BMB/BE 581 Techniques of Magnetic Resonance Imaging

Course Instructors:	Felix W. Wehrli, Ph.D. and Hee Kwon Song, Ph.D.
Associated Course Faculty:	John Detre, M.D. Michael Langham, Ph.D. Chamith Rajapakse, Ph.D. Walter Witschey, Ph.D. Dylan Tisdall, Ph.D.
Office Hours:	TBD 1 Founders Building (MRI Learning Center)

Curriculum Summary

Detailed introduction to the physics and engineering of magnetic resonance imaging and its applications in medical imaging. Covered are: Bloch equations, spatial encoding principles, Fourier analysis, spin relaxation, imaging pulse sequences and pulse design, contrast mechanisms, chemical shift imaging, induced magnetism, flow encoding, diffusion and perfusion, high-field MRI and a discussion of the most relevant clinical applications.

Weekdays and time:Mondays and Wednesday, 5:00 – 6:30pmLocation:Large Conference Room, MRI Learning Center, 1 Founders

Grading: 25% Homework, 25% Midterm, 35% Final, 15% Student Presentations

<u>Textbook</u>: Although we will not strictly follow a text, you may find the following references to be useful:

- 1. *Principles of Magnetic Resonance Imaging* Nishimura, 2010, www.lulu.com (look for the softcover)
- 2. *Magnetic Resonance Imaging: Physical Principles and Sequence Design* Haacke, et al, Wiley, 1999
- 3. *Handbook of MRI Pulse Sequences* Bernstein, et al, Elsevier, 2004
- 4. Useful link: *The Basics of MRI* Hornak <http://www.cis.rit.edu/htbooks/mri/>

<u>Schedule</u>

Date	Торіс	Description	
Jan. 16 Wed (Wehrli)	Basics of NMR	Nuclear spin, magnetic moment, gyromagnetic ratio, nuclear precession, Larmor equation, bulk magnetization excitation and detection	
Jan. 21 Mon	No class (MLK Day)		
Jan. 23 Wed (Song)	MR Hardware	Magnet, gradient system, siting issues, eddy currents/ compensation/shielded gradients; Principle of signal detection, resonant circuits, RF system: transmit/receive, RF coils: design criteria, coil loading, quality factor, matching and tuning	
Jan. 28 Mon (Wehrli)	Bloch Equations and Signal Detection	Rotating frame, solutions for various initial conditions, time & frequency domain, Fourier transform	
Jan. 30 Wed (Wehrli)	Fundamentals of spin relaxation: T1, T2, T1p	Correlation and power spectral density function, dipole- dipole and other relaxation mechanisms, chemical exchange	
Feb. 4 Mon (Song)	RF Pulses and Excitation (Nishimura, Ch. 6)	Amplitude and frequency modulation schemes, sinc and hard pulses, adiabatic inversion, nonlinearity problem	
Feb. 6 Wed (Wehrli)	Signal and Contrast	Image signal intensity and contrast in MRI, role of relaxation times, techniques for measuring relaxation times (T1, T2, T1p), coherence pathways	
Feb. 11 Mon (Wehrli)	Spatial Encoding and K- space	Gradient fields, gradient rephasing, k-space concept and properties, imaging equation, sampling	
Feb. 13 Wed (Witschey)	Fourier Imaging Techniques I	Rectilinear sampling: spin warp imaging, gradient and spin echo embodiments, 3D spin-warp imaging, signal and contrast	
Feb. 18 Mon (Song)	Image Reconstruction	Fundamentals of Fourier transform, sampling theorem, field of view, resolution, modulation transfer and point spread function, partial Fourier	
Feb. 20 Wed (Witschey)	Fourier Imaging Techniques II	Introduction to echo-train imaging: EPI and RARE, contrast implications, point-spread function, artifacts	
Feb. 25 Mon (Tisdall)	SNR in MRI (Nishimura, Ch. 7.5)	roperties of noise: Gaussian, Rayleigh and Rician, neasurement of SNR, dependence on scan parameters	
Feb. 27 Wed		Mid-Term Exam	
Mar. 4 Mon		Spring Break	
Mar. 6 Wed		Spring Break	
Mar. 11 Mon (Witschey)	Advanced Imaging Techniques I	Imaging with multiple receive coils, reconstruction issues, SNR, parallel imaging: SENSE and SMASH, image reconstruction artifacts	

