
Resveratrol (3,5,4′-trihydroxystilbene; FIG. 1) was first 
isolated from the roots of white hellebore (Veratrum 
grandiflorum O. Loes) in 1940 (REF. 1), and later, in 1963, 
from the roots of Polygonum cuspidatum, a plant used 
in traditional Chinese and Japanese medicine2. Initially 
characterized as a phytoalexin3, resveratrol attracted 
little interest until 1992, when it was postulated to explain 
some of the cardioprotective effects of red wine4. Since 
then, dozens of reports (FIG. 2) have shown that resvera-
trol can prevent or slow the progression of a wide variety 
of illnesses, including cancer5, cardiovascular disease6 
and ischaemic injuries7,8, as well as enhance stress resist-
ance and extend the lifespans of various organisms from 
yeast9 to vertebrates10.

The mechanism by which resveratrol exerts such a 
range of beneficial effects across species and disease mod-
els is not yet clear. Attempts to show favourable effects 
in vitro have met with almost universal success, and 
have led to the identification of multiple direct targets 
for this compound. However, results from pharmaco-
kinetic studies indicate that circulating resveratrol is 
rapidly metabolized, and cast doubt on the physiological 
relevance of the high concentrations typically used for 
in vitro experiments. Further experiments are needed to 
show whether resveratrol or its metabolites accumulate 
sufficiently in tissues to recapitulate in vitro observa-
tions, or whether alternative higher-affinity targets, such 
as quinone reductase 2 (QR2; also known as NQO2)11, 
have the key roles in its protective effects. In vivo results 
have therefore become increasingly important in our 
attempts to understand how resveratrol is effective in 
the treatment of disparate diseases.

It is also unclear what conclusion should be drawn from 
the studies described so far. Are the benefits of resveratrol 

merely the results of fortuitous interactions with dozens 
of mammalian proteins? Or is resveratrol acting through 
a specific genetic pathway that has evolved to increase 
disease- and stress-resistance? With regard to the latter 
proposal, there is already ample evidence for the exist-
ence of health-promoting pathways that are activated 
by caloric restriction (BOX 1). It has been known since the 
1930s that a severe lowering of caloric intake dramatically 
slows the rate of ageing in mammals and delays the onset 
of numerous diseases of ageing, including cancer, car-
diovascular disease, diabetes and neurodegeneration12,13. 
It is an attractive hypothesis that resveratrol might use 
the same pathways activated by caloric restriction in 
mammals, as it appears to do in lower organisms9,14; 
however, proving this hypothesis will require a better 
understanding of both processes. This review discusses 
the effects of resveratrol that have been observed in vivo 
and possible evolutionary explanations, as they relate to 
the development of human therapeutics, based on either 
resveratrol itself or new, more potent compounds that 
mimic its effects.

Resveratrol and cancer
In 1997, Jang5 and colleagues published a seminal paper 
reporting the ability of resveratrol to inhibit carcino-
genesis at multiple stages. Their finding that topical appli-
cation of resveratrol reduced the number of skin tumours 
per mouse by up to 98% triggered research on resveratrol 
around the world. Systemic administration of resveratrol 
has since been shown to inhibit the initiation and growth 
of tumours in a wide variety of rodent cancer models (see 
Supplementary information S1 (table)). The efficacy of 
low doses (for example, 200 μg per kg (body weight) 
daily in a rat model of colon carcinogenesis15) suggests 
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Phytoalexin
A toxic compound produced 
by higher plants in response to 
infection or other stresses, 
such as nutrient deprivation.

Caloric restriction
A reduction of calorie intake 
(typically by 30–40% in 
rodents) to a level that does 
not cause malnutrition and 
that has been shown to 
increase lifespan and stress-
resistance in multiple species.

Therapeutic potential of resveratrol: 
the in vivo evidence
Joseph A. Baur and David A. Sinclair

Abstract | Resveratrol, a constituent of red wine, has long been suspected to have 
cardioprotective effects. Interest in this compound has been renewed in recent years, first 
from its identification as a chemopreventive agent for skin cancer, and subsequently from 
reports that it activates sirtuin deacetylases and extends the lifespans of lower organisms. 
Despite scepticism concerning its bioavailability, a growing body of in vivo evidence indicates 
that resveratrol has protective effects in rodent models of stress and disease. Here, we 
provide a comprehensive and critical review of the in vivo data on resveratrol, and consider 
its potential as a therapeutic for humans.
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that even the concentration of resveratrol obtained from 
dietary sources, such as red wine, could be therapeutic in 
some cases. At higher, but pharmacologically achievable 
doses, protective effects of resveratrol are more frequently 
observed, and the results are more dramatic. For example, 
a daily dose of 40 mg per kg (body weight) increased 
the survival of mice with subcutaneous neuroblastomas 
from 0% to 70%16. Although most in vivo studies strongly 
support a chemopreventive effect of resveratrol, there are 
notable exceptions in which no benefit has been observed. 
For example, administration of 1–5 mg per kg (body 
weight) daily of resveratrol failed to affect the growth or 
meta stasis of breast cancer in mice, despite promising 
in vitro results17. Dosage, delivery method, tumour origin 
and other components of the diet could all contribute 
to the efficacy of resveratrol treatment. Overall, in vivo 
studies clearly show great promise for this molecule in 
the treatment of cancers. Several Phase I clinical trials 
are currently underway for oral resveratrol in humans at 
doses as high as 7.5 g per day, including National Cancer 
Institute-sponsored studies at the University of Michigan, 
USA, and the University of Leicester, UK (see Further 
information).

Inhibition of cyclooxygenase and ornithine decarboxylase. 
Jang5 and colleagues originally proposed that resveratrol 
might be an effective chemopreventive agent because 
it inhibits the enzymatic activity of both forms of 
cyclooxygenase. Epidemiological evidence shows that 

long-term inhibition of cyclooxygenase significantly 
reduces the risk of developing many cancers and dele-
tion of the gene that encodes cyclooxygenase 2 (COX2) 
is protective in a mouse model of colorectal cancer18. 
Moreover, constitutive expression of this gene in mam-
mary glands or skin promotes carcinogenesis in mice 
(although a puzzling protective effect was reported for 
an independent strain in skin)19. Resveratrol reduces the 
total cyclooxygenase activity of tumours and normal tis-
sue in vivo20–22 through moderately selective inhibition of 
COX1 activity and/or reduction of COX2 at the mRNA 
level21,23,24. In vitro studies indicate that transcriptional 
inhibition of COX2, as well as another important player 
in carcinogenesis, ornithine decarboxylase (ODC) could 
be accomplished through inhibition of protein kinase 
C (PKC)23,25. Resveratrol does not directly inhibit ODC 
activity26, but reduces its expression in vivo and pre-
vents its induction by carcinogens20,27,28. Alleles of ODC 
have been associated with different risk levels for colon 
cancer29, and difluoromethylornithine, a direct inhibi-
tor of ODC, suppresses cancer development in animal 
models30. Interestingly, combining difluoromethylor-
nithine with cyclooxygenase inhibitors has been found 
to prevent tumour development more effectively than 
inhibition of ODC alone29. This implies that resvera-
trol could slow tumour development through multiple 
complementary mechanisms.

