

11 6 5 5 11

2020 "International Meetings" Breast Cancer Review: Triple Negative Breast Cancer

Jennifer Matro, MD

July 16, 2020

Division of Hematology/Oncology

Conflicts of Interest

None

Overview

- Abstract 507: Phase III trial of metronomic capecitabine maintenance after standard treatment in operable triple-negative breast cancer (SYSUCC-001).
- Abstract 1000: KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer.
- Abstract 1001: Results of a phase II randomized trial of cisplatin +/- veliparib in metastatic triplenegative breast cancer (TNBC) and/or germline BRCA-associated breast cancer (SWOG S1416).

Please note that some of the studies reported in this presentation were published as abstracts only and/or presented at a conference. These data and conclusions are included because expert faculty found them to be important scientific contributions but should be considered to be preliminary until published in a peer-reviewed journal.

Phase III Trial of Metronomic Capecitabine Maintenance after Standard Treatment in Early Triple-Negative Breast Cancer (SYSUCC-001)

Xi Wang, Shu-Sen Wang, Heng Huang, Rou-Jun Peng, Li Cai, Li Zhao, Yin Lin, Jian Zeng, Le-Hong Zhang, Jun Tang, Yong-Li Ke, Xian-Ming Wang, Xin-Mei Liu, Qian-Jun Chen, An-Qin Zhang, Yan-Xia Shi, Ye Cao, Dan-Mei Pang, Fei Xu, Jia-Jia Huang, Cong Xue, Xin An, Wen Xia, Ruo-Xi Hong, **Zhong-Yu Yuan**; on behalf of the South China Breast Cancer Group (SCBCG)

(NCT01112826)

Study Design and Patient Population

*surgery, (neo)adjuvant chemotherapy (A and/or T based), RT
89% received A+T
93% received adjuvant chemotherapy

Primary endpoint: DFS Secondary Endpoint: OS, distant DFS, safety

443 patients randomized with a median follow up of 57 months

Patient characteristics				
Age	Mean 46 years			
Lymph node status	62% node negative			
Tumor size	25 % ≤ 2cm, 57 % 2.1 -5 cm			
Pathologic stage	26% stage I; 54% stage II; 19% stage III			

#ASCO20 Slides are the property of the a permission required for reuse.

PRESENTED BY: Naamit Kurshan Gerber

SYSUCC-001: Study Results

- 5y improvement in DFS with capecitabine vs observation: 83% vs 73%, HR 0.63 (95% Cl, 0.42-0.96); p= 0.027
- No significant improvement in OS

#ASCO20 Slides are the property of the author permission required for reuse.

PRESENTED BY: Naamit Kurshan Gerber

Subgroup Analysis of DFS

Subgroup	Capecitabine (events/ n)	Observation (events/ n)		Hazard Ratio (95% CI)	<i>p</i> value for interation
Overall	38/221	56/213		0.64 (0.42, 0.96)	8.001
Age, years					0.915
≤ 40	11/65	14/54		0.66 (0.30, 1.45)	
> 40	27/156	42/159		0.63 (0.39, 1.03)	
Menopause status					0.247
Premenopausal	27/157	30/133		0.78 (0.46, 1.31)	
Postmenopausal	11/64	26/80		0.46 (0.23, 0.93)	
Histological grade					0.429
1/2	6/57	14/61		0.45 (0.17, 1.17)	
3	21/129	27/108		0.64 (0.36, 1.13)	
Pathological stage					0.091
I	1/56	14/59		0.07 (0.009, 0.52)	
Π	16/120	23/116		0.67 (0.35, 1.26)	
ш	21/45	19/38		0.94 (0.50, 1.74)	
Tumor size					0.160
≤ 2 cm	8/79	19/79		0.39 (0.17, 0.89)	
> 2 cm	30/142	37/134		0.77 (0.47, 1.24)	
Lymph node status					0.052
Negative	9/135	23/133		0.37 (0.17, 0.80)	
Positive	29/86	33/80		0.82 (0.50, 1.37)	
			0 0.5 1 1.5 2.0		
			Capecitabine Observation	i)	

- Subgroup analysis shows lower HR in more favorable risk patients: Stage I, <2cm tumors, LN negative
- Benefit of capecitabine not being driven by highest risk patients in this trial

#ASCO20 Sildes are the property of the author permission required for reuse.

