Description: This introductory course provides a foundation for the fundamental concepts in biostatistics as they relate to experimental design and analysis. We focus on defining research questions, carefully choosing appropriate analytic tools and interpreting the results of the analyses, including limitations of the analysis. The course has three units:

- **Unit 1** introduces statistical concepts and their application to study designs involving a single sample. We begin with the broad topic of ‘reproducibility’ and the role of statistics in reproducibility. The unit primarily focuses on two key inferential methods: hypothesis testing and estimation. Parametric and non-parametric (rank-based) approaches to inference are discussed. Validity assumptions and approaches to choosing different methods are considered. Errors in hypothesis testing and sample size determination are covered.

- **Unit 2** generalizes the methods from Unit 1 to study designs with two samples.

- **Unit 3** concludes by considering differences in means and proportions between multiple groups and associations between quantitative variables. Analysis of variance (ANOVA) including two-way ANOVA is considered in detail. The issue of inferential reproducibility in the context of multiple comparisons is used to motivate approaches to adjust for multiple comparisons. Correlation and regression models are introduced.

Statistical methods will be implemented using the freely available software package Rcmdr. Rcmdr is a menu driven front-end to R. Initially we solely use the menu-driven options; as the course progresses students will learn how to download and use various R packages, and to create simple R code. Some R code is provided, but at this point, we do not anticipate parallel instruction using R or RStudio.

Student proficiency in R coding is not a goal of BIOM 611; R is simply a tool to implement statistical methods.

BIOM 611 is NOT RECOMMENDED for students with a moderate to strong quantitative/computational background.

Guided Questions. Each week involves a several-page introduction to material covered in lecture along with a set of questions specifically related to the reading. A Canvas quiz is provided. The quiz is due before lecture, specifically at 10:59 AM on Tuesdays and late submissions receive a grade of 0. You have 2 opportunities to do the quiz and you see your score, but not the answers, after the first submission.

Participation in Lecture: Participation in lectures through polling software is a required part of this course. I use Turning Technologies polling software (Turning Point Mobile) to poll students in the classroom. A web-enabled device is needed with the Turningpoint mobile app. This device is recommended for the first class and required after the first class. Beginning with week 2, polling will be graded.

A subscription for BIOM 611 is required and can be purchased from the bookstore. Once registered Turning Technologies will link your account with Canvas. The fee per semester is around $18. Please visit www.turningtechnologies.com/student-info for specific registration instructions.

This year we are also introducing some in-class exercises. These may be paper-exercises or in the form of CANVAS quizzes. Please bring your laptop to lecture.

Grading is primarily based on good-faith effort. A small penalty is sometimes used for incorrect Turning questions to help students self-identify areas of difficulty.
Labs: Each week students work together and hand in a lab report based on the exercises. Lab group assignments will be made by your TA(s). The lab requires a laptop with access to the internet. This year we will initially work exclusively with Rcmdr. As the course progresses, there will be a few opportunities to work directly with R code. Lab reports are due **Fridays at 5 PM.**

Course Notes: Course notes and/or supplemental reading will be included on the Canvas website each week.

R Materials: We provide detailed commands in lab materials. The Fox text book described below is useful but not necessary. The Karp website provides a nice introduction to Rcmdr.

Fox, J 2016. *Using the R Commander: A point and click interface for R.* Chapman & Hall. (CRC Press) (Optional Resource: we will provide detailed commands for implementing methods)

https://cran.r-project.org/doc/contrib/Karp-Rcommander-intro.pdf

Website: CANVAS through https://upenn.instructure.com/

All of the materials for student use are linked through modules. The file folders are for use by the instructors. The file folders are not organized in a fashion intended for use by students.

