Purpose
The purpose of this course is to provide examples in which the cell biology topics covered in BIOM 600 are studied in the context of immune cells or used to explain immune system function. This course will help students become proficient at reading and critically assessing the published literature and encourage students to actively participate in scientific discussions with their peers.

Format
We will meet once weekly (Thursdays, 10:15 – 11:45 am, SCL 0104) to discuss one of the papers provided by participating faculty members. This is not necessarily the most cutting-edge article in the field, but one that demonstrates key cell biology concepts. All articles are available as pdf files on the Canvas site.

Each week, one student (as assigned) will give a 10-15 minute overview of the key concepts covered in the article. Presentations will be given in a chalk-talk format. After the assigned student introduces the paper, they will lead other students as they take turns presenting figures from the paper. Together with each week’s faculty member, they should moderate the discussion, clarify key points, and assist students who might have difficulty with the figure they are presenting. All students are strongly encouraged to participate in the discussion every week.

The discussion of each figure will cover:
1) What is the question being addressed?
2) Describe the techniques being used.
3) State the results.
4) Explain the statistical analysis used to interpret the data.
5) What are the authors’ conclusions?
6) Are there alternative explanations? Were the appropriate controls used?
7) How did this figure fit within the overall context of the paper?

As a group, we will also discuss:
1) Whether the paper is convincing, and why or why not.
2) The significance of the work to the fields of immunology and cell biology.
3) Unresolved questions for the field going forward.
On Canvas you will find copies of the course schedule as well as pdf files for the individual papers we will be considering. The course schedule contains contact information for all course faculty and a list of students assigned to each paper. Presenters are strongly encouraged to contact the faculty member associated with the paper to discuss your 10-15 minute overview before your scheduled date. Participation is a big part of your grade in this class. Be prepared to participate in discussion of all figures and all aspects of the papers. Don’t feel that you need to fully understand everything – its equally good to discuss what you find confusing or don’t know how to interpret.

Quarantine and COVID contingencies

We are sensitive to the fact that throughout the semester some students may find themselves in a situation where they need to quarantine due to the ongoing pandemic. In the event that you need to quarantine, we have established a hybrid learning contingency plan. We ask that you notify the course directors and the faculty leader for that week as far in advance as possible so that arrangements can be made for virtual participation. If you are required to quarantine the week you are schedule to present, arrangements will be made so you can present virtually.

While hope that it will not be necessary, we are also prepared to migrate the course to a fully virtual format if the University deems it necessary. In instances where virtual presentations are required, PowerPoint presentations are fine, but the format must be casual – don’t go overboard!! If you have access to a drawing tablet, you can also use a chalk-talk format.

Final Project

At the end of the term there will be a short “final project”. This final project will allow you to hone your analytical and writing skills while learning something new about a topic of interest. To complete this project you will select an immunology-focused paper that is related to a topic covered in BIOM 600. Based upon this published work you will write a brief (1-2 page maximum) review of the key findings.

The paper can be organized in any way that works, but should include the following parts:

1) An introduction to the question being posed.
2) A summary of methods used.
3) A synopsis of the main conclusion(s) of the paper.
4) A discussion of how the paper draws upon cell biology and how this impacts our understanding of immune system functions.
5) A discussion of future questions related to this topic that remain unresolved.
6) Literature cited
7) Optional – a schematic model (illustration) of the findings. Note: In general, you should never reproduce figures from the published papers. If you must, give attribution.
Final projects must be submitted by December 23rd via email to Will Bailis (bailisw@chop.edu). Also please direct any questions about the project or other course requirements directly to Will Bailis and Jan Burkhardt.

Assessment and Course Grades
Grades for this course will be determined by:

1) The quality of your 10-15 minute overview (approximately 25%).
2) Your overall level of participation and intellectual engagement (approximately 50%)
3) The quality of your final project (approximately 25%).

Accommodations
This is a discussion format course where students can get to know one another and the faculty. To make it as lively as possible, it is important to attend and be engaged on a consistent basis. Please reach out to Will Bailis and Jan Burkhardt if you expect to miss a class, or if virtual participation proves a hardship for you in some way, in the event of quarantine or migrating the course online.
IMUN 601 Molecular Immunology 2021

Thursdays, 10:15 – 11:45 am (SCL 0104)

COURSE DIRECTORS

Janis Burkhardt
816D Abramson Research Center
267-426-5410
jburkhar@pennmedicine.upenn.edu

Will Bailis
1211B Abramson Research Center
267-590-9396
bailsw@chop.edu

FACULTY

David Allman
230 John Morgan Building
215-746-5547
dallman@mail.med.upenn.edu

Yair Argon
816A Abramson Research Center
267-426-5231
yargon@pennmedicine.upenn.edu

