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Insomnia has long been conceptualized in psycho-
logic and physiologic terms1; hence, the primary
diagnostic classification of ‘‘psychophysiologic’’
insomnia. This diagnostic category2 was adopted
to indicate that this form of sleep disturbance
was primary (a disorder versus a symptom) and
determined by both psychologic and physiologic
factors. Psychologic factors were thought to be
related to cognitive phenomena, such as worry
and rumination, and behavioral processes, such
as instrumental and classical conditioning. Physio-
logic factors were thought to be related to elevated
heart rate, respiration rate, muscle tone, and so
forth (ie, elevated end-organ tone or increased
metabolic rate). The term ‘‘psychophysiologic’’
insomnia (as opposed to the alternative construc-
tion ‘‘physiopsychologic’’ insomnia) also carried
with it the implication that this form of insomnia
occurs primarily as a physiologic phenomenon.
This conceptualization not only calls into question
the ‘‘primacy of cognition’’3 in insomnia, it leads
one to wonder whether somatic hyperarousal (or
elevated metabolic rate) is appropriately identified
as the primary etiologic factor. The emphasis on
physiology seems to be more a matter of historical
precedent than the likely possibility that somatic
arousal is sufficiently elevated in patients with
chronic insomnia to interfere directly with sleep
initiation and maintenance.
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D
PThe alternative perspective is, if ‘‘sleep is of the

brain, by the brain and for the brain,’’4 that
insomnia is better conceptualized in terms of
abnormal neurobiology. To support this perspec-
tive information is provided regarding the brain
structures that are implicated in sleep-wake regu-
lation and how abnormal function within these
areas may lead to specific insomnia complaints,
and the neurophysiologic control of sleep and
wakefulness and how dysregulation at the system
level may contribute to the incidence and severity
of insomnia. Following this, information is provided
on what is known about insomnia in terms of neu-
robiologic abnormalities as assessed with neuro-
physiologic, neuroendocrine, and neuroimaging
measures. This overview is rounded out with
a concluding comment about the dual nature of
psychophysiologic insomnia.
STRUCTURES IMPLICATED IN SLEEP-WAKE
REGULATION AND DYSREGULATION

Although it is beyond the scope of this article to
review every brain structure that is thought to
play a role in sleep-wake regulation, a short review
serves to illustrate that functional neurobiology
may inform how one conceives of the clinical entity
of insomnia. Toward this end information is
provided on the following brain regions: the
sychiatry, University of Pennsylvania, Suite 670, 3535
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pons, the thalamus, the frontal cortex, and the
basal ganglia.

Pons

The pons is located in the brainstem and contains
nuclei that are related to the coordination of eye
and facial movements, facial sensation, hearing,
balance, respiration, and the genesis of rapid eye
movement (REM) sleep. Given that much of the
pons is dedicated to the performance of nonauto-
nomic functions, it follows that the behavioral
quiescence of non-REM (NREM) sleep is paral-
leled by global deactivation within this region. An
equally important consideration is the extent to
which the aminergic and cholinergic components
of the ascending reticular activating system (see
later) reside within, or traverse through, the pons.
The most straightforward consequence of hyper-
arousal in the pons on NREM sleep is a direct
link to the inability to initiate and maintain sleep.
At the level of patient report, this is expected to
translate to the complaint of feeling alert while
desiring to fall asleep.

Thalamus

The thalamus contains a variety of nuclei that are
believed both to process and relay sensory infor-
mation to various parts of the cerebral cortex.
For example, visual information from the eyes
travels to the thalamus on the way to the occipital
cortex. The thalamus also contains structures (the
reticular nuclei) whose function is actively to inhibit
sensory flow from the thalamus to the cortex.
Increased thalamic activation in nuclei related to
sensory processing or decreased activity within
the reticular nuclei during sleep could lead to
more sensory information reaching the cortex
and greater sensory processing perisleep onset
or during sleep. Presumably, this is related to the
tendency of patients with insomnia to be hyperre-
sponsive to environmental stimuli, which in turn
may account for patients’ difficulties falling and
staying asleep or the perception of shallow sleep.
This might be the neurobiologic basis of patients’
reports of being ‘‘light sleepers.’’

