Purpose

The purpose of this course is to provide examples in which the cell biology topics covered in BIOM 600 are studied in the context of immune cells or used to explain immune system function. This course will help students become proficient at reading and critically assessing the published literature and encourage students to actively participate in scientific discussions with their peers.

Format

The course format will be as follows:

We will meet once weekly (Thursdays, 10:00 – 11:30 am, BlueJeans) to discuss one of the papers provided by participating faculty members. This is not necessarily the most cutting-edge article in the field, but one that demonstrates key cell biology concepts. All articles are available as pdf files on the Canvas site.

Each week, one student (as assigned) will give a 10-15 minute chalk-talk style overview of the key concepts covered in the article. PowerPoint presentations are not allowed. After the assigned student introduces the paper, other students will take turns presenting figures from the paper. The discussion of each figure will cover:
 1) What is the question being addressed?
 2) Describe the techniques being used.
 3) State the results.
 4) Explain the statistical analysis used to interpret the data.
 5) What are the authors’ conclusions?
 6) Are there alternative explanations? Were the appropriate controls used?
 7) How did this figure fit within the overall context of the paper?

As a group, we will also discuss:
 1) Whether the paper is convincing, and why or why not.
 2) The significance of the work to the fields of immunology and cell biology.
 3) Unresolved questions for the field going forward.

On Canvas you will find copies of the course schedule as well as pdf files for the individual papers we will be considering. The course schedule contains contact information for all course faculty and a list of students assigned to each paper. You are strongly encouraged to contact the faculty member associated with the paper to discuss your 10-15 minute overview before your
scheduled date. Participation is a big part of your grade in this class. Be prepared to participate in
discussion of all figures and all aspects of the papers.

Final Project

At the end of the term there will be a short “final project”. This final project will allow you to
hone your analytical and writing skills while learning something new about a topic of interest. To
complete this project you will select an immunology-focused paper that is related to a topic
covered in BIOM 600. Based upon this published work you will write a brief (1-2) page review
that includes an illustration (model) of the key findings.

The paper should include the following parts:
1) Synopsis of the main conclusion(s) of the paper.
2) A schematic model (illustration) of the findings.
3) A summary of methods used and key experimental discoveries.
4) How it draws upon cell biology and basic cell biological principles.
5) How this impacts our understanding of immune system functions.
6) Future questions related to this topic that remain unresolved.
7) Literature cited

Final projects must be submitted by December 12th via email to Andrew Wells
(adwells@penmedicine.upenn.edu). Also please direct any questions about the project or
requirements directly to Andrew Wells (adwells@penmedicine.upenn.edu).

Assessment and Course Grades

Grades for this course will be determined by:
1) The quality of your 10-15 minute overview (approximately 25%).
2) Your overall level of participation and intellectual engagement (approximately 50%)
3) The quality of your final project (approximately 25%).
IMUN 601 Molecular Immunology 2020

Thursdays, 10:00 – 11:30 am
https://bluejeans.com/2980668226

COURSE DIRECTOR
Janis Burkhardt
816D Abramson Research Center
267-426-5410
jburkhar@pennmedicine.upenn.edu

FACULTY

Yair Argon
816A Abramson Research Center
267-426-5231
vargon@pennmedicine.upenn.edu

Will Bailis
1211B Abramson Research Center
267-590-9396
wibailis@gmail.com

Igor Brodsky / Neha Nataraj
3800 Spruce Street
Old Vet Quad 390EE
215-746-8426
ibrodsky@vet.upenn.edu
natarajn@pennmedicine.upenn.edu

Janis Burkhardt
816D Abramson Research Center
267-426-5410
jburkhar@pennmedicine.upenn.edu

Laurence Eisenlohr
1107B Abramson Research Center
215-590-0952
eisenlc@pennmedicine.upenn.edu

Bruce Freedman
389E Old Vet Building
215-573-8218
bruce@vet.upenn.edu

Michael May
200E Old Vet Building
215-573-0940
maym@pennmedicine.upenn.edu

Paula Oliver
816F Abramson Research Center
267-426-2839
paulao@pennmedicine.upenn.edu

Andrew Wells
916E Abramson Research Center
215-590-8710
adwells@pennmedicine.upenn.edu

THEMES (based on BIOM 600)

Signal Transduction
- NFkB (May)
- Signal transduction (Wells)
- Ubiquitin regulation (Oliver)

Membrane traffic
- Protein folding (Argon)
- Immune endocytosis (Eisenlohr)

Cytoskeleton and Cell Motility
- Immune cell motility (Burkhardt)
- Cytoskeleton (Burkhardt)

Ion Channels
- Ca2+ ion channels (Freedman)

Cell Stress and Cell Metabolism
- Cell stress response (Argon)
- Immune cell metabolism (Bailis)
<table>
<thead>
<tr>
<th>DATE</th>
<th>FACULTY</th>
<th>TOPIC</th>
<th>PAPER</th>
<th>STUDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/10</td>
<td>May</td>
<td>NFkB: Gateway to cell signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/17</td>
<td>Wells</td>
<td>Signal transduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/24</td>
<td>Oliver</td>
<td>Ubiquitin regulation of immune signaling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/1</td>
<td>Oliver</td>
<td>Ubiquitin regulation of T cell persistence</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/8</td>
<td>Argon</td>
<td>Protein folding or exocytic trafficking</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/15</td>
<td>Argon</td>
<td>Cell stress response</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/22</td>
<td>Eisenlohr</td>
<td>Immune endocytosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/29</td>
<td>Burkhardt</td>
<td>Actin cytoskeletal control of T cell activation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/5</td>
<td>Burkhardt</td>
<td>Immune cell motility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/12</td>
<td>Freedman</td>
<td>Calcium ion channels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/19</td>
<td>Brodsky / Nataraj</td>
<td>Apoptosis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/20</td>
<td>No class</td>
<td>Thanksgiving week</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td>12/3</td>
<td>Bailis</td>
<td>Immune cell metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12/7</td>
<td>No class</td>
<td>Paper due</td>
<td>--------------------------</td>
<td></td>
</tr>
</tbody>
</table>