This course covers topics from public health and biomedical research where big data are being collected and methods are being developed and applied, together with some core statistical methods in high dimensional data analysis and convex optimization. Some theory on high dimensional statistics will be covered.

Instructor info: Prof. Hongzhe Li
hongzhe@upenn.edu; 215 Blockley Hall; office hour: appointment by email

Prerequisite:
Graduate level concepts of probability and distributions, point and interval estimation, hypothesis testing, regression analysis of continuous outcome, categorical data analysis, some knowledge on optimization. Strong computing skills

Recommended books:

Homework, exam and project:
There are a total of 3 data analysis projects, plus some homework on derivations. No exams, but lots of readings.

Grading:
Three projects 20% each (60%) + reading assignments and oral presentation 15% + 25% class participation and small weekly derivation homework.

Reading - about 1 paper/week, randomly ask one of you to describe the paper in class.

Topics to be covered (subject to changes)

Topic 0:- Introduction
(1) introduction to big data; (2) general statistical concepts and principles; (3) bias-variance trade in prediction.

Topic 1: Dimension reduction
(1) SVD and principal components analysis; (2) positive components analysis; (3) Applications in Genomics and integrative genomics. (4) Application to Netflix movie recommendation data. (5) Stochastic gradient descent
Topic 2: Unsupervised learning
Various clustering methods and GAP statistic, robust hierarchical clustering, variable selection for clustering analysis

Topic 3: Regularization and High Dimensional Regression Analysis
(1) general form of loss + regularization; (2) L2 regularization;
(3) L1 regularization and its variants (Lasso; adaptive Lasso; elastic net; (4) Theory of Lasso; (5) Convex optimization, ADMM algorithm.
(6) Application to Google flu track

Topic 4: Ensemble Learning and Prediction
CART, Boosting, Random forest, bias-variance tradeoff. Various applications, application to ALS progression based on longitudinal lab data.

Topic 5: Deep Learning
Basic ideas of deep learning, convolutional neural networks, recurrent neural networks, back propagation, various applications in genomics and genetics.

Topic 6: Networks and graphical models (time permitting)
(1) concepts about networks; (2) network models; (3) modeling of the vertex attributes (Markov random fields; nearest neighbor prediction; (4) modeling of the links (informal scoring; association networks; random graph models); (5) networks clustering and community detection.

Topic 7: Special topics to be determined.