Frontal Cortex

The frontal lobes contain many subregions
involved in cognitive processes related to, among
other things, working memory, problem solving,
the planning of goal-directed activity, and evalua-
tive judgment.5 Abnormal activity in the frontal
cortex depends on the specific subregion involved
and whether the area or ‘‘circuit’’ is inhibitory or
excitatory. An example of an excitatory subregion
is the dorsolateral prefrontal and left limbic areas.
CSLP232_proof � 12 Augu
O
F

Activation within these areas is associated with
anticipatory anxiety ½.6 In insomnia, increased acti-
vation within this region likely is associated with
the worry and rumination that may interfere with
sleep initiation and possibly sleep maintenance.
An example of an inhibitory subregion is the orbital
frontal cortex (and the cortical-striatal-thalamic-
cortical loops).7 Reduced activation in this region
or circuit is associated with behavioral, and likely
cognitive, disinhibition of subcortical structures.
In this instance, hypoactivation may be associated
with the tendency of patients with insomnia to be
highly ruminative and their complaint of being
unable to ‘‘turn their minds off.’’8–10
T
E
D
P
RBasal Ganglia

The primary structures of the basal ganglia
(caudate, putamen, globus pallidus, substantia ni-
gra, subthalamic nucleus) and more generally the
striatum have major projections from the motor
cortex and are known to play a well-defined role
in the execution of voluntary movement. In addi-
tion, the basal ganglia has been implicated in neu-
robiologic models of obsessive-compulsive
disorder,11 and found to play a role in the homeo-
static regulation of sleep.

With respect to sleep homeostasis, Braun and
colleagues12 have hypothesized that the basal
ganglia may be actively involved in slow wave
sleep regulation by virtue of their ability to modu-
late cortical arousal.13 It is possible that structures
within the basal ganglia may, in feed forward
fashion, modulate the activity of the reticular
nucleus of the thalamus, and in so doing
contribute to the homeostatic regulation of
sleep.14 One might speculate that the basal
ganglia are not only involved in the homeostatic
regulation of sleep, but may actually be the ‘‘the
sleep homeostat.’’ This may be because the basal
ganglia are responsible for both the execution of
voluntary movement and potentially the modula-
tion of cortical arousal. They are uniquely situated
to modulate cortical arousal based on diurnal
activity levels.

At the level of symptom complaint, abnormal
metabolism within the basal ganglia during sleep
may be associated with a variety of clinical
phenomena. To the extent that the circuits are
related to inhibition and disinhibition, abnormal
activity within these regions may be associated
with a patient’s tendency to ruminate and worry.
Alternatively (or perhaps in addition), abnormal
activity in the basal ganglia may be related to the
homeostatic dysregulation that seems to occur
with insomnia. That is, to the extent that the basal
ganglia are related to sleep homeostasis, it may
st 2009 � 4:15 am
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account for the occurrence of sleep initiation and
maintenance problems on a given night and for
the cyclical pattern of symptoms across time.
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NEUROPHYSIOLOGIC CONTROL OF SLEEPAND
WAKEFULNESS

Based on the early work of Von Economo15 and
Moruzzi,16–18 it has become well established that
cortical arousal is regulated by the ascending
reticular activating system (ARAS). This system
originates in the brainstem and has two major
branches. One branch originates from cholinergic
cell groups in the upper pons (including the pedun-
culopontine and the laterodorsal tegmental nuclei);
inputs into the thalamus; and activates the
thalamic relays, which densely innervate the
cortex. This system, and its source neurons, fire
maximally during wakefulness and REM sleep
and lowest during NREM sleep.6,19–21 The other
branch originates in the lower pons from a series
of neurons including the locus coeruleus (norepi-
nephrine), dorsal and medial raphe (serotonin),
and tuberomammillary cells (histamine) to inner-
vate neurons in the lateral hypothalamic area, the
basal forebrain, and throughout the cortex. This
ascending aspect of this system is monoaminergic
and the end target neurons are cholinergic or GA-
BAergic. Neurons within this system fire maximally
during wakefulness, more slowly during NREM
U
N
C
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R
R
E

