Actigraphy

Professor Jason Ellis

"It's not what it looks like Laura, I just couldn't sleep."

What is the difference?

What is the difference?

Criminal Patient

What Can Actigraphy Tell Us?

Courtesy of Prof. Dieter Riemann

PRE TREATMENT

To identify circadian abnormalities

PRE TREATMENT

To identify light influences

PRE TREATMENT

To identify any subjective - objective discrepancies

COMPLETE IMMEDIATELY ON AWAKENING (PLEASE CACULATE TOTAL TIME IN BED AND TOTAL SLEEP TIME)

	MON	TUES	WED	THURS	FRI	SAT	SUN
TIME TO BED (CLOCK TIME)	10.00	11.00	12.00	11.00	10.00	12.00	11.00
TIME OUT OF BED (CLOCK TIME)	6:00	6:00	6.00	6:00	6.00	8.00	8.00
(TIE) TOTAL TIME IN BED	480	420	360	420	480	430	42
TIME TO BED (DEV FRM 11)	40	- 0	66	- 0	40	a	
TIME OUT OF BED (DEV FRM 7)	-60	40	40	40	40	- 68	- 0
(SL) TIME TO FALL ASLEEP	35	55	45	35	66	65	- 8
NUMAL NUMBER TIMES AWAKENED	2	- 1	3	3	- 4	2	
(WASO) WAKE AFTER SLEEP ONSET	20	65	60	35	45	55	2
(TTOE) TOTAL AMOUNT TIME OUT OF BED	0	0	- 0	0	- 0		
(TST) TOTAL SLEEP TIME (MIK.)	425	300	255	350	375	368	367
(SE) SLEEP EFFICENCY	88.5	71.4	70.8	83.3	78.1	75.8	863
SLEEP QUALITY POOR 8-1-2-3-4-5 GOODS	0	- 1	- 2	3	- 0	- 1	-
FATIGUE (NONE 0-1-2-3-4-5 A LOT)	- 5	- 4	3	- 5	- 5	- 4	

How discordant does the Sub-Ob have to be to be PI?!

NOTE: SOMETIMES IT IS AS THEY SAY

Actiware Print Report

DURING TREATMENT

PTB vs. TTB ?
PTOB vs. TOB ?
WASO-IN vs. WASO-OUT

DURING TREATMENT

IN PLACE OF DIARIES FOR THOSE UNABLE TO KEEP A DIARY

LANGUAGE ISSUES
INTELLECTUAL ISSUES
DISEASE ISSUES
PERCEPTUAL ISSUES

DURING TREATMENT

NANNY CAM EFFECT

So how does it Work?

Principle: When humans sleep they are immobile

- Immobile = no movements = sleep
- Mobile = movements = awake

So how does it Work?

Principle: When humans sleep they are immobile

- Immobile = no movements = sleep
- Mobile = movements = awake

So how does it Work?

Biaxial Polarized Magnets / Triaxial Polarized Magnets

So why would we use it?

- Inexpensive
- Easy to use (record and score)
- Ambulatory (use in home and lab)
- Collect longer-term data
- Easy to interpret
- Non intrusive (for most populations)

So are there limitations?

- Only gross estimations of sleep continuity
- Limited information for assessment of other sleep disorders
- People tend to take them off (newer models correct for this)
- Assumes no movement equals sleep (lying still in bed awake)
- Cant tell if movement is voluntary or involuntary

So what is available?

Next Slides Courtesy of:

Michael A. Grandner PhD

University of Pennsylvania
Center for Sleep and Circadian Neurobiology
Division of Sleep Medicine
Department of Medicine

Micro Motionlogger

- Manufacturer:
 - Ambulatory Monitoring, Inc.
- Cost:
 - **-** \$750-\$995
- Research Data:
 - Used in many research studies
- Pros:
 - Widely used in sleep research, best validation data
- Cons:
 - No off-wrist detection, not waterproof

Action Software

Actiwatch-64

- Manufacturer:
 - Mini Mitter
- Cost:
 - Not currently available
- Research Data:
 - Several research studies validating actiwatch against PSG
- Pros:
 - Widely used in sleep research
- Cons:
 - No longer being manufactured
 - Calibrations may be out of date
 - No light channel

Actiwatch-L

- Manufacturer:
 - Mini Mitter
- Cost:
 - Not currently available
- Research Data:
 - Several research studies validating actiwatch against PSG
- Pros:
 - Small, inexpensive, includes light
 - Widely used in sleep research
 - One of the first small devices
- Cons:
 - Agreement with polysomnography not ideal
 - No longer manufactured or calibrated