Inhibition of angiogenesis. Angiogenesis is required 
to support the growth of most solid tumours beyond a 
diameter of 2–3 mm. When delivered systemically at a 
dose of 2.5–100 mg per kg (body weight), resveratrol 
inhibits tumour-induced neovascularization31,32 and 
wound healing33. Moreover, resveratrol inhibits vascu-
larization in the corneal micropocket assay in mice at a 
dose of only 48 μg per kg (body weight) when admin-
istered daily33. Both cyclooxygenase and ODC promote 
angiogenesis, and their suppression by resveratrol could 
have a role in its inhibitory effects on vascularization 
and tumour growth.

Effects on drug metabolism. Drug metabolism is divided 
into two phases that involve different enzyme classes. 
In general, Phase I enzymes, consisting primarily of 
cytochrome P450s (CYPs) and flavin monooxygenases, 
are expressed constitutively, although their expression 
can be induced further. These enzymes oxidize, reduce 
or hydrolyze foreign molecules to render them more 
polar and facilitate their excretion. Phase II enzymes 
include conjugating and antioxidant enzymes that are 
induced in a coordinated manner to detoxify harmful 
molecules, including toxic products of Phase I enzymes. 
Many known chemopreventive agents upregulate Phase 
II enzymes, and induction of this pathway is considered a 
promising strategy for cancer prevention, whereas Phase 
I enzymes, and CYPs in particular, have consistently 
been implicated in the activation of procarcinogens34.

Resveratrol modulates the expression and activity of 
multiple drug-metabolizing enzymes. In vitro, resvera-
trol inhibits the enzymatic activity of various CYPs35–38 
and blocks their transcription through antagonism of 

Figure 1 | trans-Resveratrol and related structures. Piceid is found in grapes and 
other natural sources of resveratrol. Resveratrol-3-sulphate, resveratrol-3-O-glucuronide 
and dihydroresveratrol are metabolites of resveratrol. The positions of hydroxyl groups 
are indicated on the parent molecule.
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the aryl hydrocarbon receptor (AHR)39,40, suggesting that 
resveratrol could cause a reduction in the exposure of 
cells to carcinogens. However, this same activity could 
make the development of resveratrol as a potential thera-
peutic problematic because the inhibition of CYPs could 
alter the pharmacokinetics of other drugs. For example, 
coadministration of CYP3A4 inhibitors with terfena-
dine, cisapride or astemizole (all known substrates) 
can lead to life-threatening ventricular arrhythmia41. 
Nevertheless, coadministration of resveratrol with the 
carcinogen benzo[a]pyrene, which is activated by the 
CYP isoform CYP1A1, was shown to reduce expression 
of this enzyme and significantly abrogate the damag-
ing effects of benzo[a]pyrene in lung tissue in vivo42. 
A second study failed to recapitulate these effects, or 
reduce tumorigenesis, which the authors speculated 
might be because an insufficient dose of resveratrol was 
administered43. Further studies will be required to con-
firm antagonism of the AHR in vivo and to determine 
whether resveratrol also inhibits CYPs directly.

Resveratrol has been shown to induce expression 
of Phase II enzymes in vitro44, and haem oxygenase 1 
(REF. 45) and quinone reductase 1 (QR1)46 in vivo, result-
ing in improved tolerance of ischaemia and increased 
resistance to menadione (vitamin K3) toxicity. In con-
trast to its induction of QR1, resveratrol inhibits QR2 
with a dissociation constant of 35 nM, making it the 
highest affinity target for resveratrol reported so far11. 
Although the biological function of QR2 is not well 
understood, it has been postulated that QR2 might func-
tion to control endogenous electrophile concentrations 
and that an increase in the concentration of electrophilic 
species could induce expression of Phase II  enzymes. 
In support of this, QR2-deficient cells and mice show 
enhanced resistance to menadione toxicity46,47, whereas 
QR1-deficient mice exhibit increased sensitivity to 
quinone toxicity48. A general downregulation of genes 

that encode Phase I drug-metabolizing enzymes and 
upregulation of the Phase II response was confirmed 
by cDNA arrays and reverse transcriptase-PCR using 
livers from resveratrol-treated rats49. So, through its 
differential effects on drug-metabolizing enzymes, 
resveratrol may prevent the activation of carcinogens 
while simultaneously increasing the body’s capacity to 
eliminate harmful molecules.

Alterations in cell cycle and apoptosis. Another mecha-
nism by which resveratrol could combat tumour forma-
tion is induction of cell cycle arrest and apoptosis. The 
anti-proliferative and pro-apoptotic effects of resveratrol 
in tumour cell lines have been extensively documented 
in vitro (for a review, see REF. 50) and are supported by 
downregulation of cell cycle proteins51–53 and increases 
in apoptosis54–56 in tumour models in vivo. Although 
resveratrol has been found to target leukaemic cells 
preferentially in vitro in some studies57, the specificity 
of these effects remains unclear as others have found 
that resveratrol inhibits growth and induces apopto-
sis in normal haematopoietic cells at similar doses58. 
Some level of specificity could arise from the apparent 
increased susceptibility of cycling cells to the effects 
of resveratrol58. A more precise mechanism by which 
resveratrol could act is sensitization of tumour cells to 
other inducers of apoptosis. Resveratrol has been shown 
to sensitize several tumour lines, but not normal human 
fibroblasts, to TRAIL (tumour necrosis factor-related 
apoptosis-inducing ligand)-induced apoptosis59. It 
remains to be seen whether the pro-apoptotic effects of 
resveratrol in vivo are related to these in vitro observa-
tions, or secondary to other effects, such as inhibition 
of angiogenesis.