Fig. 1. This figure represents ascending pathways that lea
the cholinergic and monoaminergic branches of this syste
nent (and its contribution to the consolidation of wakef
aspects of this system is that this arousal system is not the
ically of functionally. With respect to the latter, the orexin
related to, the circadian system.
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sleep, and are relatively silent during REM sleep.
This description of cortical arousal as it is modu-
lated by the cholinergic and monoaminergic
systems was, in 2000, significantly amended with
the discovery of orexin (also called hypocre-
tin).22–25 This neurotransmitter seems to augment
activity within the monoaminergic branch of the
ARAS (particularly the output from the lateral
hypothalamus) and is thought to act in concert
with the circadian system to promote the consoli-
dation of wakefulness during the diurnal phase of
the 24-hour day. Fig. 1 provides a schematic
representation of the aforementioned arousal
systems.

Although the previous description serves to
delineate the pathways within the ARAS and their
relative degree of activation across the wake,
NREM, and REM states, the characterization
does not suggest how sleep comes to be initiated,
maintained, and terminated in favor of new
episodes of wakefulness. To comprehend how
this might occur it is necessary to posit that there
is either a gating system or a related descending
system that exerts influence over the structures
that initiate cortical arousal. In the case of the
cholinergic branch of the ARAS, there is substan-
tial evidence to suggest that the reticular nucleus
of the thalamus serves to block ascending inputs
and thereby permit cortical synchronization (ie,
sleep). In the case of the monoaminergic branch
d to cortical desynchronization (activation). Although
m have been well characterized, orexinergic compo-

ulness) is relatively new. One of the many important
same as the ARAS (the fight or flight system) anatom-
system seems to be under the control of, or intimately

August 2009 � 4:15 am
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of the ARAS, investigators during the 1980s and
1990s found a candidate mechanism for what
might serve as the switch for a ‘‘descending dear-
ousal system,’’ the switch being the ventral lateral
preoptic area (VLPO).6,21 The VLPO is maximally
active during sleep; has major outputs to most
hypothalamic and brainstem components of the
monoaminergic aspect of the ARAS; and contains
inhibitory neurotransmitters (ie, galanin and g-ami-
nobutyric acid [GABA]). The VLPO seems to be
uniquely positioned to function as an ‘‘off switch’’
(to inhibit arousal). This putative function was
confirmed by Saper and colleagues who have
shown that lesions within this region reduce
NREM and REM sleep by more than 50%.6,21

The Saper group has also demonstrated that the
VLPO also has major inputs from the hypothalamic
and brainstem components of the monoaminergic
aspect of the ARAS and that the VLPO is strongly
inhibited by noradrenaline and serotonin. The exis-
tence of such inputs and neurotransmitter effects
suggests that the VLPO functions not only to
inhibit wakefulness but, in turn, is also inhibited
by wakefulness. Saper and colleagues6,21 have
likened this reciprocal relationship between the
VLPO and the ARAS to the functioning of a ‘‘flip-
flop circuit.’’ This analogy is taken from electrical
engineering and provides a framework for concep-
tualizing how the wake-promoting and sleep-
promoting halves of the circuit are mutually
influential. Each half of the circuit strongly inhibits
the other, and in so doing creates a bi-stable
U
N
C
O
R
R

Fig. 2. This figure provides a simplified representation of t
that lead to cortical synchronization (deactivation). One of
ally inhibitory functioning between the VLPO and the TM
referred to Saper and colleagues.21
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feedback loop. When the brain is in a state of
wakefulness, sleep is inhibited so that there is
a consolidated period of wakefulness. When the
switch moves in the sleep direction, wake is in-
hibited, producing a consolidated period of sleep.
This pattern prevents both frequent transitions
between sleep and wake and the presence of
intermediate states characterized by features of
both wakefulness and sleep. Fig. 2 represents
the VLPO’s inhibitory influence on the cortex and
its bi-stable configuration.

Although elegant, this conceptualization also
does not in and of itself explain how sleep is initi-
ated and terminated (ie, it only serves to explain
how sleep and wakefulness tend to occur in
a consolidated fashion). To accomplish this, there
must also be a system that impinges on the circuit
and allows for homeostasis and allostasis.