PRESENTED BY:

Tolerability and Toxicity

- 91.4% of patients completed one year of treatment
- 24.7% required at least 1 dose reduction

Toxicity	Any	Grade 3-4
Hand-foot syndrome	45.2%	7.7%
Leukopenia	23.5%	0
Elevated bilirubin	12.7%	0
Elevated ALT/AST	5.0%	0
Abdominal pain/Diarrhea	6.8%	0

Slide courtesy of Angie Demichele, MD

Context of Capecitabine adjuvant trials

CREATE-X (positive)	SYSUCC-001 (positive)	GEICAM (negative)
ER+/TNBC (32%)	TNBC	TNBC
Residual dx after NAC	93% adjuvant chemo	80% adjuvant chemo
1250 mg/m2 d1-14 q 3 wk for 6-8 cycles	650 mg/m ² BID continuously for one year	1000mg/m2 day 1-14/q3 wks) x 8 cycles
95% anthracycline+taxane	89% anthracycline+taxane	67% anthracycline+taxane
57% pre-menopausal	67% pre-menopausal	32% pre-menopausal
NA	62% node negative	55% node negative
NA	73% grade 3	71% grade 3
unknown	unknown	26% non-basal
5 yr DFS/OS (control) 56%/70%	5 yr DFS/OS (control) 73%/81%	5 yr DFS/OS (control) 77%/86%
5 yr DFS/OS (cape) 70%/79%	5 yr DFS/OS (cape) 83%/86%	5 yr DFS/OS (cape) 80%/86%

#ASCO20 Slides are the property of the author, permission required for reuse.

PRESENTED BY: Naamit Kurshan Gerber

Adjuvant Capecitabine - Summary

- Maintenance metronomic capecitabine resulted in a statistically significant improvement in DFS among patients with TNBC
- This is in contrast to the results of the GEICAM study, which had a similar patient population, but different schedule and duration
- CREATE-X demonstrated an improvement in DFS and OS with adjuvant capecitabine in patients who fail to achieve a pCR to neoadjuvant chemotherapy
 - Capecitabine is appropriate in this setting
- Duration and side effects of 1 year of capecitabine may not be tolerable for many women who have just completed several months of adjuvant chemotherapy
- Await overall survival data before routinely incorporating this regimen into practice

KEYNOTE-355: Randomized, Double-Blind, Phase 3 Study of Pembrolizumab + Chemotherapy versus Placebo + Chemotherapy for Previously Untreated Locally Recurrent Inoperable or Metastatic Triple-Negative Breast Cancer

Javier Cortes¹, David W. Cescon², Hope S. Rugo³, Zbigniew Nowecki⁴, Seock-Ah Im⁵, Mastura Md Yusof⁶, Carlos Gallardo⁷, Oleg Lipatov⁸, Carlos H. Barrios⁹, Esther Holgado¹, Hiroji Iwata¹⁰, Norikazu Masuda¹¹, Marco Torregroza Otero¹², Erhan Gokmen¹³, Sherene Loi¹⁴, Zifang Guo¹⁵, Jing Zhao¹⁵, Gursel Aktan¹⁵, Vassiliki Karantza¹⁵, Peter Schmid¹⁶

¹IOB Institute of Oncology, Quiron Group; Vall d'Hebron Institute of Oncology (VHIO), Madrid & Barcelona, Spain; ²Princess Margaret Cancer Centre, Toronto, Ontario, Canada; ³University of California San Francisco Comprehensive Cancer Center, San Francisco, CA, USA; ⁴Maria Sklodowska-Curie Memorial Cancer Centre and Institute of Oncology, Warsaw, Poland; ⁵Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea; ⁶Pantai Hospital, Kuala Lumpur, Malaysia; ⁷Arturo Lopez Perez Foundation, Santiago, Chile; ⁸Republican Clinical Oncology Dispensary, Republic of Bashkortostan, Russian Federation; ⁹Oncology Research Unit, HSL, PUCRS, Porto Alegre, Brazil; ¹⁰Aichi Cancer Center Hospital, Nagoya, Japan; ¹¹National Hospital Organization, Osaka National Hospital, Osaka, Japan; ¹²Oncomedica S.A., Monteria, Colombia; ¹³Ege University Medical Faculty, Izmir, Turkey; ¹⁴Peter McCallum Cancer Centre, Melbourne, Australia; ¹⁵Merck & Co., Inc., Kenilworth, NJ, USA; ¹⁶Barts Cancer Institute, Centre for Experimental Cancer Medicine, London, UK

