Gene Therapy for Hemoglobinopathies

Janet L. Kwiatkowski, MD, MSCE

Cellicon Valley ‘21: Future of Cell and Gene Therapies
May 6, 2021
Disclosures

• Consultant: bluebird bio, Celgene (Bristol Myers Squibb), Imara, Agios

• Site principal investigator: bluebird bio, Sangamo, Bioverativ, CRISPR, ApoPharma (Chiesi), Terumo BCT
Overview

• Background

• Gene therapy methods
 – Gene addition
 – Gene editing
 – Post-transcriptional silencing of *BCL11A* for SCD

• Efficacy of gene therapy

• Safety of gene therapy
Sickle Cell Anemia and β-Thalassemia

Adult Hemoglobin

- **Mutations that alter the structure**
 - (Single mutation, β6 glu → val)

- **Mutations that reduce the synthesis**
 - (>200 mutations
 - β0 - severe; β+, HbE - milder)

Consequences of Abnormal β-Globin Chain Structure
- Vaso-occlusion
- Hemolysis
- Anemia

Consequences of Reduced β-Globin Chain Production
- Ineffective erythropoiesis
- Hemolysis
- Anemia

Similar approaches to gene therapy for both disorders with disease-specific modifications in treatment and assessment of efficacy.
Gene Addition

- Self-inactivating lentiviral vector

- Beta globin gene addition
 - Lentiglobin (beti-cel, bb1111): Single amino acid substitution T87Q that has anti-sickling properties and can be distinguished from HbA by HPLC
 - GLOBE
 - Others in earlier phase of study

- Gamma globin gene addition
 - RVT-1801: Modified gamma globin with anti-sickling properties
 - Also utilizes non-myeloablative conditioning
Gene Editing

- **Rationale:** raise HbF levels by reducing BCL11A, a HbF repressor, or editing gamma globin promoter region
 - Improves alpha:beta-like imbalance
 - Reduces Hb S polymerization

- **Ongoing clinical trials**
 - CRISPR
 - Zinc finger

Double strand break
- Non-homologous end rejoining
- Homologous recombination
- Insertions or deletions “indels”
- Donor DNA
- Gene replacement/correction
Lentiviral vector targeting BCL11A (BCH-BB694)

- Gene therapy approach using a lentiviral vector which encodes a short hairpin RNA (shRNA) targeting BCL11A mRNA embedded in a microRNA
 - Downregulation of BCL11A
 - Regulated erythroid expression: avoids off-target toxicity in HSCs and B Cells

HSC, hematopoietic stem cells
Ex-Vivo Gene therapy: Schema

HSC Collection: HSCs harvested from bone marrow or by mobilization & apheresis

Transduction or Gene Editing: HSC modified by transduction (gene addition) or gene editing

Reinfusion: Conditioning (partial or full myeloablation) and reinfusion of genetically modified HSC

Hematopoietic stem cells

Modified hematopoietic stem cells

Informed Consent
Efficacy of Gene Therapy
HGB-207 and HGB-212 interim results: transfusion status following Beti-cel infusion

- **HGB-207**
 - 91% (20/22) with > 3mo follow-up stopped transfusion

- **HGB-212**
 - 85% (11/13) have been off transfusions for > 6mo

*Supported by transfusions; †Patient’s total Hb level at Month 22 was 13.2 g/dL. Following a planned orthopedic surgery, the patient had blood loss, which required 1 packed RBC transfusion; ‡Transfusion within 60 days. Hb, haemoglobin; RBC, red blood cell; TDT, transfusion-dependent β-thalassemia. Data as of 3 March 2020
Sickle Cell Disease (HGB-206 Group C)
Improvement in Hemoglobin; HbA^{T87Q} ≥ 40%

<table>
<thead>
<tr>
<th>Months post-LentiGlobin infusion</th>
<th>Baseline</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
<th>21</th>
<th>24</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>N<sup>+</sup></td>
<td>15</td>
<td>25</td>
<td>22</td>
<td>22</td>
<td>17</td>
<td>13</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>

