Proteomic strategies for identifying resistance mechanisms and therapeutic targets in lymphoma

Megan S. Lim MD PhD
Professor, Director of Hematopathology
Joint (HUP and CHOP)

GENERAL SESSION 3
May 10, 2019
Disclosure

• No relevant items to disclose

• GENOMENON: Co-Founder and Advisor
Paradigm for Research

Patient

Genome Sequencing Gene Expression Proteome Profiling Metabolome Profiling

Pathobiologic events

Animal Model Functional Screens Biomarkers
Outline

• **Discovery** of novel targetable ALK-regulated cytokine network through integration of N-glycoproteomic and functional genomics

• Functional validation of **novel target (IL31Rβ)** in ALCL

• Conclusions and broad applications for identifying novel CAR-T targets in de novo disease and resistance
LC-MS/MS-based proteomics

- **Unambiguously** identify proteins
- Femtomolar sensitivity
- **Unbiased**
- Identify the **precise** site of a **post-translational modification**

Bioinformatics
- Protein ID

MS scan
- Parent ion selected

m/z, amu
- Intensity

MS/MS
- Intensity
- m/z, amu
N-glycoproteomic signatures of lymphoma
N-Glycoproteins are excellent lymphoma biomarkers

- Glycosylation is a common post translational modification
- Glycoproteins are secreted or expressed in the cell surface
- Most CD markers recognize glycoproteins
- Good target for biomarker discovery

Membrane Proteins

13,000 predicted TM proteins
3100 membrane glycoproteins UniProt
Hypothesis

Glycoproteins can be used as biomarkers for early disease detection, diagnosis, monitoring and harnessed as a therapeutic target in lymphoma

Rational selection of candidates

Biomarkers

Therapeutic targets
Aims

• Compendia of glycoproteomic profiles for distinct lymphoma cell lines using LC-MS/MS

• Functional study of candidate glycoproteins
Unbiased N-glycoproteomics of lymphoid neoplasia

36 well-characterized human cell lines

14 subtypes of lymphoid neoplasia

<table>
<thead>
<tr>
<th>WHO entities</th>
<th>Lineage</th>
<th>Origin</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ALL</td>
<td>T</td>
<td>Precursor T</td>
<td>1</td>
</tr>
<tr>
<td>ALCL, ALK +</td>
<td>T</td>
<td>Mature T</td>
<td>5</td>
</tr>
<tr>
<td>ALCL, ALK -</td>
<td>T</td>
<td>Mature T</td>
<td>2</td>
</tr>
<tr>
<td>MF</td>
<td>T</td>
<td>Mature T</td>
<td>1</td>
</tr>
<tr>
<td>Sézary syndrome</td>
<td>T</td>
<td>Mature T</td>
<td>1</td>
</tr>
<tr>
<td>Aggressive NK-cell leukemia</td>
<td>NK</td>
<td>Mature NK</td>
<td>3</td>
</tr>
<tr>
<td>MCL</td>
<td>B</td>
<td>Pre-GC</td>
<td>3</td>
</tr>
<tr>
<td>BL</td>
<td>B</td>
<td>GC</td>
<td>3</td>
</tr>
<tr>
<td>DLBCL</td>
<td>B</td>
<td>GC</td>
<td>1</td>
</tr>
<tr>
<td>PMBL</td>
<td>B</td>
<td>GC</td>
<td>2</td>
</tr>
<tr>
<td>FL</td>
<td>B</td>
<td>GC</td>
<td>6</td>
</tr>
<tr>
<td>Classical HL</td>
<td>B</td>
<td>GC</td>
<td>3</td>
</tr>
<tr>
<td>NLPHL</td>
<td>B</td>
<td>GC</td>
<td>1</td>
</tr>
<tr>
<td>Myeloma</td>
<td>B</td>
<td>Post-GC</td>
<td>4</td>
</tr>
</tbody>
</table>

Protein extraction

- Cysteine reduction/alkylation
- Trypsin digestion

Solid-Phase Extraction of Glycopeptides

LC-MS/MS

Data analysis

Validation and functional studies
Glycoproteomic Profiling By Solid Phase Extraction of Glycoproteins (SPEG)

Proteolysis
- Proteolysis

Coupling
- Coupling to hydrazide resin

Wash
- Washing

Isotope labeling
- Isotope labeling

Release
- Release

LC-MS/MS analysis
- Liquid Chromatography-Mass Spectrometry

PNGase F (N-glycosidase): N-glycopeptides

Alkaline β-elimination: O-glycopeptides

Consensus N-glycosylation motif analysis

- 1905 unique 11mers
- N[115] in the center

<table>
<thead>
<tr>
<th>Motif #</th>
<th>Count</th>
<th>Fold Inc.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1080</td>
<td>8.88</td>
</tr>
<tr>
<td>2</td>
<td>59</td>
<td>25.87</td>
</tr>
<tr>
<td>3</td>
<td>703</td>
<td>10.37</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>19.89</td>
</tr>
</tbody>
</table>