Megan Clark
312 BRB II/III
215-898-2212
megclark@udel.edu

Laurence Eisenlohr
1107B Abramson Research Center
215-590-0952
eisenlc@pennmedicine.upenn.edu

Bruce Freedman
389E Old Vet Building
215-573-8218
bruce@vet.upenn.edu

Michael May
200E Old Vet Building
215-573-0940
maym@pennmedicine.upenn.edu

Neha Nataraj
3800 Spruce Street
Old Vet Quad 390EE
215-746-8426
ibrodsky@vet.upenn.edu
natarajn@pennmedicine.upenn.edu

Paula Oliver
816F Abramson Research Center
267-426-2839
paulao@pennmedicine.upenn.edu

Andrew Wells
916E Abramson Research Center
215-590-8710
adwells@pennmedicine.upenn.edu

THEMES (based on BIOM 600)

Signal Transduction
- NFkB (May)
- Signal transduction (Wells)
- Ubiquitin regulation (Oliver)

Cytoskeleton and Cell Motility
- Immune cell motility (Burkhardt)
- Cytoskeleton (Burkhardt)

Ion Channels
- Ca2+ ion channels (Freedman)

Compartmentation
- Protein folding (Argon)
- Cell stress response (Allman)
- Immune endocytosis (Eisenlohr)
- Mitochondria (Clark, Bailis)

Cell Fate
- Apoptosis (Nataraj)
- Immune cell metabolism (Bailis)
<table>
<thead>
<tr>
<th>DATE</th>
<th>FACULTY</th>
<th>TOPIC</th>
<th>PAPER</th>
<th>STUDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2</td>
<td>May</td>
<td>NFkB: Gateway to cell signaling</td>
<td>Sen/Baltimore, Cell, 1986</td>
<td>Katlyn Lederer</td>
</tr>
<tr>
<td>9/9</td>
<td>Wells</td>
<td>Signal transduction</td>
<td>Wang, Nat Imm, 2002</td>
<td>Stephanie Schreiner</td>
</tr>
<tr>
<td>9/16</td>
<td>Oliver</td>
<td>Ubiquitin regulation of immune signaling</td>
<td>Ahmed, Nat Imm, 2011</td>
<td>Ebony Smith</td>
</tr>
<tr>
<td>9/23</td>
<td>Oliver</td>
<td>Ubiquitin regulation of T cell persistence</td>
<td>Onizawa, Nat Imm, 2015</td>
<td>Bernadette Deschaine</td>
</tr>
<tr>
<td>9/30</td>
<td>Argon</td>
<td>Protein folding or exocytic trafficking</td>
<td>Feige, Molecular Cell, 2009</td>
<td>Alana McSween</td>
</tr>
<tr>
<td>10/7</td>
<td>Allman</td>
<td>Plasma cell and the UPR</td>
<td>Zhang, JCI, 2005</td>
<td>Krittin Trihemasava</td>
</tr>
<tr>
<td>10/14</td>
<td>Eisenlohr</td>
<td>Endosome trafficking and antigen presentation</td>
<td>Belabeld, Nat Comm, 2020</td>
<td>Nina De Luna</td>
</tr>
<tr>
<td>10/21</td>
<td>Bailis</td>
<td>Mitochondria biogenesis and adaptive immunity</td>
<td>Buck, Cell, 2015</td>
<td>Julia Chini</td>
</tr>
<tr>
<td>10/28</td>
<td>Clark/Henao-Mejia</td>
<td>Mitochondrial metabolism and innate immunity</td>
<td>Mills, Cell, 2016</td>
<td>Jason Shoush</td>
</tr>
<tr>
<td>11/4</td>
<td>No class</td>
<td>IGG Retreat</td>
<td>------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>11/18</td>
<td>Burkhardt</td>
<td>Actin control of T cell activation</td>
<td>Le Floc’h, J Exp Med, 2013</td>
<td>Leonel Torres</td>
</tr>
<tr>
<td>11/25</td>
<td>No class</td>
<td>Thanksgiving week</td>
<td>------------------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>12/2</td>
<td>Freedman</td>
<td>Calcium ion channels</td>
<td>Berry, Cell Reports 2020</td>
<td>Lillian Sun</td>
</tr>
<tr>
<td>12/9</td>
<td>Bailis</td>
<td>Immune cell metabolism</td>
<td>Balgih, Immunity, 2015</td>
<td>Ashwin Skelly</td>
</tr>
<tr>
<td>12/16</td>
<td>Brodsky/Nataraj</td>
<td>Apoptosis</td>
<td>Philip, PNAS, 2014</td>
<td>Leena Babiker</td>
</tr>
<tr>
<td>12/23</td>
<td>No class</td>
<td>Paper due</td>
<td>------------------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>