schematic of the Hb9 variants analyzed for their ability to rescue hb9 mutants.

(B) Muscle 6/7 innervation was quantified in late-stage 17 embryos; asterisks indicate a significant difference (Student’s t test, *p < 0.01). Hb9 transgenes lacking

the Eh domain failed to rescue motor axon guidance defects in hb9 mutants.

(C) The percentage of robo2+ RP3 neurons per embryo is shown; asterisks indicate a significant difference (Student’s t test, *p < 0.01). Hb9’s Eh domain is

required for the rescue of robo2 expression.

Error bars, SEM. Hb9 +/� denotes hb9GAL4/TM3. Hb9 �/� denotes hb9GAL4/hb9kk30. Hb9 �/� Hb9 (variant) denotes UAS-Hb9 (variant)/+; hb9GAL4/hb9kk30.
Hb9’s repressor activity for axon guidance has not been studied

(Lee et al., 2008; William et al., 2003). Two conserved putative

repressor domains are found inDrosophilaHb9: an Engrailed ho-

mology (Eh) domain similar to sequences that interact with the

Groucho corepressor (Broihier and Skeath, 2002; Smith and

Jaynes, 1996); and a domain similar to sequences that interact

with the C-terminal binding protein (CtBP) corepressor (William

et al., 2003). To test the contribution of these domains to Hb9

function, we generated Hb9 transgenes in which either or both

domains were deleted and compared their ability to rescue

hb9 mutants relative to full-length Hb9 (Figure 3). All transgenes

are inserted in the same genomic location and are expressed at

similar levels (data not shown). We found that whereas a full-

length Hb9 transgene (Hb9 FL) fully rescues both muscle 6/7
innervation defects and robo2 expression in hb9 mutants, the

Eh domain deletion (Hb9DEh) does not rescue motor axon path-

finding and only weakly rescues robo2 expression (Figure 3).

Conversely, the CtBP-interacting domain deletion (Hb9DCtBP)

fully rescues both guidance and robo2 expression (Figure 3).

The double deletion (Hb9DEhDCtBP) is not significantly different

from Hb9DEh in either assay (Figure 3). These results suggest

that Hb9 indirectly activates robo2, perhaps by repressing a

direct regulator of robo2, likely through a Groucho-dependent

mechanism.

The embryonic expression patterns of hb9 and the homeodo-

main transcription factor nkx6 largely overlap, and genetic ana-

lyses suggest that Hb9 and Nkx6 act in parallel to regulate motor

axon guidance and multiple transcription factors (Broihier et al.,
Cell Reports 7, 153–165, April 10, 2014 ª2014 The Authors 157



Figure 4. Hb9 and Nkx6 Function in Parallel

to Regulate Motor Axon Guidance and robo2

(A) Fluorescent in situ for robo2 mRNA (green) in

stage 16 embryos. Anterior is up. The RP motor

neurons are labeled by the lim3a-taumyc transgene

(magenta). Filled arrowheads point to robo2+

RP3 neurons; empty arrowheads indicate robo2�
neurons.

(B) Nkx6 mutants have fewer robo2+ RP3 neurons

than nkx6 heterozygotes (p < 0.001, Student’s

t test). Removing one copy of nkx6 enhances the

loss of robo2 in hb9 mutants (p < 0.001, Student’s

t test). Error bars, SEM.

(C) Stage 17 embryos stained for FasII. Anterior is

left. The arrows point to the muscle 6/7 innervation,

whereas asterisks indicate its absence.

(D) The percentage of hemisegments lacking the 6/7

innervation was quantified; asterisks indicate a

significant difference (*p < 0.001, Student’s t test).

Loss of nkx6 dominantly enhances the 6/7 innerva-

tion defects of hb9 mutants. Error bars, SEM.