Antioxidant effects. Reactive oxygen species (ROS) have 
been shown to have a role in the initiation and progres-
sion of cancer through directly damaging DNA and 
other macromolecules60,61. In addition to its possible 
modulation of antioxidant enzymes involved in the 
Phase II response, resveratrol has an intrinsic anti-
oxidant capacity that could be related to its chemo-
preventive effects. In vivo, resveratrol has been shown 
to increase plasma antioxidant capacity and decrease 
lipid peroxidation62–64; however, it is difficult to assess 
whether these effects are direct, or the result of upregu-
lating endogenous antioxidant enzymes. In addition, 
clinical trials of antioxidant molecules have yielded 
disappointing results, suggesting that phytochemicals 
could possess other properties that are more relevant 
to cancer prevention65. Antioxidant effects of resveratrol 
are discussed further in later sections.

Resveratrol and heart disease
Regular consumption of red wine is often credited as 
the explanation for the ‘French Paradox’66,67 — a term 
coined to describe the observation that the French 
enjoy a relatively low risk of cardiovascular disease 
despite a diet that is high in saturated fat68. Although 
regular consumption of any alcoholic beverage in mod-
eration seems to be beneficial to cardiovascular health, 

Figure 2 | Resveratrol citations appearing on PubMed as a function of year. 
The PubMed database was searched using the key word ‘resveratrol’. The plot shows the 
cumulative number of hits identified for each year after the creation of Medline in 1963.
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epidemiological studies indicate that red wine confers 
significant additional benefits69,70. Wine and grape extracts 
have been shown to decrease platelet aggregation71,72, 
promote vasorelaxation73,74, suppress atherosclerosis75, 
reduce lipid peroxidation76, and improve serum choles-
terol and triglyceride concentrations77,78. The discovery 
that resveratrol is obtained primarily from red wine 
in most human diets4 has prompted extensive research 
into its potential to explain these cardioprotective 
effects.

Platelet aggregation. Excessive or inappropriate aggre-
gation of platelets can lead to thrombus formation and 
subsequent blockages in blood vessels that result in 
transient ischaemia, myocardial infarction or stroke. 
Interestingly, resveratrol prevents platelet aggregation 
in vitro79, and systemic administration of resvera-
trol blocks the increase in platelet aggregation that is 
induced in rabbits by a hypercholesterolaemic diet80, 
and reduces the atherosclerotic area and the size of the 
thrombus generated by laser-induced damage to the 
endothelium in mice that are genetically hypercholes-
terolaemic81. The mechanism for this protective effect 
of resveratrol could involve its preferential inhibition 
of COX1 over COX2 activity5 because the balance of 
prostaglandins synthesized by the two COX isoforms 
regulates vascular homeostasis. Thromboxane A2 
(TxA2), which is synthesized by COX1 in platelets, is 
a potent inducer of platelet aggregation and a vasocon-
strictor82,83, whereas prostacyclin, which is synthesized 
by COX2 in vascular endothelial cells, is an antiplatelet 
aggregator and a vasodilator84. Selective inhibition of 
COX1 therefore promotes blood flow and decreases clot 
formation, whereas drugs that selectively inhibit COX2 

could create an environment that is conducive to throm-
bus formation and increase the risk of cardiovascular 
complications85,86. Under some conditions, inactivation 
of COX1 by resveratrol is irreversible87, and as platelets 
are unable to synthesize new proteins, this suggests that 
even a transient exposure to resveratrol could have last-
ing effects in vivo (the turnover time for human platelets 
is ~10 days). Interestingly, this is the mechanism by 
which aspirin is thought to exert its cardioprotective 
effects88–90.

Vasodilation. In addition to possible vasorelaxant effects 
through the inhibition of TxA2 synthesis, resveratrol 
is capable of relaxing isolated arteries and rat aortic 
rings91,92. The vasorelaxant activity of resveratrol has 
been attributed to its ability to stimulate Ca2+-activated 
K+ channels93 and to enhance nitric oxide signalling in 
the endothelium94. The latter was attributed to inhibition 
of vascular NADH/NADPH oxidase activity, leading to 
a reduction in basal superoxide production, and, conse-
quently, decreased inactivation of nitric oxide. In vivo, 
resveratrol has been shown to increase expression of 
both endothelial and inducible nitric oxide synthase 
(eNOS and iNOS, respectively)95. In arteries isolated 
from humans with coronary heart disease, nitric oxide-
dependent vasorelaxation in response to resveratrol is 
lost, although some dilation is still observed due to nitric 
oxide-independent mechanisms96. Resveratrol could, 
therefore, promote vasorelaxation through multiple 
pathways in vivo.

Antioxidant activity. Although resveratrol has been 
shown to exert antioxidant effects, it is not yet clear if 
this is primarily a direct scavenging effect or the result 
of the activation of pathways that upregulate cells’ 
natural antioxidant defences. Oxidation of low-density 
lipoprotein (LDL) particles is strongly associated with 
the risk of coronary heart disease and myocardial 
in farction97. Resveratrol prevents LDL oxidation in vitro 
by chelating copper, as well as by directly scavenging 
free radicals98 (although other components of red wine 
are superior free radical scavengers99). Treatment of 
normal rats with resveratrol does not affect lipid per-
oxidation, as reflected by the presence of thiobarbituric 
acid-reactive substances100. However, resveratrol can be 
detected in LDL particles from humans after consump-
tion of red wine101, and the pure compound prevents 
increases in lipid peroxidation that are induced by 
tumours63 or UV irradiation28, in addition to block-
ing gentamicin-induced nephrotoxicity102. In stroke-
prone, spontaneously hypertensive rats, resveratrol 
significantly reduces markers of oxidative stress such 
as glycated albumin in serum, and 8-hydroxyguanos-
ine in urine103. Furthermore, in guinea pigs, resveratrol 
induces the activities of QR1 and catalase in cardiac tis-
sue, and decreases the concentration of ROS generated 
by menadione46. These results indicate that resveratrol 
can suppress pathological increases in the peroxida-
tion of lipids and other macromolecules in vivo, but 
whether the mechanism is direct, indirect, or both is 
not yet clear.

Box 1 | Caloric restriction mimetics

Caloric restriction is widely considered to be the most robust and reproducible way of 
extending health and longevity12. Key features in mammals include lower circulating 
insulin and increased insulin-sensitivity, lower core body temperature, decreased 
incidence or delayed onset of age-associated diseases, including cancer, cardiovascular 
and cognitive disorders, and slower age-related decline in many functional tests193. 
Although effects on longevity have not yet been documented for primates, ongoing 
studies have already provided evidence that at least the health-promoting effects of 
caloric restriction will be conserved193.