In the case of sleep-wake homeostasis, there
must be a process that represents the accumula-
tion of wakefulness or sleep that can act to ‘‘trip
the switch.’’ The concept of sleep-wake homeo-
stasis (and its interaction with the circadian system)
has been described theoretically and tested empir-
ically by Borbely and colleagues.26–29 In this model,
the accumulation of wakefulness is represented by
‘‘process S’’ and is measured in terms of the rela-
tionship between the duration of wakefulness and
the discharge of slow wave activity during NREM
Sleep. To date, the neurobiologic structures that
comprise the ‘‘sleep homeostat’’ are unknown.
One candidate for a process that may represent
he ‘‘sleep switch’’, the circuit and ascending pathways
the many important aspects of this system is the mutu-
N. For a thorough review of this system the reader is
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the duration of wakefulness is the accumulation of
adenosine within the basal forebrain. Experimental
work with this hypothesis has shown that adeno-
sine levels rise in proportion to the duration of
wakefulness and when injected into the basal fore-
brain, adenosine induces sleep and promotes
activity within the VLPO.

In the case of sleep-wake allostasis, it has been
proposed that orexin neurons within the posterior
half of lateral hypothalamus serve to reinforce
wakefulness (promote sustained wakefulness)
and thereby act as a ‘‘finger’’ on the flip-flop switch
that prevents unwanted transitions into sleep.1
C
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NEUROBIOLOGIC IMPLICATIONS FOR INSOMNIA

The previous description of the normal regulation
of sleep and wakefulness suggests that insomnia
may occur in association with one of several neu-
robiologic abnormalities. First, the switch itself
may be malfunctioning. Saper and colleagues6

describe this as follows:

.mathematical models show that when
either side of a flip-flop neural circuit is weak-
ened, homeostatic forces cause the switch to
ride closer to its transition point during both
states. As a result, there is an increase in tran-
sitions, both during the wake and the sleep
periods, regardless of which side is weak-
ened. This is certainly seen in animals with
VLPO lesions, which fall asleep about twice
as often as normal animals, wake up much
more often during their sleep cycle and, on
the whole, only sleep for about one-quarter
as long per bout - in other words, they wake
up and are unable to fall back asleep during
the sleep cycle, but also are chronically tired,
falling asleep briefly and fitfully during the
wake cycle..

This description seems to characterize not so
much psychophysiologic insomnia but rather
sleep as it occurs in neonates and infants and
insomnia as it occurs in the elderly (ie, polyphasic
sleep with middle or late insomnia) or in patients
with narcolepsy. A malfunctioning switch could
also produce an intermediate state characterized
by aspects of both sleep and wakefulness. This
can be seen in several studies of individuals with
insomnia who, compared with good sleepers,
show evidence of wakefulness in terms of
increased beta EEG activity while otherwise
seeming to be asleep (see later).
1 ‘‘A second possible, albeit highly speculative, candidate mechanism f

basal ganglia.’’
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Second, chronic activation of the monoamin-
ergic branch of the ARAS might lead to some
form of desensitization or a compensatory down-
regulation which results in insufficient force to
trip the switch and a switch that tends to favor
the ‘‘wake on’’ position (ie, there is a failure to
inhibit wakefulness or substantially more wakeful-
ness is required to flip the switch to the sleep posi-
tion). In this instance, one might expect decreased
activation within the nuclei than input to the VLPO
(eg, locus coeruleus, the dorsal or medial raphe, or
the tuberomammillary cells). From a neuroendo-
crine point of view, however, one might expect to
see continued evidence of hyperarousal in parallel
with the neurobiologic down-regulation (ie,
patients with chronic insomnia exhibit hypercorti-
solemia), or excessive secretion of the mono-
amines or even hypocretin-orexin, despite
diminished central nervous system activity.
Evidence for some of these possibilities, which
are presaged by the psychobiologic inhibition
model,30 is reviewed next.

Finally, it is possible that the neurobiologic
abnormalities that occur with insomnia occur
within the cholinergic branch of the ARAS and
appear as altered functioning within the thalamus,
basal forebrain, and cortex. For example, one
might expect (1) reduced activity during wakeful-
ness within the adenosinergic regions of the basal
forebrain; (2) overall decreased cortical arousal
during wakefulness; (3) increased activity during
the sleep period within the thalamic nuclei related
to sensory processing and reduced activity within
the sensory gating nuclei (ie, the reticular nucleus);
and (4) overall increased cortical arousal during
sleep.