Scale bars represent 10 mm. Nxk6/+ denotes

nkx6D25/TM6B. Nkx6/nkx6 denotes nkx6D25/

nkx6D25. Hb9/+ denotes hb9kk30/TM3. Hb9,

nxk6/+,+ denotes hb9GAL4, nkx6D25/TM3. Hb9/hb9

denotes hb9GAL4/hb9kk30. Hb9, nkx6/hb9,+ denotes

hb9GAL4, nkx6D25/ hb9kk30. See also Figure S3.
2004). We hypothesized that robo2 might be a shared down-

stream target of hb9 and nkx6. Indeed, nkx6mutants have a sig-

nificant decrease in robo2 expression in the RP motor neurons

(81% robo2+ RP3 neurons in nkx6 heterozygotes versus

51.4% robo2+ RP3 neurons in nkx6 mutants; p < 0.001, Stu-

dent’s t test) (Figures 4A and 4B). To determine if hb9 and nkx6

function in parallel to regulate robo2, we examined robo2

expression in hb9, nkx6 double mutants and observed a

decrease relative to either single mutant (data not shown). How-

ever, wewere not able to quantify robo2 expression in the double

mutants becausemany cells are not labeled by hb9GAL4 or islet-

tau-myc. Therefore, we looked for an alternative background to

address whether nkx6 regulates robo2 in parallel with hb9.

Removing one copy of nkx6 in hb9 mutants strongly enhances

the motor axon phenotype (from 21.6% of hemisegments with

6/7 innervation defects in hb9/hb9 embryos to 45% in hb9,

nkx6/hb9,+ embryos; p < 0.001, Student’s t test) without produc-

ing the changes in markers observed in hb9, nkx6 double mu-

tants (Figures 4C and 4D). In this background, robo2 expression

is significantly decreased relative to hb9 mutants (from 41%
158 Cell Reports 7, 153–165, April 10, 2014 ª2014 The Authors
robo2+ RP3 neurons in hb9/hb9 embryos

to 19% in hb9, nkx6/hb9,+ embryos; p <

0.001, Student’s t test), suggesting that

nkx6 promotes robo2 expression indepen-

dently of hb9 (Figure 4B). Nkx6 single mu-

tants have a severe ISNb phenotype in

which most ventrally projecting motor

axons fail to exit the nerve cord (Broihier

et al., 2004), implying that Nkx6 regulates

downstream targets other than robo2.

Nevertheless, our data argue that Hb9

and Nkx6 are essential regulators of
robo2 in the RP motor neurons and that they act in parallel to

regulate ISNb guidance and achieve normal levels of robo2

expression, thus demonstrating how a combination of transcrip-

tion factors regulates axon guidance by impinging on a common

downstream target.

Hb9 Regulates Lateral Position in a Subset of Neurons
Robo2 regulates midline crossing and lateral position within the

embryonic CNS (Rajagopalan et al., 2000a, 2000b; Simpson

et al., 2000a, 2000b). Because hb9 is expressed inmany neurons

other than the RP motor neurons, we asked if it acts through

robo2 to regulate axon guidance in other contexts. The enhancer

trap hb9GAL4 is expressed in all neurons that endogenously ex-

press hb9 (Broihier and Skeath, 2002), labeling three parallel

axon tracts on either side of the midline (Figure 5A). These align

with, but are distinct from, Fasciclin II (FasII)-expressing axons,

which form three bundles at specificmedio-lateral positions (Fig-

ure 5A). Hb9 mutants do not have defects in the organization of

FasII axons (Figure 5A; data not shown). However, in hb9 mu-

tants, the two outer hb9GAL4+ bundles are often disrupted,



Figure 5. The Lateral Position of hb9GAL4-Expressing Axons Is Disrupted in the Absence of hb9, robo2, or robo3

(A) Stage 17 embryos. Anterior is up. FasII staining is shown in magenta. Hb9GAL4>UAS-TauMycGFP (green) labels axons that form three bundles on each side

of the midline in hb9 heterozygotes. In hb9 mutants, the outer hb9GAL4+ pathways are disrupted or shifted medially (arrowheads). Robo2 and robo3 mutants

partially phenocopy these defects (arrowheads).

(B) The percentage of hemisegments containing hb9GAL4+ axons in the medial, intermediate, or lateral positions is shown. Asterisks indicate a significant

difference (Student’s t test, *p < 0.001). Error bars, SEM. Numbers of embryos and hemisegments scored are shown in parentheses. Scale bars, 10 mm.Hb9 +/�
denotes hb9GAL4/TM6B. Hb9 �/� denotes hb9GAL4/hb9kk30. Hb9 �/� + HB9 denotes UAS-Hb9/+; hb9GAL4/hb9kk30. Robo2 �/� denotes robo2123/robo233;

hb9GAL4/+. Robo3 �/� denotes robo31 / robo33; hb9GAL4/+. Robo3, robo2 Df/ robo33, robo2F denotes Df(2L)ED108/ robo2F, robo33; hb9GAL4/+.