Improvement in markers of hemolysis (LDH, bilirubin, reticulocyte count)

% represents median Hb fraction as % of total Hb; *Number of patients with data available. Hb, hemoglobin; max, maximum; min, minimum.
HGB-206 Group C: Complete resolution of VOEs ≥6 months post-LentiGlobin treatment

Protocol VOE are shown; Patients with ≥ 4 sVOE at baseline before IC and with ≥ 6 months of follow-up post-DP infusion are included. A VOE includes episodes of acute pain with no medically determined cause other than a vaso-occlusion, lasting more than 2 hours and severe enough to require care at a medical facility, a VOE includes acute episodes of pain, acute chest syndrome, acute hepatic sequestration, and acute splenic sequestration; \(^*\)HbA\(^{T87Q}\) expression stabilizes within 6 months; \(^\dagger\)One death, unlikely related to LentiGlobin, > 18 months post treatment in a patient with significant baseline SCD-related cardiopulmonary disease.

Note: In the last dataset, one patient had a non-serious VOC at Day 107. The event is recorded as an investigator reported VOE but does not meet the definition of a protocol VOE.

Data as of 20 August 2020
CRISPR in Transfusion Dependent Thalassemia (CTX001): Rapid improvement in HbF, Total Hb

Median Hb fractionationa, Hb g/dL

<table>
<thead>
<tr>
<th>CTX001 infusion</th>
<th>Baseline</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbAd</td>
<td>0.3 (0.0 – 0.6)</td>
<td></td>
</tr>
<tr>
<td>HbFd</td>
<td>0.1 (0.1 – 1.8)</td>
<td></td>
</tr>
<tr>
<td>HbA2</td>
<td>5.1 (1.9 – 7.0)</td>
<td></td>
</tr>
<tr>
<td>Hb, othera</td>
<td>8.8 (6.6 – 12.1)</td>
<td></td>
</tr>
<tr>
<td>Total Hb, Median (range), g/dL</td>
<td>10.1 (8.4 – 12.0)</td>
<td>8.8 (6.6 – 13.2)</td>
<td>10.5b (6.6 – 12.1)</td>
<td>11.5 (8.5 – 13.1)</td>
<td>12.1 (11.0 – 12.9)</td>
<td>12.0 (11.1 – 13.6)</td>
<td>11.6 (10.3 – 13.4)</td>
<td>12.2 (11.9 – 12.5)</td>
<td>12.7</td>
<td>13.5</td>
<td>14.2</td>
</tr>
<tr>
<td>Months after CTX001 infusion</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

n = 7

aHb adducts and other variants. bWith respect to Patient 2, Total Hb from local laboratory and Hb fraction from central laboratory.

Franjoul, et al, ASH 2020
CRISPR in Sickle Cell Disease (CTX001): Improvement in Fetal and Total Hemoglobin

<table>
<thead>
<tr>
<th>Patient</th>
<th>Hb fractionation, Hb g/dL</th>
<th>CTX001 infusion</th>
<th>Months after CTX001 infusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HbA</td>
<td>HbF</td>
<td>HbS</td>
</tr>
<tr>
<td>Patient 1</td>
<td>7.2</td>
<td>9%</td>
<td>74%</td>
</tr>
<tr>
<td>Patient 2</td>
<td>6.0</td>
<td>5%</td>
<td>90%</td>
</tr>
<tr>
<td>Patient 3</td>
<td>9.2</td>
<td>4%</td>
<td>43%</td>
</tr>
</tbody>
</table>

\(^a\)Hb adducts and other variants.

Fetal hemoglobin expression is pancellular

Franjoul, et al, ASH 2020
CRISPR in Sickle Cell Disease (CTX001): Resolution of Vasoocclusive Pain Episodes following Treatment

Pre-study VOC burden
Average number per year over the previous 2 years

- **Patient 1**
 - Pre-study VOC burden: 7.0
 - Total Hb at last visit: 12.0 g/dL

- **Patient 2**
 - Pre-study VOC burden: 7.5
 - Total Hb at last visit: 11.5 g/dL

- **Patient 3**
 - Pre-study VOC burden: 4.0
 - Total Hb at last visit: 13.2 g/dL

All patients have detectable haptoglobin and improved LDH, indicating no evidence of hemolysis.