Fold Inc. = Fold Increase over background sequence data

Consensus N-glycosylation motif analysis

<table>
<thead>
<tr>
<th>Motif</th>
<th>Count</th>
<th>Fold Inc.*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NXT</td>
<td>1080</td>
<td>8.88</td>
</tr>
<tr>
<td>NXC</td>
<td>703</td>
<td>10.37</td>
</tr>
<tr>
<td>YNXS</td>
<td>24</td>
<td>19.89</td>
</tr>
</tbody>
</table>

Fold Inc. = Fold Increase over background sequence data

Consensus N-glycosylation motif analysis

- **NXT** (1080 occurrences, 57.8%)
- **NXS** (703 occurrences, 37.7%)
- **YNXS** (59 occurrences, 3.2%)
- **NXC** (24 occurrences, 1.3%)
N-glycoproteins identified in 36 cell lines

Detection of virtually all CD proteins currently used for diagnostic evaluation of lymphoid neoplasia
Classification of lineage and subtype

log2 (Raw Spectral Counts +1)
N-glycoproteomic profiles classify cell lines according to disease subtype
NPM-ALK+ ALCL as a biologic tumor model for functional studies

t(2;5)(p23;q35)
Leverage Integrative Large-Scale Data
Transcriptome and N-Glycoproteome

Genomics
(24,000)

Transcriptomics
(100,000)

Proteomics
(1,000,000)
Investigation of ALK “regulome” by integrating N-glycoproteomics and functional genomics

ALK+ALCL cell lines → DMSO → Protein extraction → Solid-Phase Extraction of N-linked glycopeptides (SPEG) → LC-MS/MS

ALKi → RNA extraction → RNA-Seq

Lentiviral sgRNA library → DNA extraction → NGS

Functional proteogenomics → Therapeutic vulnerabilities
Cytokine/receptor signaling pathways are regulated by ALK activity in ALK+ALCL

Integrated N-glycoproteomic and transcriptomic data
A distinct cytokine-mediated protein network regulated by ALK

Protein-protein interaction networks using ALK-dependent cytokine receptors
Validation: A distinct cytokine signature is characteristic of ALK+ ALCL

- **IL2Rα (CD25)**
- **IL31Rβ (Oncostatin M receptor)**

Potential novel biomarkers
Oncostatin M Receptor (IL31Rβ) in ALK+ ALCL

<table>
<thead>
<tr>
<th>Position</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>176</td>
<td>NIQNN*VSCYLEGK</td>
</tr>
<tr>
<td>326</td>
<td>SVNILFN*LTHR</td>
</tr>
<tr>
<td>380</td>
<td>MMQYN*VSIK</td>
</tr>
<tr>
<td>491</td>
<td>ILYNFVVENLDPHELHSIPAPAN*STK</td>
</tr>
<tr>
<td>580</td>
<td>NVGPN*TSTVISTDAFPGVR</td>
</tr>
</tbody>
</table>
IL31Rβ is expressed in ALK+ALCL

ALCL, ALK+

Cell lines

<table>
<thead>
<tr>
<th></th>
<th>DEL</th>
<th>Karpas 299</th>
<th>SR786</th>
<th>SU-DHL-1</th>
<th>MAC2A</th>
<th>Jurkat</th>
<th>HT1080</th>
</tr>
</thead>
</table>

GAPDH

56 primary biopsies of ALCL

- **Tonsil**
- **ALK-, IL31Rβ-**
- **ALK-, IL31Rβ+**
- **ALK+, IL31Rβ+**

IL31Rβ expression

- **DEL**
- **Karpas 299**
- **SR786**
- **SU-DHL-1**

- **SupM2**
- **MAC2A**
- **Jurkat**

ALK status

<table>
<thead>
<tr>
<th></th>
<th>ALK+</th>
<th>ALK-</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL31Rβ+</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>IL31Rβ-</td>
<td>0</td>
<td>21</td>
</tr>
</tbody>
</table>

\[X^2 = 20.16 \]

\[p < 0.001 \]
IL31Rβ and OSM expression is ALK-dependent and mediated via STAT3

<table>
<thead>
<tr>
<th>Karpas 299</th>
<th>SUD-HI-1</th>
<th>SR786</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 h</td>
<td>6 h</td>
<td>10 h</td>
</tr>
<tr>
<td>ALK inhibitor</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>OSMR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-ALK</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALK</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-actin</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAT3 inhibitor 0</th>
<th>50</th>
<th>100</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSMR</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-STAT3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>STAT3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-actin</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Karpas 299</th>
<th>SUD-HI-1</th>
<th>SR786</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 h</td>
<td>6 h</td>
<td>10 h</td>
</tr>
<tr>
<td>ALK inhibitor</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>OSM</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>p-ALK</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALK</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>β-actin</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
NPM-ALK regulates IL31Rβ in a kinase dependent manner

