Pathology Image Informatics Platform (PathIIP)

PIs: Anant Madabhushi (CWRU), Anne Martel (UToronto), Metin Gurcan (Wake Forest)

NATIONAL CANCER INSTITUTE

Year 3 Update

RESEARCH INSTITUTE

Develop a digital pathology platform to facilitate wider adoption of whole slide imaging and the use of digital pathology analysis by the cancer research community.

Platform will support:

- Visualization of WSIs from multiple vendors
- Annotation tools for pathologists
- Plug in architecture to allow integration of algorithms
- Multimodality support
- Creation of an archive of richly annotated datasets
- Evaluation and validation of algorithms on benchmarked datasets

Informatics

Platform

Sedeen Viewer Statistics

- Updates and releases
 - 2015: 2 updates
 - 2016: 3 updates
 - 2017: 5 updates
 - 2018: 2 updates (Jan-Mar)

Historical and Projected Usage Trends

- 2018 usage is projected based on statistics gathered up to March 15, 2018
- Active user counts presents the monthly average for the calendar year

Dissemination

- Tutorials
 - Live at SPIE Medical Imaging 2018
- Platform
 - Platform description in Cancer Research, 2017
 - Martel AL, Hosseinzadeh D, Senaras C, Zhou Y, Yazanpanah A, Shojaii R, Patterson ES, Madadhushi A, Gurcan MN, "An image analysis resource for Cancer Research: PIIP – Pathology Image Informatics Platform for visualization, analysis, and management," Cancer Research, 2017. Vol. 77, no. 21, pp. e83e86, DOI: 10.1158/0008-5472.CAN-17-0323 Published November 2017.

Platform Description Published in 2017

Focus on Computer Resources

An Image Analysis Resource for Cancer Research: PIIP—Pathology Image Informatics Platform for Visualization, Analysis, and Management

Check for updates

Cancer

Research

Anne L. Martel^{1,2}, Dan Hosseinzadeh³, Caglar Senaras⁴, Yu Zhou⁵, Azadeh Yazdanpanah¹, Rushin Shojaii¹, Emily S. Patterson⁴, Anant Madabhushi⁵, and Metin N. Gurcan⁴

Abstract

Pathology Image Informatics Platform (PIIP) is an NCI/NIH sponsored project intended for managing, annotating, sharing, and quantitatively analyzing digital pathology imaging data. It expands on an existing, freely available pathology image viewer, Sedeen. The goal of this project is to develop and embed some commonly used image analysis applications into the Sedeen viewer to create a freely available resource for the digital pathology and cancer research communities. Thus far, new plugins have been developed and incorporated into the platform for out of focus detection, region of interest transformation, and IHC slide analysis. Our biomarker quantification and nuclear segmentation algorithms, written in MATLAB, have also been integrated into the viewer. This article describes the viewing software and the mechanism to extend functionality by plugins, brief descriptions of which are provided as examples, to guide users who want to use this platform. PIIP project materials, including a video describing its usage and applications, and links for the Sedeen Viewer, plug-ins, and user manuals are freely available through the project web page: http://pathiip.org. *Cancer Res; 77(21); e83–86.* ©2017 AACR.

SPIE Medical Imaging 2018

L. 10010d1 2: Hite M. 3. Overlay Manager 4. Analysis Manager kurrenaus Mari 4. Eksenade, D. Senaras, C. Zhou, Y. Yazdanpanah, A., Shojaii, R., ... & form 9. 2013 A stage Asalys Recover for Cancer Research: PIIP—Pathology Image Hernera Reform for Visuelation, Analysis, and Management Fancer research, 77(21), e83-e86.

Pathology Image Informatics Platform

Progress

Software release

- 7 releases during from Jan 2017 March 2018
- 4 plugins developed and released (open source)

Recent improvements

- Added support for Visual Studio 2015 and 2017
 - Now compatible with modern deep learning frameworks
- Added x64bit architecture support
- Add more input parameters
 - FileDialog input
- Added more image formats
 - PerkinElmer QpTiff, Olympus VSI, Omnyx JP2, Motic SVS
- Improved support for Matlab-based plugins

Plugins and the SDK

- Written in C++
- Support for ITK and openCV
- CMake is used for compilation, doxygen documentation
- Algorithm developer is shielded from details of file structure
- SDK provides utilities to efficiently access pixel data

Tile access – colour manipulation

Pixel access – morphology

Plugins and the SDK

- Pipeline consists of a chain of kernels
- Kernel objects carry out specific tasks
- Each kernel may have parameters which can be set using controls exposed in the user interface
- Kernels can also access image metadata

Example plugin: tissue finder

Sedeen Viewer - C:/Users/amartel/Dropbox/Pathology/images/MouseBrain1-Oct31-2012.scn

Ð X

Original Size: 53568 x 14(Location: 62211 . 1731 0.0 X

File View Image Tools Help

Plugins loaded from a drop down menu

github.com/sedeen-piip-plugins/

🛱 sedeen-piip-plugins / Info							⊙ Watch -	0	\star Star	0	¥ Fork	0
<> Code	() Issues 0	្រ៉ា Pull requests 0	Projects 0	🔳 Wiki	Pulse	II Graphs						

Not sure where to start? Look in here!