See also Figure S4.
and the inner pathway appears thicker (Figure 5A). The lateral-

most hb9GAL4+ pathway is missing or discontinuous in approx-

imately 30% of hemisegments, and the intermediate pathway is

missing in close to 50% of hemisegments (Figure 5B). These de-

fects are fully rescued by expression of a UAS-Hb9 transgene

(Figure 5). No changes in the number of hb9GAL4+ neurons
are observed (data not shown). To determine if nxk6 also regu-

lates the trajectory of hb9GAL4+ axons, we examined the orga-

nization of these pathways in embryos with reduced nkx6

activity. Nkx6 mutants have no significant defects in the lateral

position of hb9GAL4+ axons (Figure S3). However, hb9mutants

heterozygous for nkx6 have a significantly stronger disruption of
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the outermost hb9GAL4+ pathway relative to hb9 mutants (Fig-

ure S3), suggesting that nkx6 also regulates lateral position,

although its requirement is only revealed in the absence of hb9.

Robo2 and robo3 are major regulators of lateral position in the

developing CNS (Evans and Bashaw, 2010; Rajagopalan et al.,

2000b; Simpson et al., 2000a; Spitzweck et al., 2010). Their

expression patterns mirror their requirements: robo2 is ex-

pressed on axons that select a lateral trajectory and is required

for the formation of lateral pathways, whereas robo3 is ex-

pressed in both lateral and intermediate zones and is required

for the formation of intermediate pathways (Rajagopalan et al.,

2000b; Simpson et al., 2000a). Gene-swap experiments under-

scored the importance of the transcriptional regulation of robo2

and robo3 for their function in lateral position (Spitzweck et al.,

2010), but upstream regulators within the CNS remain unknown.

To determine if hb9 regulates medio-lateral position through

robo2 or robo3, we first asked whether robo2 or robo3 regulates

the position of axons labeled by hb9GAL4. In robo2mutants, the

outer hb9GAL4+ pathway is missing in approximately 30% of

hemisegments (Figure 5B). The intermediate pathway is mildly

affected, whereas the medial pathway appears intact (Figure 5).

In robo3mutants, the intermediate hb9GAL4+ pathway is absent

or strongly shifted in close to 50% of hemisegments, the outer

pathway is not disrupted, and the medial pathway is intact (Fig-

ure 5). Robo2, robo3 double mutants have a stronger phenotype

in which the outer two hb9GAL4+ pathways are disrupted in a

majority of hemisegments (Figure 5). However, the dramatic

decrease in the width of the nerve cord in robo2, robo3 double

mutants made it difficult to quantify the presence of lateral path-

ways. We conclude that a loss of robo2 and robo3 reproduces

the lateral position defects observed in hb9 mutants.

Hb9 Can Regulate Lateral Position by Inducing robo2

To test whether hb9 regulates lateral position through robo2 or

robo3, we searched for hb9-expressing neurons that also ex-

press robo2 or robo3 and project to intermediate or lateral zones.

Several hb9+ cells coexpress robo2, including a cluster of neu-

rons found immediately anterior and slightly dorsal to dMP2 (Fig-

ure S4).We scored robo2 expression in these cells and observed

a decrease in the percentage expressing robo2 mRNA in hb9

mutants compared to heterozygotes (52% to 24%; p < 0.0001,

Student’s t test; Figure S4). However, we were not able to

achieve the resolution necessary to determine whether these

neurons contribute to lateral pathways. It is likely that most of

these cells are interneurons because few motor neuron cell

bodies reside in this area of the nerve cord (Landgraf et al.,

1997). Together with the similarity in the lateral position defects

of hb9 and robo2 mutants, as well as the observation that

Robo2 is an effector of hb9 in motor neurons, these data suggest

that hb9 may endogenously regulate the medio-lateral position

of a subset of interneurons via its effect on robo2.