Real time RT-PCR

Karpas 299

- **DMSO**
- **ALK inhibitor**

<table>
<thead>
<tr>
<th>Time</th>
<th>n.s</th>
<th>***</th>
<th>***</th>
<th>***</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22 hr</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

HeLa

- **GFP**
- **NPM-ALK WT**
- **NPM-ALK K210R**

P<0.001 by student T-test
CRISPR-Cas9 sgRNA genome-wide vulnerability

Weinstock D, Ngo S, Root, D

14, 250 sgRNAs

- Lentiviral Vector
- Packaged Pooled Lentiviral sgRNA Library
- Barcoded Pooled Plasmid sgRNA Library
- Transduced Target Cells

Quantitative Identification of Enriched or Depleted sgRNA Corresponding to Gene Targets

80-90% of Sequences Within 1 Order of Magnitude

- Designs: sgRNA
- sgRNA expression: U6, U6-Tet, H1 or H1-Tet
- Markers: GFP, RFP, PuroR,
- Promoters: UbiC, EF1a, CMV

PCR & Cloning

Barcoded sgRNA Amplification

Transduced Target Cells

Target Cell Transduction
Cytokine receptor pathways are exquisite vulnerability targets in ALK+ALCL

Markov Chain Monte Carlo Simulation
IL31Rβ contributes to oncogenesis in ALK+ALCL

IL31Rβ knockdown abrogates tumor growth in ALK+ALCL xenotransplants
Conclusions and Implications

- Largest compendium of N-glycoproteins in lymphoma
 1,115 glycoproteins, including 198 CD markers

- N-glycoprotein signatures classify lymphoid neoplasia according to:
 Lineage, Cell of origin, WHO subtypes

- Integrated N-glycoproteomics and transcriptomics are complementary

- A distinctive cytokine/receptor-JAK-STAT signaling network regulated by ALK
 IL31Rβ are pathogenetically-relevant vulnerable targets

Rolland D et al., Proc Natl Acad Sci, 2017
Model of OSM-OSMR signaling in ALCL and acquired resistance

NPM-ALK

STAT3

OSM

OSMR

gp130

Autocrine and paracrine promotion of cell survival, proliferation

Tumor microenvironment

Therapy resistance

Cell migration, invasion
OSMR is regulated by ALK in EML4-ALK+ lung cancer and upregulated in acquired resistance.
Future Directions
Mechanisms and biomarkers of CAR-T therapy resistance

Phosphoproteome

- Cell Culture
 - ALCL-treated +/- ALK inhibitor
- Peptide Preparation
 - Trypsin-mediated cleavage
- MOAC
 - Ti-bead chromatography for phosphopeptide enrichment
- Immunoprecipitation
 - Three pY specific antibodies
- LC-MS/MS
 - Identification and quantification of phosphopeptides

- 5000-6000 proteins
- 35000 phosphopeptides
- 2500 phosphoproteins

N-Glycoproteome

Glycoprotein Cell Receptors
Surface carbohydrates on cells serve as points of attachment for other cells, infectious bacteria, viruses, toxins, hormones and many other molecules.
Acknowledgements

Kojo SJ Elenitoba-Johnson MD

U of Pennsylvania
Delphine Rolland, Pharm D PhD
John Basappa PhD
Kaiyu Ma PhD
Ozlem Onder PhD

Dana Farber CI /Broad
David Weinstock MD
David Root PhD
Samuel Y. NG PhD

Funding
NIH R01DE119249
NIH R01CA136905
NIH R01CA140806
NIH F31CA171373
COG Translational Award
COG Young Investigator Award
University of Michigan Cancer Center
University of Pennsylvania

U of Michigan
Scott McDonnell PhD
Venkatesha Basrur PhD
Kevin Conlon MS
Carla McNeal-Schwalm MD
Alexey Nesvizhskii PhD
Damian Fermin PhD
Noah Brown MD
Nathanael G Bailey, MD
Carlos Murga-Zamalloa MD
Steven Hwang BS
Mahmoud A ElAzzouny, PhD
Charles F Burant, MD., PhD
Lili Zhao, PhD
Gilbert S. Omenn MD

Seoul National University
Yoon-Kyung Jeon MD PhD