Mar. 13 Wed (Song)	Advanced Imaging Techniques II	Fat/water separation, rapid imaging techniques, keyhole technique, imaging of solids, imaging near metals, imaging of hyperpolarized spins, temperature mapping	
Mar. 18 Mon (Langham)	Flow Imaging Techniques (Nishimura, Ch. 10)	Time of flight and phase effects, gradient moment nulling, flow encoding methods, angiographic imaging techniques, vascular imaging and flow quantification	
Mar. 20 Wed (Witschey)	Cardiovascular MRI	Dark/bright blood imaging, cardiac gating, cine imaging techniques, tagging methods, cardiac T1 mapping, tissue characterization using modified Look-Locker	
Mar. 25 Mon (Wehrli)	Magnetic Susceptibility	Fundamentals of induced magnetism, image artifacts, applications: bone, iron, measurement of hemoglobin saturation, Quantitative Susceptibility Mapping	
Mar. 27 Wed (Wehrli)	Spectroscopic Imaging	Chemical shift and spin-spin coupling, 2-component chemical shift selective imaging: saturation and selective excitation, echo offset techniques, PRESS, STEAM, spectroscopic imaging, conventional phase-encoding methods, high-speed EPI	
Apr. 1 Mon (Detre)	Perfusion and Functional MRI	Physics of microcirculation, first-pass contrast methods, diffusible tracer methods (ASL), clinical applications; BOLD, fMRI acquisition techniques, processing of fMRI data, design of fMRI paradigms	
Apr. 3 Wed (Wehrli)	Diffusion MRI	Pulsed gradient diffusion experiment, diffusion tensor imaging, fiber tracking, diffusion in background gradients, Q-space imaging	
Apr. 8 Mon (Song)	Alternative Image Acquisition Schemes	Radial scanning (UTE/ZTE), spiral, regridding and reconstruction, artifacts, PROPELLER/BLADE	
Apr. 10 Wed (Rajapakse)	Other Reconstruction Strategies	Iterative reconstruction, regularized reconstruction, compressed sensing	
Apr. 15 Mon (Song)	Steady State Imaging	Steady-state conditions and signal formation, balanced steady-state free precession, image contrast, transient period, clinical applications	
Apr. 17 Wed (Tisdall)	Motion Reduction Techniques	K-space analysis of motion, respiratory gating, navigator echoes, retrospective motion correction, prospective compensation	
Apr. 22 Mon (Song)	Imaging Artifacts and Compensation	Common artifacts (aliasing, ghosting, zipper, N/2, flow, etc.) and means for their reduction	
Apr. 24 Wed (Song)	MR Safety	SAR, dB/dt, gadolinium CA, quenching, flying objects, pregnancy, implantable devices, RF coils and cables, imaging at high fields (>3T), etc.	
Apr. 29 Mon	Stu	udent Presentations	
May 1 Wed	Stu	udent Presentations	
May 6-May 14		Final Exam	

12/17/2018

Assignment #	Topic	Distribution Date	Due Date
Homework #1	Bloch equations, Relaxation, Signal and Contrast	1/23	2/6
Iomework #2	Imaging pulse sequences, K-space, Reconstruction, RF pulses, Spatial encoding, SNR	2/6	2/25
Homework #3	Fourier techniques, Advanced imaging techniques	2/25	3/20
Homework #4	Flow, Susceptibility, Cardiovascular techniques	3/20	4/3
Homework #5	Steady state, Motion, Artifacts, Alternative imaging techniques	4/3	4/24

BMB/BE 581 Homework Schedule 2017 *No late homework will be accepted!*