To study the consequences of manipulating hb9 levels on

lateral position in a defined group of neurons, we used the

apterous-GAL4 driver, which labels ipsilateral interneurons that

normally do not express hb9, and express little robo2 and

robo3 (Figure 6; data not shown). In wild-type embryos, the

apterous (ap) axons form a fascicle that projects along the

medial FasII bundle on either side of the midline (Figure 6B).
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Overexpressing Robo2 or Robo3 in the ap neurons causes their

axons to shift laterally away from themidline (Evans and Bashaw,

2010; Rajagopalan et al., 2000b; Simpson et al., 2000a). We

found that overexpressing Hb9 produces a very similar pheno-

type, in which ap axons are shifted inmore than 75%of hemiseg-

ments, now aligning with the intermediate or lateral FasII tracts

(Figure 7B). To determine if this phenotype is due to the induction

of robo2 or robo3, we examined the effect of hb9 overexpression

on robo2 and robo3 mRNA levels. Overexpression of Hb9 in ap

neurons does not result in robo3 induction (data not shown). In

contrast, we observed significant upregulation of robo2 (Fig-

ure 6A). In control embryos, robo2 mRNA is detected in less

than 20% of ventral ap cells, whereas more than 60% of ventral

ap neurons express robo2 when Hb9 is present (p < 0.001,

Student’s t test) (Figure 6A). Interestingly, we do not observe

robo2 induction in the dorsal ap neurons (data not shown), which

express a different transcription factor profile than their ventral

counterparts (Allan et al., 2005; Baumgardt et al., 2007).

To determine if the lateral shift phenotype caused by Hb9 over-

expression in apneurons isdue to the inductionof robo2,weover-

expressedHb9 in robo2mutants.Strikingly, removingbothcopies

of robo2 results in a full suppression of Hb9’s gain-of-function

phenotype, and ap axons appear wild-type (Figure 6B). Together,

these data indicate that ectopic expression of Hb9 is sufficient to

induce robo2 and that Hb9-driven changes in robo2 expression

can dramatically affect the medio-lateral position of axons.

Hb9 Endogenously Regulates Lateral Position through
robo3

The requirement for hb9 in regulating the position of intermediate

hb9GAL4+ axons suggests that it may also regulate robo3,

which is expressed on axons that project to intermediate regions

of the nerve cord and is essential for the formation of intermedi-

ate axonal pathways (Rajagopalan et al., 2000b; Simpson et al.,

2000a). The peptidergic midline neuronMP1 expresses both hb9

and robo3 and is one of the pioneers for the intermediate FasII

pathway (Broihier and Skeath, 2002; Hidalgo and Brand, 1997;

Simpson et al., 2000b). We used the C544-GAL4 driver (Wheeler

et al., 2006) to identify MP1 neurons and score robo3 expression

and the position of the MP1 axon. The mosaic expression of

C544-GAL4 allowed us to score the axonal trajectory of individ-

ual cells. Whereas almost all MP1 neurons express high levels of

robo3 mRNA and project along the intermediate FasII bundle in

hb9 heterozygous embryos, in hb9 mutants, 56% of MP1 neu-

rons do not express robo3, and 47% ofMP1 axons project along

the medial FasII tract (Figures 7A and 7B). A strong correlation

between robo3 expression and the lateral position of a cell’s

axon is detected in both hb9 heterozygotes and mutants, sug-

gesting that the loss of robo3 is responsible for the medial shift

phenotype (p < 0.0001, Fisher’s exact test) (Figure 7B).MP1 neu-

rons also express nkx6; however, we detected no significant

change in robo3 expression or in the MP1 axonal projection in

nkx6 mutants (Figure S3).

To determine if restoring Robo3 rescues the lateral position of

MP1 axons in hb9mutants, we used C544-GAL4 to overexpress

a UAS-HARobo3 transgene. Robo3 overexpression produces

no effect on the lateral position of MP1 axons in hb9 heterozy-

gous embryos (data not shown) but results in a robust rescue



Figure 6. Hb9 Gain of Function in ap Neurons Induces robo2 Expression and a robo2-Dependent Lateral Shift

(A) Left: fluorescent in situ for robo2 mRNA (green) in stage 15 embryos. Anterior is up. The ventral ap neurons are labeled in magenta and circled in the single-

channel images. Wild-type embryos express little robo2 in the ap neurons, whereas many ventral ap neurons express robo2 when Hb9 is present (arrowheads).

Right panel shows the percentage of ventral ap neurons expressing robo2. Hb9 gain of function results in a significant increase compared to controls (p < 0.001,

Student’s t test). Error bars, SEM.