7 commits	រ្ហិ 1 branch						
Branch: master - New pull request	ch: master ▼ New pull request		រ្រ ា branch	🏷 0 releases	2 contributors		
🎽 deyuw Readme		Branch: master New pull request		Create new file Upload file	es Find file Clone or download -		
README.md		🔀 sri-piip committed on GitHub Update READM		Latest commit e215c41 an hour ago			
III README.md		CMakeLists.txt	Add files via upload		23 days ago		
		ExportTrandformedROI_UserManual.pdf	Add files via upload		24 days ago		
Sadaan DIID Dlug	inc	ExportTransformedROI.h	Add files via upload		23 days ago		
Sedeen Filf Flug	1115	ExportTransformedROI_Image.png	Add files via upload		an hour ago		
This organization contains repositories for PIIP plugins d How to Contribute		ExportTransformedROI_V2.cpp	Removed dependency on A	ATL. Fixed some hard crashes.	16 days ago		
		README.md	Update README.md		an hour ago		
		III README.md					
If you haven't already, please email	Deyu (deyu.wang@p						

ExportTransformedROI

This plugin is designed to copy regions of interest from one image to another as it is shown in the image below. It also takes into account any transformations used to align the source and the target images.

organization.

Sedeen-PIIP-Plugins

---AwesomePlugin

---CoolPlugin |---NeatPlugin

The structure in this organization looks like this, where e

Rigid registration and Export Transformed ROI Plugins for Radiology Pathology Fusion

Deploying Machine Learning Models

- Aim to develop an end-to-end pipeline to deploy machine learning models using Sedeen SDK.
- Designed to facilitate the testing of pre-trained models
- □ This project was developed based on Tensorflow C++ API, Boost C++ Library, and Keras (for Python scripting).

Deployment pipeline: This figure demonstrates the deployment pipeline. Please refer to PIIP repository at <u>https://github.com/sedeen-piip-plugins</u> for more information regarding the plugins.

HNCut Plugin

 Hierarchical Normalized Cuts (HNCut) algorithm [1] combines the normalized cuts algorithm with mean shift clustering. HNCut can help pathologists to both quantify and annotate immunohistochemically stained slides by allowing them to identify all pixels that fit within a specific color space. The approach is minimally interactive, requiring the user to select just a few representative pixels from the color region of interest.

(a) The user randomly selects a few representative

(b) HNCut helps to quantify Ki-67 stained tumor nuclei based on the selected points.

points. Pathology

apowczyk, A. et al ., Hierarchical normalized cuts: Unsupervised segmentation of vascular biomarkers from ovarian cancer tissue microarrays. In: cal Image Computing and Computer-Assisted Intervention: MICCAI 2009. LNCS, vol. 5761, pp. 230–238. Springer, Heidelberg (2009).

TMA Spot Extraction Plugin

 Color deconvolution algorithm is applied to the down sampled whole slide image to find the regions, which have the most, signal intensities to hematoxylin and eosin (H&E) stain. Then, circular Hough transform based algorithm was iteratively used to detect the only circular regions as tissue samples.

(a) Result of automatic TMA spot extraction in Sedeen Viewer. The detected spots are labeled in green dots.

(b) Extracted spots are saved as 2,000 x2,000 png images (b)

Marker-controlled Watershed Segmentation Plugin

 This unsupervised automatic method applies color deconvolution and morphological operations to the digital pathology images, followed by the fast radial symmetry transform to obtain the candidate nuclei locations, which act as markers for a markercontrolled watershed segmentation.

(a) Nuclei segmentation using Veta watershed segmentation algorithm.

Out of Focus Detector

Function: The plugin scans the whole digital slide and finds out of focus regions.

Input: whole histopathology slide

Output: Image quality mask.

Task	Deliverables	Y1	Y2	Y3	¥4	Y5
Improve Plugin Framework	New version released Dec 2016, 4 updates in 2017, distribution mechanism established					
Documentation and Training	SDK documented, 2 training sessions for developers					
Add existing algorithms	Cell segmentation, stain normalization, out of focus detection, biomarker quantification, TMA spots extraction					
Rad-pathology co-reg	Automatic pipeline established					
Algorithm Evaluation						
Create image repository	Pathcore Web made available					
Accrual of annotated WSIs	Collection of Ki67 WSIs in progress					
Otology creation	J Biomed Inform publication on QHIO					
Conference Demos	SPIE 2018 presentation on PIIP					
HCI feedback	Report on GUI from HCI expert					
Organize Grand Challenge						

In the pipeline....

- Improved support for Matlab routines
- Mechanism to call Python procedures from plugin
- Distributing SDK to a wider research community
- MacOS and linux versions
- Support for web based image tile servers
- Collection of datasets for validation
- To integrate deep learning frame work into Sedeen

Curated Datasets

- Collect image databases
- Richly annotated by pathologists
- Develop ontologies
- Benchmark datasets

Images and annotations made available through PathcoreFlow™

School of Medicine and Biomedical Sciences

John Tomaszewski, MD, MASCP

Visit us at: www.pathiip.org

