

BSTA 656: Longitudinal Data Analysis Fall 2005 Syllabus

1.0 course unit; Prerequisites: BSTA6210, BSTA6300, BSTA6510

Lecturers

- Rui Feng, Ph.D., Blockley 209, ruifeng@upenn.edu
- Jing Huang, Ph.D., Blockley 625, jing14@upenn.edu
- Office Hours: By appointment

Teaching Assistant

- Binghao Yan, Binghao.Yan@Pennmedicine.upenn.edu
- Office Hours: TBD

Class Time and Place

- Tuesdays and Thursdays, 1:45–3:15PM
- Anat-Chem 202

Textbooks

- Required: (DHLZ) Diggle PJ, Heagerty P, Liang K-Y, Zeger SL. Analysis of Longitudinal Data, 2nd Edition. Oxford University Press, 2002.
- Recommended: (VM) Verbeke G, Molenberghs G. Linear Mixed Models for Longitudinal Data. Springer Series in Statistics, 2000.
- Recommended: (MV) Molenberghs G, Verbeke G. Models for Discrete Longitudinal Data. Springer Series in Statistics, 2006.

Computing

- Analyses will be conducted in R (http://r-project.org).
- Packages: gee, geepack, nlme, lme4.

Objectives

This course will cover extensions of linear and generalized linear models to the analysis of longitudinal data, with an emphasis on parametric and semi-parametric regression-based estimation methods. At the conclusion of the course, students should:

- Methodology: Understand the theoretical framework for longitudinal data analysis and the statistical properties of longitudinal data analysis methods, including mixed-effects models and estimating equations;
- Applications: Apply appropriate techniques to summarize and generate inference from longitudinal data, verify the validity of the approach, and correctly interpret the results;
- Research: Be familiar with current research topics in longitudinal data methodology and applications.

Topics

- 1. Introductory topics (DHLZ 1, 2, 3, 4)
 - Design considerations
 - Exploring longitudinal data using graphics and summaries
 - General linear models for longitudinal data: Two-stage least squares, weighted least squares, restricted maximum likelihood, robust standard error estimation
- 2. Linear mixed-effects models (VM)
 - Estimation, inference, prediction, and model diagnostics
 - Extension to non-linear mixed-effects models
- 3. Marginal models (DHLZ 7, 8)
 - Quasi-likelihood
 - Estimating equations for continuous outcomes
 - Generalized estimating equations for discrete (count, binary) outcomes
- 4. Generalized linear mixed-effects models (DHLZ 7, 9; MV)
 - Linear mixed-effects models for continuous outcomes
 - Generalized linear mixed-effects models for discrete outcomes
 - Bayesian implementation
- 5. Advanced topics (DHLZ 11, 12, 13)
 - Time-dependent exposures, recurrent marked point process data
 - Missing data: Semi-parametric and likelihood-based methods
 - Transition models and marginalized models
 - Machine learning models

Guest Seminar Series

Guest seminars on active research problems will be integrated. Material may be included in exams.

Evaluation

- 40% Coursework: 8 Weekly Assignments
- 20% Take-Home Midterm Exam
- 25% Take-Home Final Exam
- 15% Participation

Policies

- Regular attendance is expected. Missing lectures may affect your understanding of the material.
- Late homework or exam submissions without prior approval will not be accepted.
- The use of artificial intelligence (AI) or other automated writing tools is limited to correcting grammar and typos; it is not allowed to solve problems or write content for assignment or exam questions.

Tentative Course Outline

		Coursework	
Date	Topic	Assigned	Due
Section 1	Introductory topics (taught by RF)		
Aug 26	Introduction and Basics of R		
Aug 28	Design Considerations	HW1	
Sep 2	Exploratory Data Analysis		
Sep 4	General Linear Models for Longitudinal Data	HW2	HW1
Sep 9	Weighted Least Squares		
Sep 11	Robust Standard Error Estimation, Restricted Maximum Likelihood		
Section 2	Linear mixed-effects models (taught by RF)		
Sep 16	Motivation and Applications of Linear Mixed-Effects Models	HW3	HW2
Sep 18	Piecewise Regression		
Sep 23	Estimation and Inference	HW4	HW3
Sep 25	Prediction and Model Diagnostics		
Sep 30	Nonlinear Mixed-Effects Models		HW4
Oct 2	Latent Class Mixed-Effects Models	Midterm	
Section 3	Marginal models (taught by JH)		
Oct 7	Quasi-Likelihood and Estimating Equations		Midterm
Oct 9	Fall Break - No Class		
Oct 14	GEE 1.0		
Oct 16	GEE Extensions and GEE 2.0	HW5	
Oct 21	Guest Lecture: Quasi-Least Squares		
Section 4	Generalized linear mixed-effects models (taught by JH)		
Oct 23	Mixed-Effects Models: Conditional and Maximum Likeli-		
	hood		
Oct 28	Count Outcomes and GLMM	HW6	HW5
Oct 30	Binary Outcomes and GLMM		
Nov 4	Bayesian Implementation	HW7	HW6
Section 5	Advanced topics (taught by JH)		
Nov 6	Time-Dependent Exposures		
Nov 11	Missing Data: Semi-Parametric and Likelihood-Based	HW8	HW7
	Methods		
Nov 13	Transition Models		
Nov 18	Guest Lecture: Confounding in Longitudinal and Clustered		HW8
	Data Analysis		
Nov 20	Marginalized Models		
Nov 25	Machine Learning Models (by RF)		
Nov 27	Thanksgiving - No Class		
$\mathrm{Dec}\ 2$	Review and Summary	Final	
$\mathrm{Dec}\ 7$	Final Examination		Final