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Primary Aim:

Target Audience:

To enable swift and efficient translation of cutting-edge academic 

research into clinically useful tools[1].

• Clinical experts: facilitating use of complex algorithms for 
clinically relevant studies through a user-friendly interface.

• Computational experts: allowing batch-processing of multiple 

subjects and integration of new algorithms.

www.cbica.upenn.edu/captk
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) HR(low&high):  10.64 (95% CI 5.9-19.3, p<0.001)

HR(med&high): 3.88   (95% CI 2.3-606, p<0.001)

HR(low&med):   2.77   (95% CI 1.8-4.2, p<0.001)
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