Alterations within this system may be relevant to
sleep, not only for continuity disturbance but also
the phenomenon of sleep state misperception as
it is known to occur in psychophysiologic insomnia
and paradoxic insomnia, and perhaps in all forms
of primary insomnia. The evidence for these possi-
bilities, which are presaged by the neurocognitive
model,31 is also reviewed next.
EVIDENCE FOR NEUROBIOLOGIC ABNORMALITIES
IN INSOMNIA
Neurophysiologic Measures of Insomnia

To date, there are several studies that have shown
that patients with primary insomnia exhibit more
cortical arousal than either good sleepers or
patients with insomnia comorbid with major
or sleep-wake homeostasis is noted in the discussion regarding the

August 2009 � 4:15 am
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depression.32–38 Specifically, these studies show
that patients with primary insomnia exhibit more
high-frequency EEG activity (beta and gamma
frequencies) at sleep onset and during NREM
sleep. These EEG frequencies are associated
with active mental information processing during
wakefulness, suggesting that patients with
insomnia have a failure to terminate mental pro-
cessing while otherwise asleep. There is also
evidence that patients with sleep state mispercep-
tion (ie, paradoxic insomnia) exhibit more beta
EEG activity than good sleepers or patients with
primary insomnia,38 and beta activity is negatively
associated with the perception of sleep
quality,39,40 and positively associated with the
degree of subjective-objective discrepancy.37

Taken together, these data suggest that cortical
arousal may occur uniquely in association with
primary insomnia (ie, one or more of the types of
primary insomnia including psychophysiologic
insomnia, paradoxic insomnia, idiopathic
insomnia, and so forth) and that this form of
arousal may be associated with the tendency
toward sleep-state misperception.

Comment
Although the data acquired from this measure-
ment strategy seem strongly to support the idea
that cortical arousal may be a biomarker for
insomnia (and this is theoretically appealing to
the extent that the increased occurrence of beta
and gamma activity is thought to be permissive
of increased sensory and information processing),
the lack of replication across larger-scale contem-
porary investigations41 and unpublished studies
(eg, D. Buysse, personal communication, 2005;
and M. Perlis, unpublished data) suggests that
this approach has some limitations. In the authors’
hands, the occurrence of beta and gamma activity
varies not only with trait considerations (diagnostic
category) but also seems to be mediated and
moderated by a variety of factors including first
night effects42 prior sleep debt, degree of circa-
dian dysrhythmia, type of insomnia, technical
considerations, and the extent to which there is
environmental noise. There is also recent evidence
that beta and gamma activity varies by gender.43

Neuroendocrine Measures of Insomnia

Several studies have begun to examine activation
of the stress response system in patients with
insomnia, focusing on the hypothalamic-pituitary-
adrenal (HPA) axis. These studies provide
evidence that insomnia involves, or results from,
chronic activation of the stress response system.
Other neuroendocrine measures, including norepi-
nephrine, melatonin, and most recently GABA,
CSLP232_proof � 12 Augu
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have also been examined as potential correlates
of insomnia.

Urinary measures
An early study of urinary free 11-hydroxycorticos-
teriods, which are metabolites of HPA axis activity,
in young adult good and poor sleepers found that
the mean 24-hour rate of 11-hydroxycorticoster-
iods excretion over 3 days was significantly higher
in the poor sleepers.44 A subsequent study of
urinary cortisol and epinephrine in middle-aged
good and poor sleepers found no significant differ-
ences, although poor sleepers showed a trend
toward higher urinary cortisol and epinephrine
secretion. More recently, Vgontzas and
colleagues45,46 collected 24-hour urine specimens
for urinary free cortisol, catecholamine metabo-
lites (DHPG and DOPAC), and growth hormone
and correlated these measures with polysomnog-
raphy measures of sleep continuity and sleep
architecture in subjects with primary insomnia.
Urinary free cortisol levels were positively corre-
lated with total wake time, and DHPG and DOPAC
measures were positively correlated with percent
stage 1 sleep and wake after sleep-onset time.
Although not statistically significant, norepineph-
rine levels tended to correlate positively with stage
1 and wake after sleep onset, and negatively with
percentage of slow wave sleep. These data
suggest that HPA axis and sympathetic nervous
system activity are associated with objective sleep
disturbance.

