Cancer Imaging Phenomics Toolkit (CaPTk):

A Radio(geno)mics Software Platform for Leveraging Quantitative Imaging Analytics for Computational Oncology
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Primary Aim: To enable swift and efficient translation of cutting-edge academic research into clinically useful tools!l. FUNDING SUPPORT: NIH/NCI/ITCR U24CA189523

Target Audience:
1. Non-computational experts (radiologists, oncologists, clinicians, neuroscientists): facilitating use of complex algorithms for clinically relevant studies through a user-friendly, light-weight interface.
2. Computational Imaging Scientists: allowing for batch-processing, as well as integration of new algorithms into a GUI based on ITK, VTK, and OpenCV.

- Functionality -
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Published in Nature Scientific Data*, enriching the TCGA-GBM & TCGA-LGG datasets
Feature Integration with publicly available manual tumor segmentations and radiomic features!>®!.
via A contribution towards repeatable, reproducible and comparative quantitative studies:
Machine Learning « Enabling direct utilization of the TCGA/TCIA glioma collections

 Allowing full utilization of their potential in clinical and computational studies

- 2nd level -

Imaging Signature of EGFRVIII in GBM!/] Computational Study of Brain Radiomics Predicting Patient Outcomes Breast Density Assessment[11-14]
Connectivity!8.?] in Lung Cancer![10]
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- Extendibility - - Future Work -
External algorithm integration in CaPTk, is possible in: - Application to other neurological diseases: Meningioma; Multiple sclerosis
Source level - Additional predictive tools for GBM: Survivall'>}; Recurrencel'®l: Distinct radiographic subtypes!!/]
Tightest integration, providing memory-level access to all interactive functionalities, hence allowing for
maximum optimization. The external application should be written in C++ and compiled alongside CaPTk. - Integration of brain cognitive deficit measurement: Vulnerability maps depicting brain connectivity, lead

to future cognitive deficits
Executable level

CaPTk offers a graphical interface to an existing application (not necessarily written in C++), allowing users - Incorporation of a lattice-based strategy for Breast Parenchymal Tissue Characterization
to leverage CaPTk's functionality (e.g., interaction, feature extraction, modeling). Executable-level integration . o e o
requires minor additions to CaPTk’s source to create a menu option for the new application. - Deep Learning pipelines for segmentation®l and prediction tasks.

[10] Li et al., Unsupervised Machine Learning of Radiomic Features for Predicting Treatment Response and Survival of Early-Stage Non-small Cell Lung Cancer
[1] Pati et al., Cancer and Phenomics Toolkit (CaPTk): A Software Suite for Computational Oncology and Radiomics, RSNA, 2016 Patients Treated With Stereotactic Body Radiation Therapy, International Journal of Radiation Oncology, 2017
[2] Shinohara et al., Statistical normalization techniques for magnetic resonance imaging, Neuroimage Clinical, 2014 [11] Keller et al., Estimation of breast percent density in raw and processed full field digital mammography images, Medical Physics, 2012
[3] Bakas et al., GLISTRboost: Combining Multimodal MRI Segmentation, Registration, and Biophysical Tumor Growth Modeling with Gradient Boosting Machines[12] Keller et al., Preliminary evaluation of the publicly available Laboratory for Breast Radiodensity Assessment (LIBRA) software tool, Breast Cancer Research
for Glioma Segmentation, Springer, LNCS, 9556:144-155, 2016. 2015
[4] Bakas et al., Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features", Nature Scientific Data,[13] Williams et al., Mammographic breast density decreases after bariatric surgery, Breast Cancer Research and Treatment, 2017
4:170117, 2017. [14] McCarthy et al., Racial differences in quantitative measures of area and volumetric breast density, JNCI: Journal of the National Cancer Institute 108(10), 2016

[5] Bakas et al., Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-GBM collection, The Cancer Imaging Archive 2017 [15] Macyszyn et al.,, Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques, Neuro-Oncology, 2016
[6] Bakas et al.,, Segmentation Labels and Radiomic Features for the Pre-operative Scans of the TCGA-LGG collection, The Cancer Imaging Archive 2017 [16] Akbari et al., Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of
[7] Bakas et al.,, In vivo detection of EGFRVIII in glioblastoma via perfusion magnetic resonance imaging signature consistent with deep peritumoral infiltration, Recurrence of Glioblastoma, Neurosurgery, 2016
Clinical Cancer Research, 2017 [17] Rathore et al., Imaging pattern analysis reveals three distinct phenotypic subtypes of GBM with different survival rates, Neuro-Oncology, 2016
[8] Tunc et al.,, Individualized Map of White Matter Pathways: Connectivity-Based Paradigm for Neurosurgical Planning, Neurosurgery, 2016 [18] Kamnitsas et al., Efficient Multi-Scale 3D CNN with Fully Connected CRF for Accurate Brain Lesion Segmentation, Medical Image Analysis, 2016
[9] Tunc et al., Automated tract extraction via atlas based Adaptive Clustering, NeuroImage, 2014