PRESENTED AT: 2020ASCO ANNUAL MEETING

G permission required for reuse.

PRESENTED BY: Javier Cortes

Presented By Javier Cortes at TBD

Immuno-Oncology Context

Setting	Study	Design	Results
Neoadjuvant	KEYNOTE-522	Carbo/paclitaxel +/- pembro→AC/FEC→surgery→ Pembro v. placebo	Increase in pCR with P regardless of PD-L1 (64.8% v. 51.2%)
	NeoTRIPa PDL1	Carbo/paclitaxel +/- atezo→surgery→AC/FEC	NO significant increase in pCR with A (43.5% v. 40.8%)
1 st Line mTNBC	IMPASSION 130	Nab-paclitaxel +/- Atezolizumab	PFS (ITT) HR 0.80, p=0.0025 PFS (PD-L1+) HR 0.62, p<0.0001 ORR (ITT): 56% v. 46% ORR (PD-L1+): 59% v. 43%
	KEYNOTE-355	Taxane or carbo/gem +/- Pembrolizumab	??
2 nd - 3 rd Line mTNBC	KEYNOTE-119	Pembrolizumab v. chemotherapy (capecitabine, Eribulin,	No improvement in OS ORR (ITT): 9.6% v. 10.6% ORR (CPS <u>></u> 10): 17.7% v. 9.2%

KEYNOTE-355 Study Design (NCT02819518)

Renn Medicine

KEYNOTE 355: Progression-free survival

ITT

Statistical significance was not tested due to the prespecified hierarchical testing strategy PD-L1 CPS ≥1

Prespecified *P* value boundary of 0.00111 not met

PD-L1 CPS ≥10

Prespecified *P* value boundary of 0.00411 met

38% of pts

75% of pts

PRESENTED BY: @ErikaHamilton9

J. Cortes et al ASCO 2020

Slide courtesy of Erika Hamilton at TBD

Treatment-Related AEs

^a1 patient from acute kidney injury and 1 patient from pneumonia. Data cutoff date: December 11, 2019.

NAC Keynote-522

San Antonio Breast Cancer Symposium®, December 10-14, 2019

Schmid KN522 SABCS 2

Immune-Mediated AEs

Keynote-355

Immune-Mediated AEs

Immune-Mediated AEs with Incidence ≥10 Patients in Either Treatment Group^a ^aBased on a list of terms prespecified by the sponsor and included regardless of attribution to study treatment or immune relatedness by the investigator; related terms included. Data cutoff date: December 11, 2019.

Immune-Mediated AEs in Combined Phases

Immune-Mediated AEs With Incidence ≥10 Patients

²1 patient from pneumonitis. Considered regardless of attribution to treatment or immune relatedness by the investigator. Related terms included in addition to preferred terms listed. IA2, second interim analysis. Data cutoff date: April 24, 2019.

This presentation is the intellectual property of Peter Schmid. Contact him at p.schmid@gmul.ac.uk for permission to reprint and/or distribute.

