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Cancer Imaging Phenomics Toolkit (CaPTk): [ ...
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A Radio(geno)mics Platform for Quantitative Image Analytics @7 G

Christos Davatzikos, Despina Kontos, Paul Yushkevich, Russell Shinohara, Yong Fan, Ragini Verma

mage Computing and Analytics (CBICA), University of Pennsylvania
captk@cbica.upenn.edu

Primary Aim: To enable swift and efficient translation of cutting-edge academic
research into clinically useful toolsl].

» Clinical experts: facilitating use of complex algorithms for
clinically relevant studies through a user-friendly interface.

» Computational experts: allowing batch-processing of multiple
subjects and integration of new algorithms.

Center for Biomedical

FUNDING: NIH/NCI/ITCR U24CA189523
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Target Audience:

www.cbica.upenn. edu/captk

ipp.cbica.upenn.edu

(HPC-shared resources
for computationally
demanding pipelines)

General Purpose Tools

to use Extendable Web-accessible
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Graphical Interaction Segmentation [3:4]
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File Options Help
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Tool Options

Crosshairs Tool
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T2-FLAIR

Windaow | 2008.000 & Level 1003000 (G
Preset  Auto Scale =  Threshold | 20,000 -

Image Size: 192 256 192 | Origin: -81.433 -145.156 -96.709 | Spadng: 0.977 0.977 1.000

Pixel Position: |83 | |149 ||122 | Update  value: 230

Intensity-based measurements
15t Order Statistics

window size

Histogram-related «—

sliding distance

Grey-Level
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Local Binary
Patterns

Thresholding
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Texture feature maps

GBM Recurrence Prediction [11. 12]

(Predictive Maps of Peritumoral Infiltration)
Infiltration heatmap in Post-recurrence scan, with nodular
pre-op T1-Gd enhancement in predicted areas

GLISTRboost!"]

Tumor labels

== Enhancing
Non-enhancing . N
Edema/Invasion High Probability
of Recurrence
== \White Matter
== Gray Matter

Cerebrospinal Fluid

Healthy brain
labels

*NIH/TCIA
Invited study

Published in Nature Scientific Data!'"
enriching the TCGA-GBM/-LGG datasets
with manual segmentations and radiomic
features, publicly available on TCIA.

DeepMedic!®

Convolutional Layers

Personalized Radiation
Dose Escalation in higher
likelihood of recurrence:
Abramson Cancer Center
and NRG trials.

Low Probability
of Recurrence

Radiogenomic Signature of EGFRvIIl in GBM!13]

uniformly infiltrative tumors high heterogeneity in edema
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Computational Stud
of Brain Connectivity!'

COMBINED COHORT (142 patients)
1 I I I r

1 10-fold Cross Validation
Accuracy=89.92%

| Specificity=92.53%
Sensitivity=83.77%

GBM Survival
Predictionl6]

Kaplan-Meier Survival Curves

HR(low&thigh): 10.64 (95% Cl 5.9-19.3, p<0.001)
-~ HR(med&high): 3.88 (95% CI 2.3-606, p<0.001)
‘HR(low&med): 2.77 (95% Cl 1.8-4.2, p<0.001)

. Low SPI
Medium SPI
- High SPI

DTl-based Resection Peritumoral Effects
Margin Estimation of Glioblastoma

Cumulative survival rate (%)

Survival (Months)

Future Directions
Cohort-Based Interface | Traditional Machine Learning Training Module | Multiscale Feature Extraction
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