IMUN 601 Molecular Immunology – Syllabus – Fall 2022
Course Directors: Will Bailis: bailisw@chop.edu
David Hill: hilld3@chop.edu

Purpose
The purpose of this course is to provide examples in which the cell biology topics covered in BIOM 600 are relevant to the functions of immune cells, the immune system, or inflammatory disease states. This course will help students become proficient at reading and critically evaluating the published literature and facilitate scientific discussions with peers.

Format
We will meet weekly (Thursdays, 10:15 – 11:45 am, SCL 0104) to discuss the paper provided by participating faculty members. Article selection will emphasize papers that demonstrates the key cell biology concepts discussed in BIOM 600. All articles are available as pdf files on the Canvas site.

Each week, one student (as assigned) will lead the discussion starting with a 10-15 minute presentation that reviews the key concepts covered in the article. If an uncommon technique is utilized, this should also be briefly reviewed to ensure everyone is at a similar level of knowledge. Presentations will be given in a chalk-talk format.

After the assigned student introduces the paper, they will lead other students as they take turns presenting figures from the paper. Together with each week’s faculty member, the leader will moderate the discussion, clarify key points, address questions, and assist students who might have difficulty with the figure they are presenting.

The discussion of each figure will cover:
1) The question being addressed
2) The techniques being used
3) The results
4) The statistical analysis used to interpret the data
5) The authors’ conclusions (and if the data support them)
6) Are there alternative interpretations?
7) Were appropriate controls used?
8) How the figure fit within the overall context of the paper

As a group, we will discuss:
1) Whether the paper is convincing, and why or why not
2) The significance of the work to the fields of immunology and cell biology
3) Unresolved questions for the field going forward

On Canvas students will find copies of the course schedule as well as pdf files for the individual papers we will be discussing. The course schedule contains contact information for all course faculty and a list of students assigned to each paper. Presenters should contact the faculty member associated with their paper for a 10-15 minute discussion prior to the presentation. This discussion should be used by the student to clarify any questions they have about the article (not to review the article for the first time).

Quarantine and COVID contingencies

We are sensitive to the fact that throughout the semester some students may find themselves in a situation where they need to quarantine due to the ongoing pandemic. In the event that you need to quarantine, we have established a hybrid learning contingency plan. We ask that you notify the course directors and the faculty leader for that week as far in advance as possible so that arrangements can be made for virtual participation. If you are required to quarantine the week you are schedule to present, arrangements will be made so you can present virtually.

While hope that it will not be necessary, we are also prepared to migrate the course to a fully virtual format if the University deems it necessary. In instances where virtual presentations are required, PowerPoint presentations are fine, but the format must be casual – don’t go overboard!! If you have access to a drawing tablet, you can also use a chalk-talk format.

Assessment and Course Grades

The students presentation of their paper, and their participation during other peoples presentations, are basis for the course grade. Students should read articles ahead of time and be prepared to participate in discussion of all figures and all aspects of the papers (not just the figure they are presenting). You need to fully understand everything prior to class – its equally good to discuss what you find confusing or don’t know how to interpret.

Grades for this course will be determined by:

1) The quality of your 10-15 minute overview (approximately 33%).
2) Your overall level of participation and intellectual engagement (approximately 66%)

Accommodations

This is a discussion format course where students can get to know one another and the faculty. To make it as lively as possible, it is important to attend and be engaged on a consistent basis. Please reach out to Will Bailis and David Hill if you expect to miss a class, or if virtual participation proves a hardship for you in some way (in the event of quarantine or migrating the course online).
IMUN 601 Molecular Immunology 2022

Thursdays, 10:15 – 11:45 am (SCL 0104)

COURSE DIRECTORS

Will Bailis
1211B Abramson Research Center
267-590-9396
bailisw@chop.edu

David Hill
1208B Abramson Research Center
267-425-2124
hilld3@chop.edu

FACULTY

David Allman
230 John Morgan Building
215-746-5547
dallman@mail.med.upenn.edu

Yair Argon
816A Abramson Research Center
267-426-5231
yargon@pennmedicine.upenn.edu

Megan Clark
312 BRB II/III
215-898-2212
megclark@udel.edu
jhena@pennmedicine.upenn.edu