(B) Left: stage 17 embryos stained for FasII (magenta) andGFP (green), which labels the ap axons. Overexpression of robo2 or hb9 in ap neurons shifts their axons

laterally (arrows).Hb9 overexpression in robo2mutants does not induce a lateral shift phenotype. Right panel shows the percentage of hemisegments in which ap

axons project along the intermediate or lateral FasII tracts. Numbers of hemisegments scored are indicated in parentheses. Scale bars, 10 mm. apTMG/+ denotes

apGAL4,UAS-TauMycGFP/CyO. Robo2 G.O.F. denotes UAS-HARobo2.T1/apGAL4, UAS-TauMycGFP. Hb9 G.O.F denotes UAS-Hb9/apGAL4,UAS-

TauMycGFP. Hb9 G.O.F. in robo2 �/� denotes robo2123,UAS-Hb9/robo233, apGAL4; UAS-TauMycGFP/+. G.O.F., gain of function.
of the lateral position defects of hb9 mutants: 50.4% of MP1

axons shifted medially in hb9 mutants versus 19% in hb9 mu-

tants overexpressing Robo3 (p < 0.0001, Fisher’s exact test)

(Figure 7C). We conclude that in at least one defined group of

neurons, hb9 acts through robo3 to direct the selection of an

intermediate pathway.

Interestingly, all of the Hb9 deletion variants fully rescue the

lateral position defects of the intermediate hb9GAL4+ axons in

hb9mutants (Figure S5).Moreover, they all rescue robo3 expres-

sion in MP1 neurons, and whereas variants lacking the Eh

domain are slightly weaker than Hb9 FL in this assay, these dif-

ferences are not statistically significant (Figure S5). Although we

cannot rule out that Hb9 acts as a repressor to regulate robo3,

the observation that its Eh domain is not required for robo3 regu-

lation suggests the intriguing possibility that Hb9 may regulate

robo2 and robo3 via distinct mechanisms.

DISCUSSION

We have demonstrated a functional relationship between Hb9

and the Robo2 and Robo3 receptors in multiple contexts in the
Drosophila embryo. In the RP motor neurons, hb9 is required

for robo2 expression, and genetic rescue experiments indicate

that robo2 acts downstream of hb9. Hb9 requires its conserved

repressor domain and acts in parallel with Nkx6 to regulate robo2

and motor axon guidance. Moreover, hb9 contributes to the

endogenous expression patterns of robo2 and robo3 and the

lateral position of a subset of axons in the CNS, and can redirect

axons laterally when overexpressed via upregulation of robo2.

Finally, restoring Robo3 rescues the medial shift of MP1 axons

in hb9 mutants, indicating that hb9 acts through robo3 to regu-

late medio-lateral position in a defined subset of neurons.

Robo2 Is a Downstream Effector of Hb9 during Motor
Axon Guidance
Hb9 and nkx6 are required for the expression of robo2 in motor

neurons, and rescue experiments suggest that the loss of

robo2 contributes to the phenotype of hb9 mutants. However,

nkx6 mutants and hb9 mutants heterozygous for nkx6 have a

stronger ISNb phenotype than robo2mutants, implying the exis-

tence of additional downstream targets. One candidate is the

cell adhesion molecule FasIII, which is normally expressed in
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Figure 7. Robo3 Acts Downstream of Hb9 to Direct the Lateral Position of MP1 Axons

(A) Top: fluorescent in situ for robo3 mRNA (green) in stage 16 embryos. Anterior is up. MP1 neurons are labeled by C544-GAL4 in magenta and circled in the

single-channel images. Many MP1 neurons do not express robo3 in hb9 mutants (empty arrowhead). Bottom panel shows that MP1 axons project along the

intermediate FasII bundle in hb9 heterozygotes (arrow) but are often shifted to the medial pathway in hb9 mutants (arrow with an asterisk).

(B) MP1 neurons were scored as robo3+ or robo3� and as projecting along the medial or intermediate (Int.) FasII tract. A significant correlation was detected

between robo3 expression and lateral position in both hb9 +/� and hb9�/� embryos (Fisher’s exact test, p < 0.001).

(C) Overexpressing robo3 rescues the medial shift phenotype of MP1 axons in hb9 mutants (p < 0.001, Fisher’s exact test). Arrows point to MP1 axons in the

correct position; arrows with asterisks point to medially shifted axons. All mutants were scored blind to genotype.