Plasma measures
Plasma measures of ACTH and cortisol have also
been compared among patients with primary
insomnia and matched good sleepers. In one
study, patients with insomnia had significantly
higher mean levels of ACTH and cortisol over the
course of the 24-hour day, with the largest group
differences observed in the evening and first half
of the night.45,46 Patients with a high degree of
sleep disturbance (sleep efficiency <70%)
secreted higher amounts of cortisol than patients
with less sleep disturbance. In contrast to these
findings, a recent study of patients with primary
insomnia and age- and gender-matched good
sleepers found no differences in the mean ampli-
tude or area under the curve for cortisol secretion
over a 16-hour period (19:00–09:00 hours).47

Comment
Some of the variability of neuroendocrine findings
in insomnia may be explained by intrusion of
wakefulness into the measured sleep period. This
is a particular concern for studies using urinary
measures, which integrate biologic activity over
a long period of time. This possibility is important
st 2009 � 4:15 am
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when considering causality (ie, whether increased
HPA activity leads to insomnia, or whether
insomnia leads to increased HPA activity). There
is a certain degree of face validity in the associa-
tion between insomnia and HPA axis activity,
however, given the presumed relationship
between stress and insomnia. A recent study
investigating a possible animal model of acute
insomnia demonstrated that activity in the amyg-
dala, a key brain region for activation of the stress
response, is critically necessary for stress-induced
insomnia to occur.48,49 Further, there is evidence
that the VLPO contains receptors for the stress
hormone corticotrophin-releasing factor, suggest-
ing that stress may have direct effects on the sleep
switch.6 Finally, although the findings from various
studies are not entirely consistent, the elevations
in ACTH and cortisol before and during sleep in
insomnia patients may help to shed light on the
intimate association between insomnia and major
depression, which is also associated with HPA
axis activation. Specifically, insomnia is a risk
factor for11,50–57 a prodromal symptom of58 and
a ubiquitous59,60 and persistent symptom of major
depression.60 The common link may be that acute
stress leads to both an activation of the HPA axis
and insomnia, and that chronic insomnia in turn
leads to a persistent activation of the HPA axis.
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To date two brain activity studies that evaluate
sleep in patients with insomnia have been under-
taken: one using TC-99HMPAO single-photon
emission CT (SPECT) and one using fluorodeoxy-
glucose positron emission tomography (PET). In
the SPECT study, imaging was conducted around
the sleep-onset interval in patients with primary
insomnia and good sleeper subjects. Contrary to
expectation, patients with insomnia exhibited
a consistent pattern of reduced activity across
eight preselected regions of interest, with the
most prominent effect observed in the basal
ganglia.61 The frontal medial, occipital, and pari-
etal cortices also showed significant decreases
in blood flow compared with good sleepers. In
the PET study, imaging data were acquired from
patients with chronic insomnia and control
subjects for an interval during wakefulness and
during consolidated NREM. Patients with
insomnia exhibited increased global cerebral
glucose metabolism during wakefulness and
NREM sleep.62 In addition, it was found that
patients with insomnia exhibited smaller declines
in relative glucose metabolism from wakefulness
to sleep in wake-promoting regions including
the ascending reticular activating system,
CSLP232_proof � 12
T
E
D
P
R
O
O
F

hypothalamus, and thalamus. A smaller decrease
was also observed in areas associated with cogni-
tion and emotion including the amygdala, hippo-
campus, insular cortex, and in the anterior
cingulate and medial prefrontal cortices.

In addition to the brain activity studies, there is
one study by Winkelman and colleagues,63 using
proton MR spectroscopy, which assess brain
GABA levels in 16 patients with primary insomnia
as compared with 16 good sleeper subjects.
GABA was measured in terms of global activity
within the basal ganglia; thalamus; and the
temporal, parietal, and occipital cortical areas.
Average brain GABA levels were found to be nearly
30% lower in patients with primary insomnia.
Given that GABA is the primary inhibitor neuro-
transmitter in the brain, this suggests that there
was less inhibition (ie, more activation) in the
insomnia group. Further, GABA levels were nega-
tively correlated with wake after sleep-onset
measures. These data suggest that GABA defi-
ciency may be a neurobiologic characteristic of
insomnia and the efficacy of benzodiazepine
hypnotics may reside in their potential to increase
GABA secretion and activity within the brain.