Because of the enormous potential benefits to human health and the relative 
unlikelihood that many would be willing or able to maintain a calorie-restricted diet, 
it has been proposed that a key focus of current research should be the development of 
drugs that mimic caloric restriction. The first candidate caloric restriction mimetic to be 
tested was the glycolytic inhibitor 2-deoxyglucose, which was intended to mimic energy 
restriction directly by limiting glucose flux through cells199. Although this strategy has 
had some success in short-term studies, it has fallen out of favour as a potential human 
therapeutic because of an apparent narrow therapeutic window between efficacy and 
toxicity193. Other molecules and strategies currently being considered include insulin 
sensitizers, antioxidants, sirtuin activators and enhancers of fatty acid oxidation and 
autophagy. Further refinement of our understanding of the mechanism(s) by which 
caloric restriction elicits its effects, combined with direct testing of putative mimetics, 
will be an important and exciting area for future studies.

Resveratrol has been considered to be a caloric restriction mimetic in lower organisms, 
primarily on the basis of its activation of sirtuin proteins and its capacity to extend 
lifespan9,14. In mammals, caloric restriction and resveratrol treatment afford protection 
against a similar spectrum of diseases (TABLE 1), justifying further investigation into the 
potential overlap in mechanism of action. 
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Cholesterol and triglycerides. Resveratrol was shown, 
in 1982, to inhibit the deposition of cholesterol and tri-
glycerides in the livers of rats, and to decrease the rate of 
hepatic triglyceride synthesis104. However, more recent 
in vivo studies have failed to detect a significant effect of 
resveratrol on serum cholesterol or triglyceride concen-
trations80,100,103,105–107. In rare exceptions, total cholesterol 
concentration was lowered by resveratrol treatment in 
hypercholesterolaemic rats108, and serum LDL and very-
low-density lipoprotein concentrations were decreased 
in hepatoma-bearing rats63. A positive correlation has 
been shown between serum cholesterol and hepatoma 
weight109, and so a reduction in tumour size could have 
been the primary effect of resveratrol in the latter study. 
Current in vivo data, therefore, do not provide support 
for a direct effect of resveratrol on circulating cholesterol 
and lipid concentrations. Despite this, resveratrol has 
been shown to reduce the formation of atherosclerotic 
plaques and restore flow-mediated dilation in rabbits fed 
a high-cholesterol diet75. It is also worth noting that the 
original 1982 study found piceid (also known as resvera-
trol β-glucoside or polydatin), which is also present in 
red wine, to be a far more effective regulator of serum 
lipid concentrations104.

Phytooestrogenic effects. Oestrogen replacement therapy 
has been shown to reduce the risk of cardiovascular 
disease and osteoporosis in postmenopausal women110. 
Resveratrol has been reported to act as a phytooestrogen 
in some systems111, and it has been suggested that this 
property might mediate its cardioprotective effects112. 
However, both the oestrogenic effects of resveratrol 
in vivo and the cardioprotective effects of oestrogen 
replacement113,114 have since become subjects of debate, 
and a firm connection remains to be established.

Resveratrol, inflammation and immunity
Many human ailments have an inflammatory com-
ponent. Inflammation is central to the pathology of 
arthritis, Crohn’s disease and psoriasis, and can have a 
role in the development of both cardiovascular disease 
and cancer. The cyclooxygenase enzymes are crucial in 
the production of pro-inflammatory molecules by both 
the cyclooxygenase and 5-lipoxygenase pathways (for a 
review, see REF. 115) and inhibitors are commonly used 
as anti-inflammatory drugs. Because resveratrol is an 
effective inhibitor of cyclooxygenase activity in vivo20,22,28, 
its anti-inflammatory properties have been investigated. 
Resveratrol significantly reduces both acute and chronic 
chemically induced oedema5,70,116, lipopolysaccharide-
induced airway inflammation117 and osteoarthritis118, and 
helps to prevent allograft rejection119,120. Intravenously 
administered resveratrol decreases inflammation 
induced by ischaemia/reperfusion, oxidants generated 
by hypoxanthine/xanthine oxidase (HX/XO) or platelet-
activating factor, but not leukotriene B4 in rats121. The 
first three conditions are all associated with superoxide 
formation, whereas leukotriene B4 induces inflammation 
via a superoxide-independent mechanism122, suggesting 
that resveratrol treatment could detoxify or slow pro-
duction of this molecule. Resveratrol could present an 

attractive alternative to current treatments for chronic 
inflammation as long-term use of aspirin can damage 
the stomach lining123, and selective COX2 inhibitors 
developed to avoid this problem have been linked to 
cardiovascular complications85,86.

In contrast to its suppressive effects on models 
of inflammation, resveratrol enhances the immune 
response of mice treated with the arylating agent 
dinitrofluorobenzene in a delayed type hypersensitivity 
assay, and prevents immunosuppression by ethanol124. 
Furthermore, resveratrol protects mice from infection by 
herpes simplex virus-1 (HSV1) and HSV2 (REFS 125,126). 
This suggests that the regulation of inflammatory 
responses by resveratrol is more complex than simple 
suppression and that specific immune responses could 
even be enhanced.

Myocardial infarction
Resveratrol has proved to be effective at protecting isolated 
rat hearts against ischaemia/reperfusion injury. Perfusion 
of the organ with 10 µM resveratrol for 10–15 min before 
ischaemic insult results in improved recovery of developed 
pressure and aortic flow, reduction of malondialdehyde 
concentrations and reduction of infarct size59,127–129. This 
effect could be, at least partially, related to the antioxidant 
activity of resveratrol because a resveratrol derivative that 
incorporates an additional hydroxyl group at the 3′ position 
— astringinin — exhibits greatly enhanced free radical-
scavenging ability, and provides better protection from 
ischaemic injury130. Inhibitors of NOS block the protec-
tive effects of resveratrol in isolated rat hearts131 and hearts 
from iNOS-null-mice are not protected132. Increases in the 
expression of both eNOS and iNOS95, as well as increases 
in serum nitric oxide concentrations133, were observed in 
wild-type mice treated with resveratrol, demonstrating 
that this mechanism could be relevant in vivo.