Scale bars, 10 mm. Hb9 +/+ denotes C544-GAL4/+; UAS-TauMycGFP/+. Hb9 +/� denotes C544-GAL4/+; hb9ad121, UAS-TauMycGFP/TM3. Hb9 �/� denotes

C544-GAL4/+; hb9ad121, UAS-TauMycGFP/hb9kk30. Hb9 �/� HARobo3 G.O.F. denotes C544-GAL4/UAS-HARobo3.T15; hb9ad121, UAS-TauMycGFP/hb9kk30.

See also Figure S5.
the RP motor neurons and appears reduced in nkx6 mutant

embryos (Broihier et al., 2004). Identifying the constellation of

effectors that function downstream of Hb9 and Nkx6 will be

key to understanding how transcription factors expressed in

specific neurons work together to drive the expression of the

cell surface receptors that regulate axon guidance and target

selection.

Robo2’s activity in motor axon guidance appears distinct

from the previously described activities of the Drosophila Robo

receptors. Although Robo1 can replace Robo2’s repulsive activ-

ity at the midline (Spitzweck et al., 2010), Robo2’s function in

motor axon guidance is not shared by either Robo1 or Robo3.

Moreover, Robo2’s antirepulsive activity at the midline and its

ability to shift axons laterally when overexpressed both map to

Robo2’s ectodomain, whereas we have found that Robo2’s ac-

tivity in motor axon guidance maps to its cytodomain (Evans and

Bashaw, 2010; Spitzweck et al., 2010). The signaling outputs of

Robo2’s cytodomain remain unknown, as it lacks the conserved

motifs within Robo1 that engage downstream signaling partners
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(Bashaw et al., 2000; Fan et al., 2003; Yang and Bashaw, 2006).

How does Robo2 function during motor axon guidance? In mice,

Robo receptors are expressed in spinal motor neurons and pre-

vent the defasciculation of a subset of motor axons (Jaworski

and Tessier-Lavigne, 2012). Does Drosophila Robo2 regulate

motor axon fasciculation? The levels of adhesion between

ISNb axons and other nervesmust be precisely controlled during

the different stages of motor axon growth and target selection,

and several regulators of adhesion are required for ISNb guid-

ance (Fambrough and Goodman, 1996; Huang et al., 2007; Win-

berg et al., 1998). Furthermore, whereas Slit can be detected on

ventral muscles, it is not visibly enriched in a pattern that sug-

gests directionality in guiding motor axons (Kramer et al.,

2001), making it difficult to envision how Robo2-mediated repul-

sive or attractive signaling might contribute to ISNb pathfinding.

Future work will determine how Robo2’s cytodomain mediates

motor axon guidance, whether this activity is Slit dependent,

and whether Robo2 signals attraction, repulsion, or modulates

adhesion in Drosophila motor axons.



Hb9Regulates Lateral Position through robo2 and robo3

Elegant gene-swap experiments revealed the importance of

transcriptional regulation in establishing the different expression

patterns and functions of the Drosophila Robo receptors (Spitz-

weck et al., 2010). By analyzing a previously uncharacterized

subset of axon pathways, we have uncovered a requirement

for Hb9 in regulating lateral position in the CNS. Although Hb9

can act instructively to direct lateral position when overex-

pressed, its endogenous expression in a subset of medially pro-

jecting neurons suggests that its ability to shift axons laterally is

context dependent. A complex picture emerges in which multi-

ple factors act in different groups of neurons to regulate robo2

and robo3. In a subset of interneurons, hb9 is endogenously

required for lateral position through the upregulation of robo3

and likely robo2. In other neurons, such as those that form the

outer FasII tracts, the expression patterns of robo2 and robo3

rely on additional upstream factors. What might be the signifi-

cance of a regulatory network in which multiple sets of transcrip-

tion factors direct lateral position in different groups of neurons?

One possibility is that hb9-expressing neurons may share spe-

cific functional properties, such as the expression of particular

neurotransmitters or ion channels. Alternatively, hb9 may regu-

late other aspects of connectivity. Indeed, Robo receptors

mediate dendritic targeting in the Drosophila CNS (Furrer et al.,

2003), raising the exciting possibility that hb9 regulates both

axonal and dendritic guidance through its effects on guidance

receptor expression.