Immuno-Oncology Context

Setting	Study	Design	Results
Neoadjuvant	KEYNOTE-522	Carbo/paclitaxel +/- pembro →AC/FEC→surgery→ Pembro v. placebo	Increase in pCR with P regardless of PD-L1 (64.8% v. 51.2%)
	NeoTRIPa PDL1	Carbo/paclitaxel +/- atezo→surgery→AC/FEC	NO significant increase in pCR with A (43.5% v. 40.8%)
1 st Line mTNBC	IMPASSION 130	Nab-paclitaxel +/- Atezolizumab	PFS (ITT) HR 0.80, p=0.0025 PFS (PD-L1+) HR 0.62, p<0.0001 ORR (ITT): 56% v. 46% ORR (PD-L1+): 59% v. 43%
	KEYNOTE-355	Taxane or carbo/gem +/- Pembrolizumab	PFS (ITT) HR 0.82 (0.69-0.97) PFS (CPS≥10) HR 0.64; p=0.0012 (5.6→9.7m)
2 nd - 3 rd Line mTNBC	KEYNOTE-119	Pembrolizumab v. chemotherapy (capecitabine, Eribulin, gemcitabine, vinorelbine)	No improvement in OS ORR (ITT): 9.6% v. 10.6% ORR (CPS <u>></u> 10): 17.7% v. 9.2%

KEYNOTE 355 Conclusions

KEYNOTE 355 met its primary endpoint, extending PFS in CPS >10 from 5.6 months to 9.7 months

- Results are consistent with IMPASSION 130, which showed a PFS benefit with the addition of Atezolizumab to chemotherapy (nab-paclitaxel)
 PFS
- CPS <u>>1</u> in 81% of IMPASSION130 population v. 75% in KN 355
- No benefit seen if CPS <1 consistent with IMPASSION130, but distinct from KEYNOTE 522 (NAC)
 - PD-L1 status may be more important in metastatic disease than early stage disease
- Safety was consistent with known profiles of each regimen

Unanswered questions: Optimal PD-L1 assay, optimal cut-off for IO, optimal chemo partner; why the difference between primary and metastatic disease?

Penn Medicine

Phase II Randomized Placebo-**Controlled Trial of Cisplatin With or** Without Veliparib in Metastatic **Triple-Negative Breast Cancer and/or BRCA Mutation-Associated Breast** Cancer (SWOG 1416)

Priyanka Sharma^{1*}, Eve Rodler^{2*}, William Barlow, Julie R. Gralow, Shannon L. Puhalla, Carey K. Anders, Lori Goldstein, Ursa A. Brown-Glaberman, Thu-Tam Huynh, Christopher S. Szyarto, Andrew K. Godwin, Harsh B. Pathak, Elizabeth Swisher, Marc R. Radke, Kirsten M. Timms, Danika Lew, Jieling Miao, Lajos Pusztai, Daniel F. Hayes, Gabriel N. Hortobagyi.

PARP Inhibitors in TNBC

- 2 PARP inhibitors (olaparib and talozoparib) are approved for MBC associated with gBRCA1/2 mutations after studies showed an improvement in PFS compared to chemotherapy
- PARPi efficacy has been noted beyond gBRCA1/2 cancers, for example in ovarian cancer with homologous recombination deficiency (HRD)
- 40-60% of TNBC shows homologous recombination deficiencies, a so-called "BRCA-ness" or BRCA-like phenotype
- However, there has been limited evidence of efficacy of PARPi monotherapy beyond gBRCA in TNBC – raising the question that additional biomarkers and combinations with select DNAdamaging chemotherapeutic agents may be needed
- Combination of PARPi with chemo has been difficult due to toxicity
- Veliparib is an inhibitor of PARP-1 and -2 that can be safely combined with near maximal singleagent dose Cisplatin. SWOG 1416 evaluated whether the addition of veliparib to cisplatin is beneficial in BRCA-like, gBRCA negative TNBC

"Randomization stratified by number of prior cytotoxic regiments for metastatic disease (0 vs. 1)