Providing resveratrol in drinking water for 15 days 
(~1 mg per kg body weight) was sufficient to improve 
the recovery in function and coronary flow of isolated 
hearts even 24 hours after resveratrol administration was 
stopped134: this effect was dependent on both nitric oxide 
and adenosine. Adding resveratrol to drinking water 
for 16 days (~14 mg per kg body weight) significantly 
increased cardiac QR1 (DT-diaphorase) and catalase 
levels in guinea pigs, suggesting an increased capacity to 
eliminate oxidants46. Moreover, resveratrol prevented a rise 
in ROS in response to menadione in cardiac homo genates 
and isolated atria. Resveratrol could therefore bring about 
an increase in nitric oxide concentrations through both 
increasing expression of nitric oxide synthase and decreas-
ing the inactivation of nitric oxide by free radicals. These 
data strongly suggest that resveratrol might protect against 
ischaemic damage during myocardial infarction.

Stroke and brain damage
Numerous studies have raised the possibility that res-
veratrol might be useful in protecting against brain 
damage following cerebral ischaemia. Rats given intra-
peritoneal injections of resveratrol for 21 days, showed 
less motor impairment and significantly smaller infarct 
volume after middle cerebral artery occlusion8. Similar 
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effects were observed in wild type, but not peroxisome 
proliferator-activated receptor-α–/– (PPARα–/–), mice135. 
In Mongolian gerbils, an intraperitoneal injection of 
resveratrol during or immediately after transient global 
cerebral ischaemia, followed by a second dose at 24 

hours, decreased delayed neuronal cell death and glial 
cell activation in the hippocampus7. A third study found 
that resveratrol administered intravenously significantly 
decreased ischaemic volume and brain water content at 
the extremely low doses of 100 ng and 1 µg per kg (body 

Table 1 | Dietary sources of resveratrol

Source trans-Resveratrol 
concentration

Comments Refs

Dietary

Red wines 0.1–14.3 mg l–1 cis-Resveratrol, trans-piceid and cis-piceid also present, typically at 
slightly lower concentrations 

181,207–213

White wines <0.1–2.1 mg l–1 Generally resveratrol found at concentrations of <0.1 mg l–1, exceptions 
include Swiss, Portuguese and German Riesling wines, cis-resveratrol, 
trans-piceid and cis-piceid also present

181,201,207,
209,210

Ports and sherries Generally <0.1 mg l–1 207

Grapes* 0.16–3.54 µg g–1 Contents are similar for wine or table grapes, and black or white grapes. 
trans-Piceid is predominant at concentrations of 1.5–7.3 µg g–1 

211,214–216

Dry grape skins 24.06 µg g–1 (average) trans-Piceid and cis-piceid found at concentrations of 42.19 µg g–1 and 
92.33 µg g–1, respectively

217

Red grape juices 0.50 mg l –1 (average) trans-Piceid, cis-piceid and cis-resveratrol found at concentrations of 
3.38 mg l–1, 0.79 mg l–1 and 0.06 mg l–1, respectively

218

White grape juices 0.05 mg l–1 (average) trans-Piceid and cis-piceid found at concentrations of 0.18 mg l–1 and 
0.26 mg l–1, respectively

218

Cranberry raw juice ~0.2 mg l–1 cis-Resveratrol also found at a concentration of ~0.03 mg l–1 219

Blueberries Up to ~32 ng g–1 220

Bilberries Up to ~16 ng g–1 220

Other Vaccinium berries 7–5,900 ng g–1 
(dry sample)

Highest concentrations in lingonberries 216

Peanuts 0.02–1.92 µg g–1 221,222

Roasted peanuts 0.055 µg g–1 223

Boiled peanuts 5.1 µg g–1 211,223

Peanut butters 0.3–0.4 µg g–1 (average) trans-Piceid also found at a concentration of 0.13 µg g–1 211,223,224

100% Natural peanut 
butters

0.65 µg g–1 (average) trans-Piceid also found at a concentration of 0.14 µg g–1 224

Pistachios 0.09–1.67 µg g–1 222

Groundnuts (Arachis 
hypogaea)

ND 225

Rhubarb ND 226

Hops 0.5–1 µg g–1 trans-Piceid and cis-piceid found at concentrations of 2–9 µg g–1 and 
0.9–6 µg g–1, respectively

227,228

Itadori (Polygonum 
cuspidatum) tea

0.68 mg l–1 trans-Piceid also found at a concentration of 9.1 mg l–1 211

Herbal

Veratrum (Lily) ND 1

Cassia quinquangulata ND 5

Gnetum klossii ND 229

Polygonum cuspidatum 0.524 mg g–1 trans-Piceid also found at a concentration of 1.65 mg g–1 211,230

Rhubarb (Rheum 
rhaponticum) dry root 

3.9 mg g–1 230

Yucca schidigera bark ND 231
Resveratrol has also been detected in peanut roots232, endophyte-infected grasses233, Pterolobium hexapetullum234, spruce235, eucalyptus236, the heartwood of 
mulberry237 and Bauhinia racemosa238. Heating at 190 oC for 18 min destroys 17–46% of trans-resveratrol220. *Total resveratrol and piceid content of Napoleon 
grapes increased twofold during 10 days of refrigerated storage, and by 2–11-fold after UV irradiation239,240. *In red globe grapes, resveratrol concentrations 
increased  2,315-fold after UV irradiation241. ND, not determined.
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weight) after middle cerebral artery occlusion in rats136. 
Resveratrol administered intraperitoneally also prevented 
seizures induced by FeCl3 (REF. 137), kainic acid138 or 
pentylenetetrazole139, and partially restored cognition in 
rats receiving streptozotocin intracerebroventricularly140. 
These results suggest that resveratrol is capable of pene-
trating the blood–brain barrier and exerts strong neuro-
protective effects, even at low doses.

Developmental effects
As a result of its reported oestrogenic activity, as well as 
general concern about the safety of high doses, the effects 
of resveratrol on growth, development and gene expres-
sion have been studied in weanling rodents. In general, 
only minor effects were detected. Resveratrol had no 
significant effect on body weight, serum cholesterol 
concentration, radial bone growth, epithelial cell height, 
insulin-like growth factor-1 (IGF1) expression, or other 
histological parameters, but caused a mild decrease in 
uterine weight, shortened the latency to vaginal opening 
and antagonized the cholesterol-lowering effect of oestra-
diol106,141,142. Treating pregnant mothers with resveratrol 
also had relatively minor effects on their offspring. These 
included mild changes in the sizes of various organs, 
delayed or unaffected vaginal opening, a decrease in 
female sexual behaviour, transient effects on the reproduc-
tive tract and mammary glands, and elongated oestrous 
cycle, but acrosomal integrity, sperm quality and litter size 
were not affected143–145. A 28-day study of the effects of 
20 mg per kg (body weight) oral resveratrol in adult rats 
found no effect on body weight, food or water consump-
tion, haematological or clinical biochemistry variables, or 

histopathology146, and no adverse effects were observed at 
doses of up to 300 mg per kg (body weight)147. Although 
the effects of resveratrol on development are relatively 
minor compared with other potential phytooestrogens or 
similar molecules, more extensive studies will be required 
before high doses can be recommended for children or 
pregnant mothers.