Laurence Eisenlohr
1107B Abramson Research Center
215-590-0952
eisenlc@pennmedicine.upenn.edu

Bruce Freedman
389E Old Vet Building
215-573-8218
bruce@vet.upenn.edu

Michael May
200E Old Vet Building
215-573-0940
maym@pennmedicine.upenn.edu

Neha Nataraj
3800 Spruce Street
Old Vet Quad 390EE
215-746-8426
ibrodsky@vet.upenn.edu
natarajn@pennmedicine.upenn.edu

Paula Oliver
816F Abramson Research Center
267-426-2839
paulao@pennmedicine.upenn.edu

Andrew Wells
916E Abramson Research Center
215-590-8710
adwells@pennmedicine.upenn.edu

THEMES (based on BIOM 600)

Signal Transduction
- NFkB (May)
- Signal transduction (Wells)
- STAT signaling (Henrickson)
- Ubiquitin regulation (Oliver)

Compartmenation
- Cell stress response (Allman)
- Immune endocytosis (Eisenlohr)
- Mitochondria (Bailis)

Cytoskeleton and Cell Motility
- Immune cell motility (Burkhardt)
- Cytoskeleton (Burkhardt)
- Cell division (Gordon)

Ion Channels
- Ca2+ ion channels (Freedman)

Cell Fate
- Apoptosis (Nataraj)
- Metabolism and immune cells (Hill)
<table>
<thead>
<tr>
<th>DATE</th>
<th>FACULTY</th>
<th>TOPIC</th>
<th>PAPER</th>
<th>STUDENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/1</td>
<td>May</td>
<td>NFkB: Gateway to cell signaling</td>
<td>Sen, Cell, 1986</td>
<td>Alexandra Lopez/Mito Tariveranmoshabad</td>
</tr>
<tr>
<td>9/8</td>
<td>Wells</td>
<td>Signal transduction</td>
<td>Wang, Nat Imm, 2002</td>
<td>Shaneaka Anderson</td>
</tr>
<tr>
<td>9/15</td>
<td>Oliver</td>
<td>Ubiquitin regulation of immune signaling</td>
<td>Ahmed, Nat Imm, 2011</td>
<td>Tim Johnston</td>
</tr>
<tr>
<td>9/22</td>
<td>Oliver</td>
<td>Ubiquitin regulation of T cell persistence</td>
<td>Onizawa, Nat Imm, 2015</td>
<td>Nicolai Apenes</td>
</tr>
<tr>
<td>10/6</td>
<td>Allman</td>
<td>Plasma cell and the UPR</td>
<td>Iwakoshi, Nat Imm, 2003</td>
<td>Lauren Cominsky</td>
</tr>
<tr>
<td>10/13</td>
<td>Eisenlohr</td>
<td>Endosome trafficking and antigen presentation</td>
<td>Blander, Nature, 2006</td>
<td>Suzanna Rachimi</td>
</tr>
<tr>
<td>10/20</td>
<td>Bailis</td>
<td>Mitochondria biogenesis and adaptive immunity</td>
<td>Buck, Cell, 2016</td>
<td>Irene Molina</td>
</tr>
<tr>
<td>11/3</td>
<td>No class</td>
<td>IGG Retreat</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11/10</td>
<td>Gordon</td>
<td>Asymmetric cell division</td>
<td>Chang, Science, 2007</td>
<td>Simon Zhou</td>
</tr>
<tr>
<td>11/17</td>
<td>Burkhardt</td>
<td>Actin control of T cell activation</td>
<td>Le Floc’h, J Exp Med, 2013</td>
<td>Laura Anderson</td>
</tr>
<tr>
<td>11/24</td>
<td>No class</td>
<td>Thanksgiving week</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12/1</td>
<td>Freedman</td>
<td>Calcium ion channels</td>
<td>Berry, Cell Rep, 2020</td>
<td>Harrison Wang</td>
</tr>
<tr>
<td>12/15</td>
<td>Hill</td>
<td>Metabolism and immune cells</td>
<td>Raines, Nat Imm, 2022</td>
<td>Molly Nelson</td>
</tr>
</tbody>
</table>