How Does Hb9 Regulate robo2 and robo3?
What is the mechanism by which Hb9 regulates the expression

of robo2, robo3, and its other downstream effectors? We have

found that Hb9 requires its conserved putative repressor domain

and acts in parallel with Nkx6 to regulate robo2 and motor axon

guidance. It has previously been shown that hb9 and nkx6 func-

tion in parallel to regulate several transcription factors (Broihier

and Skeath, 2002; Broihier et al., 2004). Hb9, nkx6 double mu-

tants show decreased expression of islet and lim3 and upregula-

tion of eve and the Nkx2 ortholog vnd (Broihier et al., 2004). Are

Hb9 and Nkx6 regulating robo2 or robo3 through any of their pre-

viously identified targets? Hb9 and nkx6 single mutants show no

change in islet, lim3, or vnd expression (Broihier and Skeath,

2002; Broihier et al., 2004), arguing that hb9 and nkx6 do not

act solely through these factors to regulate robo2 or robo3.

Eve expression is unaffected in nkx6 mutants (Broihier et al.,

2004), and whereas it is ectopically expressed in two neurons

per hemisegment in hb9 mutants (Broihier and Skeath, 2002),

these do not correspond to RP3 or MP1, the identifiable cells

in which we can detect changes in robo2 and robo3 (data not

shown). Therefore, our data do not support the hypothesis that

Hb9 and Nkx6 regulate robo2 or robo3 primarily through their

previously identified targets islet, lim3, vnd, or eve.

Gain-of-function experiments in vertebrates suggest that Hb9

and Nkx6 act as repressors to regulate gene expression in the

spinal cord (Lee et al., 2008; Muhr et al., 2001; William et al.,

2003). Our finding that Hb9’s Eh domain is required for motor

axon pathfinding and robo2 regulation suggests that Hb9 acts

as a repressor in this context as well, most likely through a pre-

viously unidentified intermediate target. On the other hand, the
Eh domain is not required for Hb9’s ability to regulate robo3 or

lateral position in hb9GAL4+ neurons that project to intermediate

zones of the CNS. The finding that Hb9DEh retains significant

activity in rescuing lateral position and robo3 expression indi-

cates that Hb9 may regulate robo2 and robo3 via distinct mech-

anisms, perhaps involving different transcriptional cofactors or

intermediate targets. In support of this hypothesis, hb9 overex-

pression in the ap neurons can induce robo2, but not robo3.

These data raise the intriguing possibility that Hb9’s ability to

regulate robo2 and robo3 via different mechanisms contributed

to the diversification of their expression patterns in the CNS.

Determining how Hb9 and Nkx6 regulate their effectors will be

key to achieving a complete understanding of how these

conserved transcription factors control changes in cell mor-

phology and axon pathfinding during development. Of note,

Hb9 mutant mice exhibit defects in a subset of motor nerves,

including the phrenic and intercostal nerves, which are also

affected in Robo mutants (Arber et al., 1999; Jaworski and

Tessier-Lavigne, 2012; Thaler et al., 1999). It will be of great inter-

est to determine if despite the vast divergence in the evolution of

nervous system development between invertebrates and verte-

brates, Hb9 or Nkx6 has retained a role for regulating Robo re-

ceptors across species.

EXPERIMENTAL PROCEDURES

Molecular Biology

Hb9 constructs with an N-terminal Myc tag were cloned into a pUAST vector

containing 103 UAS and an attB site for FC31-mediated targeted insertion.

Hb9DEh (lacking amino acids 219–229) and Hb9DCtbp (lacking amino acids

336–340) were generated by serial overlap extension PCR. Transgenes were

inserted at cytological site 51C by Best Gene. The 22K18-robo2 BAC was ob-

tained fromBACPACResources (Children’s Hospital, Oakland) and inserted at

51C by Rainbow Transgenics.

Fluorescent In Situ Hybridization and Quantification

Fluorescent mRNA in situ hybridization was performed as described (Labrador

et al., 2005). Fluorescence quantification was performed using ImageJ as

described by Yang et al. (2009); see the Supplemental Experimental

Procedures.

Immunostaining and Imaging

Embryo fixation and staining were performed as described by Kidd et al.

(1998). Images were acquired with Volocity using a spinning disk confocal

microscope (PerkinElmer) using a Nikon 403 objective with a Hamamatsu

C10600-10B CCD camera and Yokogawa CSU-10 scanner head. Images

were processed using ImageJ.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and five figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2014.02.037.
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