Comment
Although results from the two brain activity studies
seem to be inconsistent, numerous methodologic
differences may help to explain differences in the
findings. For instance, the SPECT study with its
short time resolution may have captured a more
transient phenomenon, which occurs when
subjects with chronic and severe insomnia first
achieve persistent sleep. The PET study with its
longer time resolution may have captured a more
stable phenomenon that occurs throughout
NREM sleep in subjects with moderately chronic
and severe insomnia. In addition to the temporal
resolution issues, the PET study used a sample
of insomnia patients who did not show objective
sleep continuity disturbances in the laboratory,
whereas the SPECT study included patients with
objective sleep continuity disturbances. The
samples may have differed with respect to the
type of insomnia, the degree of partial sleep depri-
vation, and the degree of sleep state mispercep-
tion. Although further studies are needed, these
preliminary investigations clearly demonstrate the
feasibility of using functional neuroimaging
methods in the study of insomnia, and suggest
that insomnia complaints may indeed have a basis
in altered brain activity. For additional information
on how imaging may be informative regarding
the neurobiology of insomnia, the reader is
referred to an article by Drummond and
colleagues, published in 2004.64
August 2009 � 4:15 am
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SUMMARY

Although it is provocative and intellectually chal-
lenging to claim that insomnia is ‘‘of the brain
and by the brain,’’4 the causes and consequences
of insomnia are not likely to be so narrowly
circumscribed.

First, if one allows that chronic insomnia occurs
as the result of abnormal functioning of specific
brain regions or the sleep-wake systems, it is still
likely that the changes in brain function are permis-
sive of cognitive processes that independently
contribute to problems with initiating and main-
taining sleep (or perceiving sleep as ‘‘sleep’’). For
example, if the insomnia occurs in relation to
altered thalamic activation, the consequent
increase in sensory processing (by either
increased sensory flow or reduced sensory inhibi-
tion) likely independently contributes to insomnia
because the individual experiences an increased
sensitivity to external stimuli.

Second, if it is demonstrated that insomnia is
a neurobiologic condition, it is still likely to be
true that insomnia frequency, severity, or chro-
nicity are mediated or moderated by cognitive
and behavioral factors. For example, one may
not be awake during the preferred sleep phase
because of worry or attention bias, but these
factors are nevertheless likely to exacerbate the
condition in ways that make it more severe, more
frequent, and more chronic.

Third, irrespective of the mechanisms that give
rise to insomnia, it is likely that the condition inter-
feres with many of the putative functions of sleep.
In the end, the causes of insomnia may be
primarily related to the brain but the effects of
insomnia may span many domains including
both the psychologic (eg, mood; daytime fatigue
or sleepiness; cognitive capacity, from executive
function to long-term memory) and the physiologic
domains (eg, immunity, the capacity to recover
from traumatic injury, and even longevity in the
absence of illness).

In the final analysis, insomnia may be precisely
as it has been classically defined: a psychophysio-
logic thing. Perhaps the only difference between
the original concept and the current one is a matter
of scope. Originally, it may have been the case that
psychologic factors were construed only in terms
of mental phenomena like worry and rumination
and behavioral phenomena like sleep extension
and poor stimulus control, and physiologic factors
were construed only in terms of metabolic rate.
Today psychologic factors include sensory and
information processing abnormalities and atten-
tional bias and physiologic factors include not
only end-organ function and tone but the brain
CSLP232_proof � 12 Augu
O
F

abnormalities that may directly give rise to the
insomnia condition. Expanding existing frames of
reference in this manner may allow clinicians to
abandon the mind-brain dichotomies and long-
standing discipline-specific research agendas
(eg, psychology versus neuroscience) that have
long plagued mind-brain research in general and
insomnia research in specific. Further, expanding
existing frames of reference in this manner may
lead to a new approach to the problem of
insomnia, one that is more integrative and
synthetic.
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