Other in vivo effects of resveratrol
In addition to its other properties, resveratrol is reported 
to act as an analgesic148–150, protect against hearing loss151 
and enhance lipopolysaccharide-induced anorexia 
in rats, although it has no anorexic effect when given 
alone152. Resveratrol has also been shown to reduce 
injuries to the kidneys153,154, spinal cord155,156, liver157, 
lungs158, intestine159,160 and colon24. These additional 
results indicate that the protective effects of resveratrol 
are not limited to the heart and brain in vivo.

Resveratrol and ageing
Sirtuins are a conserved family of NAD+-dependent 
deacetylases (class III histone deacetylases) that were 
named after the founding member, the Saccharomyces 
cerevisiae silent information regulator 2 (Sir2) protein161. 
In yeast, worms and flies, extra copies of the genes that 
encode sirtuins are associated with extended lifespan162–164. 
Of the seven mammalian sirtuins — SIRT1–7 — SIRT1 
is the closest homologue to Sir2, based on amino acid 
identity. Inbred knockout mice that lack SIRT1 show 
developmental defects, have a low survival rate and have 
a significantly shorter lifespan compared with wild-type 
mice, although outbreeding seems to improve the phe-
notype significantly165. It has been postulated that the 
main function of sirtuin proteins might be to promote 
survival and stress resistance in times of adversity166. An 
evolutionary advantage arising from the ability to modify 
lifespan in response to environmental conditions could 
have allowed these enzymes to be conserved as species 
evolved, and to take on new functions in response to 
new stresses and demands on the organism. This could 
explain why the same family of enzymes has dramatic 
effects on lifespan in disparate organisms with seemingly 
dissimilar causes of ageing167.

The data from lower organisms have provoked 
intense research into the function of sirtuin proteins 
in mammalian systems. An in vitro screen for activa-
tors of SIRT1 identified resveratrol as the most potent 
of 18 inducers of deacetylase activity9. Subsequent 
work has shown that resveratrol extends the lifespans 
of S. cerevisiae, Caenorhabditis elegans and Drosophila 
melanogaster (FIG. 3), but only if the gene that encodes 
SIR2 is present in these organisms9,14. More recently, 
resveratrol was shown to extend the maximum lifespan 
of a species of short-lived fish by up to 59%, concomitant 
with the maintenance of learning and motor function 
with age and a dramatic decrease in aggregated proteins 
in elderly fish brains10; however, the extent to which this 
effect is Sir2-dependent, if at all, is not known.

The in vitro activity of SIRT1 against short, unconju-
gated peptide substrates is not enhanced by resveratrol, 
leading some to argue that the original observation was 

Figure 3 | The largest reported increases in mean and maximal lifespan for various 
species treated with resveratrol. Lifespan extensions in Saccharomyces cerevisiae9, 
Caenorhabditis elegans14,174, and Drosophila melanogaster14,206 are dependent on sirtuin 
proteins. However, the role of these proteins in lifespan extension of the short-lived fish 
Nothobranchius furzeri10 has yet to be investigated. 
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an artefact of the fluorescent substrate used to monitor the 
reaction168,169. However, activation of SIRT1 by resveratrol 
is observed in non-fluorescence-based assays when longer 
peptide substrates are used (A. Sauve, S. Lavu and J. Milne, 
personal communications) and is abolished in an E230K 
point mutant of SIRT1 (W. D. Lamming, S. Michan, J.B. 
and D.A.S., unpublished observations). Moreover, res-
veratrol consistently recapitulates the protective effects of 
SIRT1 overexpression in cell culture9,170, and Sir2/SIRT1 
have been shown to be essential mediators of effects on 
adipogenesis171, nuclear factor-κB (NF-κB) acetylation172, 
protection from mutant huntingtin protein173, and lifespan 
extension in lower organisms. 

The importance of substrate choice in vitro highlights 
the possibility that resveratrol might alter the substrate 
specificity of SIRT1 in vivo. Indeed, this is the case in C. 
elegans — resveratrol treatment has been shown to have 
SIR-2-dependent effects that are substantially different 
from those obtained by simple overexpression174. The 
question of whether enhanced SIRT1 activity and/or 
resveratrol treatment will increase mammalian lifespan 
looms large in the ageing-research community. 

Pharmacokinetics
It is fair to say that the literature on resveratrol is, in 
many cases, contradictory and confusing. The wide 
range of concentrations and doses used to achieve the 
various effects reported for resveratrol (~32 nM–100 µM 
in vitro and ~100 ng–1,500 mg per kg (body weight) in 
animals) raises many questions about the concentrations 
that are achieved or achievable in vivo. Furthermore, res-
veratrol has a short initial half-life (~8–14 min for the 
primary molecule175,176) and is metabolized extensively 
in the body. As such, calculating the effective in vivo 
concentration of resveratrol or designing new studies 
based on the current literature can be daunting.