PHILIPS RESPIRONICS

Actiwatch-2

- Manufacturer:
 - Philips-Respironics
- Cost:
 - **-** \$800
- Research Data:
 - Several research studies using actiwatch
- Pros:
 - Standard actiwatch technology, waterprod
- Cons:
 - No watch face, no off-wrist detection

Actiwatch Spectrun RESPIRONICS

- Manufacturer:
 - Philips-Respironics
- Cost:
 - Will be replaced by PRO and PLUS models (~\$1000 each)
- Research Data:
 - See Kripke et al., 2010 and Minier et al., 2013
- Pros:
 - Photometers separate red, green, and blue light, has clock face and off-wrist detection
 - Well studied, many features provided
- Cons:
 - More expensive

Actiware Software RESPIRONICS

Actigraph GT3x

- ctiGraph

- Manufacturer:
 - ActiGraph
- Cost:
 - \$225
- Research Data:
 - No published validation studies
- Pros:
 - Frequently used in physical activity research
 - Much less expensive than other models
 - Choose scoring algorithm
 - New bluetooth models
- Cons:
 - Limited validation data, no off-wrist detection

ActiSleep

- Manufacturer:
 - ActiGraph
- Cost:
 - \$299
- Research Data:
 - None available
- Key Features:
 - More sensitive for sleep than GT3x and includes actogram data view
- Pros:
 - Less expensive
 - New bluetooth models
 - Select scoring algorithm
 - Includes Actogram view
- Cons:
 - Limited validation data, no off-wrist detection, limited hand scoring

ctiGraph

ActiLife Software

cam//tech

MotionWatch

- Manufacturer:
 - CamNtech
- Cost:
 - **-** \$1500
- Research Data:
 - Limited but growing
- Key Features:
- Pros:
 - Based on standard actiwatch technology
 - Waterproof, very light, replaceable battery, exportable data
- Cons:
 - No off-wrist detection

MotionWare

GENEActiv

GENEActiv Asleep

- Manufacturer:
 - GENEActiv Asleep
- Cost:
 - **-** \$375
- Research Data:
 - Used in 11 research studies (1 sleep validation)
- Pros:
 - Continuous, unfiltered data for ~1 month
 - Includes skin temperature
- Cons:
 - Limited sleep validation

GENEActiv software

GENEActiv physical activity report

GENEActiv sleep report

fitbit

FitBit

- Manufacturer:
 - FitBit
- Cost:
 - \$130
- Research Data:
 - None
- Key Features:
 - Inexpensive, sync with app. Steps, calories, and sleep. Adds altimeter for better activity measurement and clock face.
- Pros:
 - Inexpensive, waterproof, vibrating alarms.
- Cons:
 - Insufficient validation data. No data export. Algorithms and recording modes are proprietary.

FitBit App

JAWBONE

- Manufacturer:
 - Jawbone
- Cost:
 - \$130
- Research Data:
 - None
- Key Features:
 - Inexpensive, sync with app. Steps, calories, and sleep.
- Pros:
 - Inexpensive, waterproof.
- Cons:
 - Insufficient validation data. No data export. Algorithms and recording modes are proprietary.

JAWBONE

UP App

ActiCal

- Manufacturer:
 - Philips-Respironics
- Cost:
 - -\$600
- Research Data:
 - Weiss et al., 2010.
- Pros:
 - Lightweight, less expensive than actiwatch.
- Cons:
 - Calibrated for energy expenditure, not sleep.

Sleep Cycle app

Sleep Time app

So how do I use it?

Step 1: Determine data quality

- Step 2: Determine missing intervals
- Step 3: Set intervals for time in bed
- Step 4: Automated scoring algorithm
- Step 5: Correction with hand scoring

So what should I get?

- Sleep latency
 - [Time sleep onset] [Time into bed]
- Wake After Sleep Onset
 - [Awakening1] + [Awakening2] ...
- Early Morning Awakening
 - [Time out of bed] [Time final awakening]
- Time in bed
 - [Time out of bed] [Time into bed]
- Total Sleep Time
 - [Time in bed] [Sleep latency] [WASO] [EMA]
- Sleep Efficiency
 - [[Time in bed] / [Total Sleep Time]] * 100

What happens after autoscore?

The most accepted hand scoring rules to be done after autoscoring

Webster's Rules

 If you have 4-9 mins of wake, recode the first 1 min of sleep as wake

 If you have 10-14 mins of wake, recode the first 3 min of sleep as wake

 If you have 15+ mins of wake, recode the first 4 min of sleep as wake

Webster's Rules

 If you have 10-19 mins of wake surrounding a period of sleep, any sleep period of 6 mins or less should be recoded as wake

 If you have 20 mins of wake surrounding a period of sleep, any sleep period of 10 mins or less recoded as wake

How long is long?

- Baseline
 - Minimum three days
 - Standard one week
 - Best practice two weeks