Patient characteristics

Characteristic, no. (%)	All patients (N=321)	Cisplatin + Veliparib (N=161)	Cisplatin + Placebo (N=160)	Characteristic, no. (%)	All patients (N=321)	Cisplatin + Veliparib (N=161)	Cisplatin + Placebo (N=160)
Age (years)	56.2	55.9	56.5	Prior lines of chemot	Prior lines of chemotherapy for metastatic disease		
Race				0	221 (69%)	110 (68%)	111 (69%)
White	245 (76%)	128 (80%)	117 (73%)	1	100 (31%)	51 (32%)	49 (31%)
Black	51 (16%)	23 (14%)	28 (17%)	Prior (neo)-adjuvant	236 (74%)	119 (74%)	117 (73%)
Asian	11 (3%)	6 (4%)	5 (3%)	chemotherapy			
Other/unk	14 (4%)	4 (2%)	10 (6%)	Prior carboplatin	32 (10%)	14 (9%)	18 (11%)
Ethnicity				Measurable disease	270 (84%)	135 (84%)	135 (84%)
Hispanic	22 (7%)	15 (9%)	7 (4%)	Visceral disease	212 (66%)	106 (66%)	106 (66%)
ECOG performance status		Prior biologic or	12 (4%)	6 (4%)	6 (4%)		
0	186 (58%)	95 (59%)	91 (57%)	inhibitor therapy	12 (470)	0 (470)	0 (470)
1-2	135 (42%)	66 (41%)	69 (43%)	L			
TNBC	305 (95%)	157 (98%)	148 (92%)				

Germline BRCA group and Non-BRCA-like group

Slide by Catherine Margaret Kelly, FRCP

Penn Medicine 24

BRCA-like group

ORR (n=83): 45% vs 33%

Treatment-related adverse events

Advorso ovont	Cisplatin + Ve	liparib (N=154#)	Cisplatin + Placebo (N=149*)	
Auverse event	All Grades, N (%)	Grade 3-4, N (%)	All Grades, N (%)	Grade 3-4, N (%)
Nausea	116 (75)	19 (12)	93 (62)	11 (7)
Fatigue	96 (62)	8 (5)	83 (56)	9 (6)
Anemia	94 (61)	35 (23)	84 (56)	11 (7)*
Neutropenia	91 (59)	71 (46)	63 (42)	29 (19)*
Leukopenia	82 (53)	42 (27)	69 (46)	11 (7)*
Vomiting	69 (45)	9 (6)	52 (35)	5 (3)
Thrombocytopenia	80 (52)	29 (19)	36 (24)	4 (3)
Anorexia	44 (29)		35 (23)	
Peripheral sensory neuropathy	40 (26)		39 (26)	
Lymphocyte count decreased	37 (24)	11 (7)	40 (27)	9 (6)

Two treatment-related deaths: one on placebo arm (acute kidney injury due to cisplatin and heart failure from previous adriamycin exposure); one on Veliparib arm (sepsis)

Most common (>20% of patients) and grade 3-4 (>5% of patients)

#18 patients did not receive protocol therapy and are not included in toxicity assessment

*p<0.001

SWOG 1416 Conclusions

- In pts with gBRCA-negative mTNBC with BRCA-like phenotype, veliparib added to cisplatin improves PFS by 47% and shows a trend towards improved OS
 - All BRCA-like biomarker subgroups benefitted from veliparib but the benefit was primarily driven by the HRD biomarker group
- Addition of veliparib was not beneficial in patients with non-BRCA-like phenotype mTNBC

No difference seen in germline BRCA group

- Low accrual/insufficient power
- Ph III BROCADE 3: Addition of veliparib to platinum-based chemo improves PFS in gBRCA-associated MBC
- Toxicity was manageable and no new signals noted
- About half of gBRCA-negative TNBCs demonstrated BRCA-like phenotype, with 2/3 having an elevated HRD genomic instability score
- Further research needed to identify optimal HRD biomarkers critical in early BC and MBC treatment

Overall Conclusions: TNBC

- Adjuvant capecitabine is currently appropriate for patients with TNBC who do not achieve a pathologic complete response to neoadjuvant chemotherapy
- Await mature overall survival results of SYSUCC-001 before routinely escalating adjuvant therapy in all TNBC
- PD-L1 testing should be routine on all metastatic TNBC biopsy specimens (incorporated into pathology workflows)
 - The optimal PD-L1 assay is unknown
- Patients with PD-L1+ positive tumors benefit from immune checkpoint inhibitor+chemotherapy in the first line setting
- PARP inhibitors are approved and appropriate for gBRCA mutation carriers
- BRCA-like biomarker analysis should be conducted as part of a broader sequencing approach increasingly being used in MBC
- MBC treatment will increasingly become more personalized, with tumor sequencing/biomarker assessment done routinely, and selection of therapy based on the presence of any number of biomarkers

Thank you!

