Mechanisms of Treatment Resistance in Context of Axicabtagene Ciloleucel for Lymphoma

Adrian Bot, M.D., Ph.D.
Vice President and Global Head, Translational Medicine
Head of Research, Santa Monica

Cellicon Valley, The Future of Cell and Gene Therapies
May 6-7, 2021
Disclosure

Employment at Kite, a Gilead Company, and equity ownership in Gilead Sciences, Inc.
Scientific Advisory Board, Elicio Therapeutics
Historical Evolution of Cancer Therapies

1940s
First chemotherapy approved
Chemotherapy
Indiscriminate – kills healthy and cancer cells

1990s
First targeted antibody therapy approved
Targeted Therapies
Target receptor/molecular oncogenic drivers

2010s
Checkpoint inhibitors approved
Immuno-Oncology
Checkpoint and innate immunity modulators

2017
CD19 CAR T cell therapy introduced
T Cell Therapy
Re-engineered T cells

CAR: Chimeric Antigen Receptor
Five T Cell Therapy Products Approved to Date
All in B-Cell Malignancies including Myeloma, and Target CD19 and BCMA

August 30, 2017 – Kymriah® (tisagenlecleucel) for the treatment of patients up to 25 years of age with B-cell precursor acute lymphoblastic leukemia (ALL) that is refractory or in second or later relapse.

October 18, 2017 – Yescarta® (axicabtagene ciloleucel) for the treatment of adults with certain types of relapsed or refractory large B-cell lymphoma after receiving 2 or more lines of systemic therapy.

May 1, 2018 – Kymriah® (tisagenlecleucel) the treatment of adult patients with relapsed or refractory (r/r) large B-cell lymphoma after two or more lines of systemic therapy.

July 24, 2020 – Tecartus® (brexucabtagene autoleucel) for relapsed or refractory Mantle Cell Lymphoma.

February 5, 2021 – Breyanzi® (lisocabtagene maraleucel) for adults with relapsed or refractory (r/r/l) large B-Cell lymphoma after two or more lines of systemic therapy and follicular lymphoma grade 3B.

March 5, 2021 – Yescarta® (axicabtagene ciloleucel) for treatment of adult patients with relapsed or refractory Follicular Lymphoma after two or more lines of systemic therapy.

March 5, 2021 – Abecma® (idecabtagene vicleucel), for patients with relapsed or refractory multiple myeloma who have previously received at least four lines of treatment.
ZUMA-1 Axi-Cel Trial in DLBCL: Updated Overall Survival (mITT, n = 101)

- Among axi-cel–treated patients (mITT, n = 101), with ≥ 4 years of follow-up (median, 51.1 months), median OS was 25.8 months, and the KM estimate of the 4-year OS rate was 44%
- Among the entire enrolled population (ITT, n = 111), median OS was 17.4 months, and the KM estimate of the 4-year OS rate was 41%

Axi-cel, axicabtagene ciloleucel; KM, Kaplan-Meier; mITT, modified intent-to-treat; NE, not estimable; OS, overall survival.
CAR T Cell Expansion and Durable Response Following Axi-Cel

No. of Patients

| 106 | 98 | 99 | 99 |

Time Post-Axi-cel Infusion, months

| 1 | 2 | 3 | 6 | 12 | 18 | 24 |

Durable Response

Durable Response by Peak CAR T Cells

$P = 0.0159$

Durable Response by Peak CAR T Cells / Tumor Burden

$P = 0.0017$

BL, baseline; LLOQ, lower level of quantification.

Solid line indicates median. Dashed lines indicate Q1 and Q3.

Locke FL, et al. submitted for publication.
Key Questions

• What are categories of factors that influence clinical outcomes to Axi-cel?
• Which are the most influential parameters within each category?
• What are potential treatment optimizations based on mechanisms of treatment resistance?
Product Attributes and Tumor Characteristics that May Influence Clinical Efficacy of Axi-cel in LBCL

Immune system pre-Tx
- ↑ CD27+ CD28+ CD4+ Tn cells
- ↑ CD14+ CD16+ myeloid cells
- ↑ Inflammation

Product attributes
- ↑ CD45RA+ CCR7+ T cells

Tumor characteristics
- ↑ CD8+ PD-1+ TIM-3- T cells
- ↑ Tumor burden ↑ Myeloid signature

Tumor antigen biology
- ↑ Target-negative tumor cells

CAR T cell expansion in vivo
- ↑ Peak CAR / Tumor burden

≈ 40% ongoing response
≈ 45% relapse
≈ 15% no response

Durable clinical response

Neelapu et al NEJM 2017
Locke et al Lancet Oncology 2018
Locke et al Blood Advances 2020
Plaks et al submitted
Scholler et al submitted
Pre-Treatment Tumor Burden and Durable Response Following Axi-Cel

