BSTA 670: Programming and Computation for Biomedical Data Science

Credit points: 1.0
Semester: Spring 2022
Time: T/Th 8:30-9:50am EST
Location: Zoom (through Jan 21), 418 Blockley
Meeting ID: 942 9556 0765
Passcode: 091530
Zoom link: https://upenn.zoom.us/j/94295560765?pwd=dUxyK1lnRlFEaVdxcUJHUERPZTRSQT09&from=addon

Course Instructor: Kristin A. Linn
Assistant Professor of Biostatistics
Email: klinn@pennmedicine.upenn.edu
Office: 220 Blockley Hall
Office hours: Tuesdays 4:30-5:30pm or by appointment
Location: Zoom (through Jan 21), 220 Blockley
Meeting ID: 963 1731 6664
Passcode: 768833
Zoom link: https://upenn.zoom.us/j/96317316664?pwd=a1UrSGxBTWZQZkQrcVdWYUhNNkNRU09&from=addon

TA: Danni Tu
Email: Danni.Tu@pennmedicine.upenn.edu
Office hours: Wednesdays 3:30-4:30pm
Location: Zoom (through Jan 21), TBD (840 Blockley requested)
Meeting ID: 964 4415 7535
Passcode: 388925
Zoom link: https://upenn.zoom.us/j/96444157535?pwd=UUvTU02TEUyVXhGdnhROHpyeVp3dz09&from=addon

Pre-requisites: BSTA 620, 621, and 651; or permission of instructor.

Subject Aims: The course will cover programming and computational fundamentals in Python and R. It will concentrate on computational tools that are useful for statistical research and computationally intensive analyses. The goal is for students to develop a knowledge base and skill set that
includes a wide range of modern computational tools needed for statistical research and data science. Topics may include, but are not limited to:

1. Reproducible research and programming
2. Algorithms
3. Simulation
4. Computer storage and arithmetic
5. Optimization
6. Numerical Integration

Course Materials: All course materials will be available on Canvas. Canvas is assessable from the Penn library: https://canvas.upenn.edu

Software: A combination of R and Python will be used.

Textbook: None required.

Breaks: There will be no class on: March 8 and 10 (Spring Break), March 29 (ENAR), and April 12 (Penn clinical trials conference).

Assessment: All assignment materials will be submitted on Canvas. Grades will be based on the following components:

- Homework: 50% (5 @ 10% each)
- Data analysis midterm and in-class presentation: 20%
- Final project: 30%

Late Policy: Late assignments will receive a maximum of half credit. An assignment submitted 1 minute after the deadline will be considered late. Assignments more than 3 days late will not be graded and will receive no credit.

Midterm: The midterm grade will comprise an analysis of a public data set in a Python notebook, an in-class presentation of the work, and blinded peer reviews of other students’ presentations. More details about the midterm project will be provided in February. Class attendance is required March 1 and 3.

- **Code/notebook due:** Feb 28, 2022 by 5:00pm EST
- **Student presentations:** March 1 and 3, 2022, 8:30-9:50am EST
- **Peer reviews due:** March 17, 2022 by 5:00pm EST
Final Project: Students will replicate and extend the results of a recently published Monte Carlo stimulation experiment. The final project will include an R package containing simulation code and a report written in .Rmd that fully reproduces the simulation experiment. Additional details about the final project requirements will be given later in the semester.

All project materials due: May 9, 2022 by 5:00pm EST

Python documentation: https://docs.python.org/3/