Instructors & Activities:

Course Director: Mary Putt, PhD, ScD (621 Blockley), [Ph (215) 573-7020](tel:2155737020) mputt@pennmedicine.upenn.edu

Administrative Assistant: Joyce Jones woodwarj@pennmedicine.med.upenn.edu

Teaching Assistants:
Lillian Boe, BA, MS
Carolyn Lou BA
Justin Lakkis, BA
Hayley Richardson, BS

Office Hours:
Monday: 3:30-4:30 PM 501 BRB
TBD
See CANVAS Announcements

<table>
<thead>
<tr>
<th>Activity</th>
<th>Instructor</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>Putt</td>
<td>Tu 11.00-12.30</td>
<td>Austrian Auditorium except 15 Jan in John Morgan Class of 62</td>
</tr>
<tr>
<td>Midterm Exam</td>
<td></td>
<td>26 Feb 11.15-1:00PM</td>
<td>Smilow Auditorium</td>
</tr>
<tr>
<td>Final Exam</td>
<td></td>
<td>7 May 11:00-12:30</td>
<td>John Morgan Reunion</td>
</tr>
<tr>
<td>Labs</td>
<td></td>
<td>Tuesday: 3:15-4:45</td>
<td>252 BRB II/III</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wednesday 3:30-5:00</td>
<td>204 Stellar Chance week of 15 Jan; 252 BRB II/III otherwise</td>
</tr>
<tr>
<td>Office Hours</td>
<td></td>
<td>Mn: 15.30-17.00</td>
<td>BRB II 501</td>
</tr>
<tr>
<td>Week</td>
<td>Unit</td>
<td>Date</td>
<td>Topic</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>--</td>
</tr>
</tbody>
</table>
| 1 | 1 | 15 January | **Lecture:** Course Organization & Reproducibility.
Lab: Installing R, and Rcmdr. |
| 2 | 1 | 22 January | **Lecture:** Probability Distributions & The Exact Binomial
Lab: Probability distributions in Rcmdr, exact binomial test. |
| 3 | 1 | 29 January | **Lecture:** Tests based on Sample Means: Choosing between Tests.
Single sample tests of proportion.
Lab: Working with proportions |
| 4 | 1 | 5 February | **Lecture** Standardized Test Statistics: Single-sample continuous data.
Lab: One-sample T-test, Wilcoxon Signed Rank Test, Sign-test,
Assessing normality; graphical approaches and hypothesis tests.
Choosing between tests; assessing validity assumptions |
| 5 | 1 | 12 February | **Lecture** Errors in Hypothesis Testing
Statistical power and sample size determination.
Lab: Sample size determination. Type I and Type II error exercises. |
| 6 | 1 | 19 February | **Lecture** Estimation & Confidence Intervals (Homework not graded)
Lab: Single sample designs: different types of confidence intervals. |
| | | 25 February | Optional Review session: Student questions 501 BRB 3:30-5:00 |
| 7 | 1 | 26 February | Midterm Exam In-class Smilow 11:15 AM-1:00 PM |
| 8 | 2 | 12 March | **Lecture:** Two-sample proportions. Metrics (risk difference, risk ratio,
Lab: Two-sample tests (Proportions and T-tests) |
| 9 | 2 | 19 March | **Lecture:** Two-sample continuous data Wilcoxon Rank Sum test.
Paired dataPower and Sample size. Results Reproducibility. Introduction to contingency tables.
Lab: Wilcoxon Tests, Two-sample Bootstrap Confidence Intervals.
Choosing between tests. Sample size calculations. |
| 10 | 2 | 26 March | **Lecture** Contingency tables continued. Issues with multiple comparison: Inferential reproducibility. Family-wise error rate. Bonferroni method. Introduction to one-way ANOVA.
Lab: Contingency tables. Ordered predictor variable: Cochran Armitage test for trend. Pairwise hypothesis testing and confidence intervals. Maintaining family-wise error rate. |
| 11 | 2 & 3 | 2 April | **Lecture** One-way ANOVA (continuous outcome, single categorical predictor). Approaches to maintaining family-wise error rates (Tukey HSD, Holm-Bonferonni), Kruskal Wallis. Two-way ANOVA (Additive model)
Lab: One-way ANOVA, Kruskal Wallis. Pairwise tests and corrections for multiple comparisons |
| 12 | 3 | 9 April | **Lecture** Two-way ANOVA (Deciding between and Additive and Interaction Model). Issues with balanced and unbalanced designs. Introduction to linear regression models.
Lab: Two-way ANOVA and Kruskal-Wallis, P-value adjustment methods, Tukey HSD confidence intervals, Two-way ANOVA for balanced and unbalanced designs. |
| 13 | 3 | 16 April | **Lecture** Linear Regression.
Lab: Linear Regression continued. Assessment of fit. |
Reading days and office hours