In 2004, Walle177 and colleagues showed that the bulk 
of an intravenous dose of resveratrol is converted to sul-
phate conjugates within ~30 min in humans. A detailed 
analysis of plasma metabolites after oral dosing was 
not possible; however, both sulphate and glucuronide 
conjugates were detected. Five distinct metabolites were 
present in the urine — resveratrol monosulphate, two 
isomeric forms of resveratrol monoglucuronide, dihy-
droresveratrol monosulphate and dihydroresveratrol 

Table 2 | Peak serum and plasma concentrations of resveratrol and its metabolites after oral dosing

Species Dose* Serum peak Normalized to 1 mg kg–1 Refs

Authentic Derivatives Authentic Derivatives

Single dose as pure resveratrol

Rat 50 6.6 µM 105 µM (glucuronide) 130 nM 2.1 µM (glucuronide) 175

Rat 2 ~2.4 µM 1.2 µM 242

Rat 20 1.2 µM 60 nM 176

Rat 2 0.09 µM 1.2 µM (total) 22 nM 0.6 µM (total) 243

5 0.11 µM 1.5 µM (total) 45 nM 0.3 µM (total)

Rat 2 0.77 µM 380 nM 244

Mouse 240 32 µM 46 nM 185

Mouse 20 2.6 µM 130 nM 176

Mouse 20 Trace ~5 µM (sulphate) 
~1 µM (glucuronide)

Trace 0.25 µM (sulphate) 
0.05 µM (glucuronide)

245

60 Trace ~300 µM (sulphate) 
~170 µM (glucuronide)

Trace 5 µM (sulphate) 
2.8 µM (glucuronide)

Rabbit 20 1.1 µM 55 nM 176

Human 25 mg per 70 kg 
body weight

~37 nM ~2.1 µM (total) 100 nM 5.9 µM (total) 246

Human 25 mg per 
person

<22 nM ~2.1 µM (total) <81 nM 7.7 µM (total) 177

Single dose as red wine

Rat 80 µg per kg ~88 nM ~1.1 µM 247

Rat 86 µg  per kg ~88 nM ~1.0 µM 248

Human 3.4 µg  per kg ND 0–0.11 µM (3-glucuronide) 
0–0.42 µM (4′-glucuronide)

ND 0–32 µM (3-glucuronide) 
0–120 µM (4′-glucuronide)

178

32.9 µg  per kg ND 0–0.19 µM (3-glucuronide) 
0–2.2 µM (4′-glucuronide)

ND 0–5.8 µM (3-glucuronide) 
0–67 µM (4′-glucuronide)

7.5 µg  per kg
  

0–26 nM 0–0.16 µM (3-glucuronide) 
0–1.3 µM (4′-glucuronide)

0–3.5 µM 0–21 µM (3-glucuronide) 
0–170 µM (4′-glucuronide)

*Quoted as mg per kg body weight unless stated otherwise. ND, none detected.
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monoglucuronide (FIG. 1). Total sulphate conjugates 
accounted for ~37% of the metabolites in the urine and 
total glucuronide conjugates ~19%, with the remainder 
being made up largely by unknown metabolites and 
only trace amounts of free resveratrol. In addition, Walle 
et al.177 found that the serum half-life of total resveratrol 
metabolites was ~9.2 hours, indicating that exposure to 
modified forms is much higher than that for unchanged 
resveratrol.

Although modifications such as glucuronidation 
and sulphation typically reduce the cell permeability of 
drugs and aid in their excretion, the undeniable in vivo 
efficacy of resveratrol, despite its low bioavailability, 
has led to speculation that its metabolites could retain 
some activity. In support of this, several metabolites 
retain the ability to activate SIRT1 and inhibit cyclooxy-
genase in vitro (A. Mesecar, personal communication). 
However, resveratrol-3-sulphate fails to inhibit CYPs35 
and there is currently no evidence that any metabolite 
is able to cross the plasma membrane. Research into the 
actions of metabolites has been hampered by the lack of 
commercial sources, but should proceed more readily 
now that synthetic routes to these molecules have been 
established by several groups64,177,178.

The concentrations of trans-resveratrol in red wine 
vary widely (TABLE 1), but a reasonable (if optimistic) 
estimate is about 5 mg l–1 (REFS 179,180). Assuming a 
consistent daily intake of 375 ml, or about two glasses 
of wine, a person weighing 70 kg would receive a dose 
of ~27 μg per kg (body weight) each day. Inclusion of 
cis-resveratrol and polydatin (resveratrol β-glucoside, 
also known as piceid), depending on the wine, might 
double this figure181. At higher doses, the detrimental 
effects of alcohol are likely to mask any health benefits. 
For example, the beneficial effect of alcohol consump-
tion on Alzheimer’s disease is maximal at 1–6 drinks per 
week182 and consuming more than four drinks per day 
nullifies the beneficial effect of alcohol on the risk of 
myocardial infarction183.

One finding that has often been overlooked is that 
quercetin, which is also present in red wine, is a pico-
molar inhibitor of resveratrol sulphation in both the 
liver and duodenum184, indicating that the profiles of 
metabolites obtained after consumption of either 
red wine or purified resveratrol could be different. 
Resveratrol , its 3-glucuronide and its 4′-glucuronide 
were all detected sporadically in the plasma of human 
participants after ingestion of red wine at concentrations 

up to 26 nM, 190 nM and 2.2 µM, respectively178. 
Data on the peak serum concentrations of unchanged 
resveratrol, as well as metabolites, are summarized in 
TABLES 2,3.

The maximum tolerated dose of resveratrol has not 
been thoroughly determined, but 300 mg per kg (body 
weight) showed no detrimental effects in rats147 and 
doses up to 100 mg per kg (body weight) have been used 
routinely in studies on rodents (S1). Although these esti-
mates are subject to change as new data become available, 
we would currently predict peak serum concentrations 
of ~2.4 nM unmodified resveratrol and ~180 nM total 
resveratrol from a dose equivalent to two glasses of red 
wine, and ~9 µM authentic resveratrol and ~680 µM 
total resveratrol from a high, but pharmacologically rel-
evant, dose (based on rodent data) of resveratrol of 100 
mg per kg (body weight). Insufficient data exist to pre-
dict peak concentrations in most tissues, but a ~30-fold 
enrichment of resveratrol over serum concentrations has 
been observed in intestinal mucosa185, as has significant 
accumulation of resveratrol in the bile, stomach, liver 
and kidneys186.

Given that in vivo concentrations of individual 
metabolites can be more than ten times higher than 
those of the native compound, in the future, there will 
clearly need to be an emphasis on determining whether 
the metabolites represent inactivated forms of the drug, 
act as a pool from which free resveratrol can be released 
in various tissues or are themselves active in promoting 
many of the health benefits attributed to resveratrol.

It is also worth considering the potential inter-
actions of resveratrol with other constituents of the diet. 
Resveratrol has been shown to synergize with both quer-
cetin and ellagic acid in the induction of apoptosis in 
human leukaemia cells187, with ethanol in the inhibition 
of iNOS expression188, with vitamin E in the prevention 
of lipid peroxidation189, with catechin in the protection 
of PC12 cells from β-amyloid toxicity190, and with nucle-
oside analogues in the inhibition of HIV1 replication in 
cultured T lymphocytes191. These effects could help to 
explain how a relatively low dose of resveratrol obtained 
from red wine or other dietary sources could produce a 
measurable health benefit.