Probability of Durable Response by Baseline Tumor Burden

- Probability of durable response
- Baseline tumor burden, mm2
- $P = 0.0259$

Probability of Durable Response by Product T Cell Fitness

- Probability of durable response
- CD8$^+$ T_N Cells/Tumor Burden (106 cells/mm2)
- $P = 0.0162$
- $N = 43$

TN defined as CD45RA$^+$ CCR7$^+$

Tumor Immune Contexture Associates with Axi-Cel Outcomes in DLBCL

TME density of CD3+ CD8+ T cells

Immune gene expression in TME
CD19-Related Axi-Cel Treatment Evasion in a Subset of Axi-Cel Patients

Differential change in CD19 and CD20 expression at relapse

IHC, immunohistochemistry

Neelapu SS, et al. ASH 2019 #203
Plaks et al, submitted
Mechanisms of Axi-Cel Treatment Resistance in LBCL: Summary

~ 40%

Durable response

~ 15%

Target related secondary Tx resistance

- Optimal product attributes
- Favorable TME
- Robust CAR T cell expansion
- Complete tumor elimination

~ 30%

Product & tumor-related secondary Tx resistance

- Large tumor burden & detrimental TME (myeloid cells)
- Suboptimal product attributes (↓dose of juvenile T cells)
- Low CAR T cell expansion / tumor burden
- Partial tumor reduction
- Relapse with target-positive tumor

~ 15%

Primary Tx resistance (PD or SD)

- Detrimental TME (immune desert or exclusionary)
- Low product T cell fitness
- Suboptimal CAR T cell expansion
- Lack of tumor reduction

- Optimal product attributes
- Favorable TME
- Robust CAR T cell expansion
- Complete tumor elimination

- Large tumor burden & detrimental TME (myeloid cells)
- Suboptimal product attributes (↓dose of juvenile T cells)
- Low CAR T cell expansion / tumor burden
- Partial tumor reduction
- Relapse with target-positive tumor

- Detrimental TME (immune desert or exclusionary)
- Low product T cell fitness
- Suboptimal CAR T cell expansion
- Lack of tumor reduction
Potential optimizations to enhance clinical efficacy of anti-CD19 CAR treatment in lymphoma

Primary Tx resistance
- Low product T cell fitness
 - “Cold” TME

Secondary Tx resistance
- Large tumor burden & detrimental TME
 - Low CAR T cell expansion / tumor burden
- CD19 related evasion

- Manufacturing and product attributes optimization; off the shelf products
- Combinations or sequencing with checkpoints; CAR armoring
- Re-dosing with CAR T cells (consolidative)
- Combination / consolidation with anti-CD20/CD22 agents (R², Bites, ADC)
- Dual targeted CAR T cell products
Conclusions

- Durable response to Axi-cel occurs in a subset of DLBCL patients with optimal product attributes and tumor characteristics
- Major mechanisms of treatment resistance to Axi-cel in DLBCL include
 - Limited product T cell fitness or dose of specialized T cells / tumor burden
 - An immune detrimental tumor microenvironment
 - Target related evasion

Major directions / questions

- Product and treatment optimizations that enhance efficacy and lower toxicities
- Role of endogenous T cell repertoire and immune cells
- Off the shelf cell therapies with improved clinical performance over autologous
Acknowledgments

• Patients, family, friends, and caregivers

• Study staff and health care professionals at The University of Texas MD Anderson Cancer Center; Moffitt Cancer Center; Washington University; University of Miami; Stanford University; Dana-Farber Cancer Institute; Montefiore Medical Center; Vanderbilt University Medical Center; City of Hope; Mayo Clinic; University of California Los Angeles; Loyola University Medical Center; University of Rochester School of Medicine; Sarah Cannon Research Institute; John Theurer Cancer Center; Hackensack University Medical Center; Cleveland Clinic; Karmanos Cancer Center; University of Iowa Carver College of Medicine; Tel Aviv Sourasky Medical Center; University of California San Diego; National Cancer Institute; INSERM

• Kite Translational Medicine, Biometrics, Clinical Development

• Medical writing support was provided by Medical Affairs, Kite a Gilead Company, and Nexus Global Group Science, LLC, with funding from Kite

• Clinical data/translational data support by Chiltern, URMC Central Lab, NeoGenomics, and Kite

• This study is supported by Kite and in part by funding from The Leukemia & Lymphoma Society (LLS) Therapy Acceleration Program®