Hold for possible review or student questions or SNOW DAYS; no lab

Optional Review Session: Student Questions

Assessment:

<table>
<thead>
<tr>
<th>Component</th>
<th>Contribution to Grade (%)</th>
<th>Due²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guided Questions</td>
<td>10</td>
<td>10:59AM Tuesdays</td>
</tr>
<tr>
<td>Class Participation</td>
<td>10</td>
<td>NA</td>
</tr>
<tr>
<td>Lab Reports</td>
<td>10</td>
<td>11:59 PM Fridays</td>
</tr>
<tr>
<td>Homework</td>
<td>15</td>
<td>11:59 PM Tuesdays</td>
</tr>
<tr>
<td>Midterm Evaluation (Completion of Survey via Center for Teaching and Learning)</td>
<td>1</td>
<td>11 March</td>
</tr>
</tbody>
</table>

Examinations (In-class requires Lock-down browser)

- Midterm Exam | 19 |
- Final | 35 |

¹ Drop worst 2 grades, not eligible for credit for a lab report if don't attend lab; ²Any changes to due dates will be made on Canvas Announcements.

An absolute grade of at least 90 guarantees an A- or better; a grade of at least 80 guarantees a B- or better.

Weekly Homework: Homework is set up in the CANVAS quiz format and must be submitted through CANVAS. Late submissions are penalized 10% for the first 8 hours. Late homework beyond 8 hours receives a grade of 0. Homework and solutions for the week before the midterm will be provided but not graded.

Due times for homework show on CANVAS and will generally be **11:59 PM on Tuesdays.**

Check the announcements before starting your coursework; any comments, hints, or corrections will be posted there. Announcements are organized by date.

Assignments are learning experiences not mini-tests. Don’t get bogged down and overly frustrated. I encourage students to seek help through either: (1) in-person office hours (2) announcements through CANVAS.

A ‘typical’ student should expect to devote around **6-12 hours per week for coursework outside of lab and lecture.**

Email: I notice email more reliably when students use the CANVAS email system.

Exams: The midterm evaluates understanding of statistical concepts and simple applications of these concepts. The final examination is cumulative and involve both concepts and data analysis. Both exams are in-class. Both require a laptop and a lock-down browser. (See CANVAS site)

Grade Changes: Any grade changes to a TA or myself must be requested in person. No grade changes are made based on email.
Academic Integrity: Unless specifically indicated in writing, students may work together but must submit individually constructed responses to questions. **Doing otherwise constitutes a violation of the code of academic integrity.** Students must work independently on all exams. All students enrolled in BIOM 611 are responsible for understanding and following the Penn code of academic integrity. Please see provost.upenn.edu/policies/pennbook/2013/02/13/code-of-academic-integrity

Students with Disabilities: The University of Pennsylvania is committed to providing equal educational opportunities to all students, including students with disabilities. Penn does not discriminate against students with disabilities and provides reasonable accommodation to a student's known disability in order to afford that student an equal opportunity to participate in University-sponsored programs.

Excused Work; Unexpected Circumstances
Please contact me if health problems or life-circumstances impact your progress in the course. Accommodations can be made.