Conclusions
In mammals, there is growing evidence that resveratrol 
can prevent or delay the onset of cancer, heart disease, 
ischaemic and chemically induced injuries, diabetes, 
pathological inflammation and viral infection. These 
effects are observed despite extremely low bioavailability 
and rapid clearance from the circulation. Administering 
higher doses to improve efficacy might not be possible 
as toxic effects have been observed at or above 1 g per kg 
(body weight)147. Moreover, administering a daily dose 
to a human weighing 75 kg with 100 mg per kg (body 
weight) of resveratrol would require 2.7 kg of resveratrol 
a year, at a current cost of about US$6,800. Therefore, 
blocking the metabolism of resveratrol, developing 
analogues with improved bioavailability, or finding 
new, more potent compounds that mimic its effects will 
become increasingly important.

Table 3 | Resveratrol metabolites in plasma after long-term treatment

Species Daily dose* Resveratrol metabolites in plasma Refs

Rat 40 (as wine) ~33 nM (authentic) 247

Rat 43 (as wine) ~33 nM (authentic) 248

Rat 50 (in diet) ND 64

300 (in diet) ND (authentic), 7.7 µM (3-glucuronide), 
ND (4′-sulphate), 1.1 µM (3-sulphate), 
3.0 µM (3,5-sulphate), 18 µM (3,4′-sulphate), 
6.4 µM (3,4′,5-sulphate)

*Quoted as µg per kg body weight unless stated otherwise. ND, none detected.
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It is tempting to view the beneficial effects of resvera-
trol in mammals as an extension of findings from lower 
organisms, in which resveratrol acts through Sir2 to mimic 
caloric restriction. Indeed, caloric restriction is probably 
the only other treatment for which such a broad array of 
protective effects is observed in mammals. In addition, 
resveratrol treatment increases mitochondrial biogen-
esis (R. de Cabo, personal communication) and, at least 
under certain conditions, improves insulin sensitivity192, 
which is consistent with observations in calorie-restricted 
animals193–195. However, activation of the mammalian 
Sir2 homologue SIRT1 by resveratrol has yet to be dem-
onstrated in vivo, and our current lack of understanding 
of how caloric restriction brings about its effects precludes 
a more definitive mechanistic comparison.

Given that many targets for resveratrol have been iden-
tified in vitro, and effective doses vary over at least three 

orders of magnitude in vivo, it seems likely that resveratrol 
acts through multiple pathways. Intriguingly, reported 
effects are overwhelmingly in the direction that would be 
considered beneficial and in many cases seem to suggest 
cooperative action. For example, expression of CYP1A1 
is downregulated by resveratrol through inhibition of 
AHR40, but resveratrol also inhibits the catalytic activity 
of CYP1A1 directly36. The same is true for COX2 — res-
veratrol interferes with both transcription23 and catalytic 
activity5 of the enzyme. Resveratrol inhibits NF-κB both 
by blocking the upstream activator PKCδ196 and by acti-
vating the inhibitor SIRT1 (REF. 172). Moreover, resveratrol 
inhibits inflammation through ostensibly independent 
effects on NF-κB, cyclooxygenase and interleukin-1β.

One possible explanation for this seemingly coor-
dinated response is that resveratrol resembles an endo- 
genous signalling molecule. Indeed, resveratrol’s structure 
is reminiscent of molecules that stimulate the oestrogen 
receptors. However, attempts to characterize resveratrol 
as an in vivo oestrogen mimetic have met with limited 
success106,142. Another alternative is the ‘xenohormesis 
hypothesis’, which proposes that organisms have evolved 
to respond to chemical cues in their diets9,197,198 (BOX 2). 
Whether resveratrol can stimulate endogenous pathways 
to promote health and longevity, such as those that are 
active during caloric restriction, or whether it produces 
its effects through a series of fortuitous interactions are 
important issues to address.

It is becoming clear that resveratrol and more potent 
mimetics show great promise in the treatment of the 
leading causes of morbidity and mortality in the Western 
world. So far, little evidence suggests that these health 
benefits are coupled with deleterious side effects. Even 
the trade off between individual health and reproductive 
potential that is characteristic of caloric restriction does 
not seem to occur in animals with lifespans that have 
been extended by resveratrol14. Could resveratrol and 
similar molecules form the next class of wonder-drugs? 
Clinical trials are currently underway in several loca-
tions (see Further information) and could soon answer 
this question. In the meantime, we might all do well to 
follow the advice of Antonio Todde, once the world’s oldest 
man: “Just love your brother and drink a good glass of 
red wine every day”.

Box 2 | The ‘xenohormesis hypothesis’

‘Hormesis’ describes the phenomenon in which a mild stress (for example, irradiation, 
heat or toxins) can induce a protective response against subsequent stresses200. This 
hormetic response is credited for the paradoxical result that mildly stressed animals 
outlive their unstressed counterparts201, which also possibly applies to humans202. 
It has been suggested that caloric restriction might act as a mild stress to induce a 
hormetic response203, which could account for enhanced stress-tolerance and 
longevity in calorie-restricted mice, as well as the otherwise counterintuitive finding 
that such animals are better able to resist starvation204. In yeast, at least, this contention 
is strongly supported by the observation that both caloric restriction and mild stresses 
induce expression of Pnc1, an upstream activator of sirtuin proteins that is necessary 
and sufficient for lifespan extension205.

The ‘xenohormesis hypothesis’ postulates that sensing stress responses, such as 
resveratrol accumulation, in a food source might be sufficient to induce a hormetic 
response in animals eating that food9,197,198. It can be imagined that throughout 
evolution, such stress-markers in the surrounding vegetation would have served as 
strong predictors of a coming famine or direct stress to the animal. Reacting to these 
molecules would allow the hormetic response to begin ahead of any direct damage or 
energy deficit, and, more importantly, would not stake the life of the animal on the hope 
that the initial stress would be mild and/or protective. If the ‘xenohormesis hypothesis’ 
is correct, then stressed plants might form an abundant reservoir for medicinal 
compounds that trigger conserved protective responses in humans. The relatively low 
amounts of resveratrol in foods belie the possibility that there are numerous potential 
xenohormetic compounds in a stressed plant that could act additively or even 
synergistically. Indeed, another potentially xenohormetic compound, quercetin, 
behaves similarly to resveratrol in many assays and also inhibits sulphation of 
resveratrol184, which predicts a greater than additive effect.
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