SCD: sickle cell disease; VOCs: vaso-occlusive crises.

Franjoul, et al, ASH 2020
Post-transcriptional Genetic Silencing of BCL11A (BCH-BB694)

<table>
<thead>
<tr>
<th>Patient</th>
<th>Follow-up (mo)</th>
<th>% Hb F</th>
<th>F-cells (%)</th>
<th>Recent Hb</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>24</td>
<td>22.7</td>
<td>71</td>
<td>11.4</td>
</tr>
<tr>
<td>3*</td>
<td>18</td>
<td>20.4</td>
<td>58.9</td>
<td>9.5</td>
</tr>
<tr>
<td>4</td>
<td>21</td>
<td>31.9</td>
<td>81.9</td>
<td>11.1</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>38.8</td>
<td>65.3</td>
<td>11.0</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
<td>29</td>
<td>70.6</td>
<td>11.0</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>41.3</td>
<td>93.6</td>
<td>9.3</td>
</tr>
</tbody>
</table>

*Remains on transfusions

- No vaso-occlusive pain events or acute chest
- 1 episode recurrent priapism >5 months post gene tx

Safety of Gene Therapy

- Adverse effects typical of myeloablative chemotherapy
 - Beticel: VOD in 5/41 subjects with thalassemia; bb1111: no VOD in SCD
 - HLH reported in 1 patient with TDT treated with CTX011 - though secondary to conditioning
 - Long-term: infertility risk

- Lentiglobin: slow platelet engraftment

- No vector mediated replication competent LV
 - One subject with thalassemia treated with beticel acquired HIV infection, 23 mo after drug product infusion – Wildtype HIV-1 documented

- Sudden death in one subject with SCD, Group C, 20 months after treatment, thought unrelated to the gene therapy
<table>
<thead>
<tr>
<th>Patient: SCD Pt 1</th>
<th>Patient: SCD Pt 2</th>
<th>Patient: SCD Pt 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of Diagnosis:</td>
<td>2018</td>
<td>2021</td>
</tr>
<tr>
<td>Age</td>
<td>45 year old</td>
<td>Adult</td>
</tr>
<tr>
<td>Study/Group</td>
<td>HGB-206/Group A</td>
<td>HGB-206/Group C</td>
</tr>
<tr>
<td>Time from dosing to diagnosis</td>
<td>3 years</td>
<td>6 months</td>
</tr>
<tr>
<td>Presenting diagnosis</td>
<td>MDS (progressed to AML)</td>
<td>MDS?</td>
</tr>
<tr>
<td>Relevant findings</td>
<td>Monosomy 7, No vector in blast cells</td>
<td>Trisomy 8, No blasts/dysplasia identified therefore MDS cannot be confirmed</td>
</tr>
<tr>
<td></td>
<td>Pre-tx BM negative for monosomy 7 and NGS for 54 mutations associated with AML</td>
<td>Follow-up BMA without genetic abnormality</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Diagnosis revised to transfusion-dependent anemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lentiglobin SCD trials placed on hold. Clinical use of Zynteglo for thalassemia (Europe) on hold.
Summary/Conclusions

- Beta globin gene addition trials have achieved hemoglobin levels that enable transfusion independence in β-thalassemia and improvement in anemia and vasoocclusive events in SCD.

- CRISPR gene editing targeting BCL11a also with early results showing robust HbF production, transfusion independence in thalassemia and improvement in anemia and vasoocclusive events.

- Safety profile generally consistent with myeloablative conditioning, autologous transplant, and the underlying blood disorder.
 - Cases of MDS/AML in SCD have resulted in clinical trial hold.

- Gene therapy may offer an alternative curative/disease modifying treatment option but a better understanding of leukemia risk especially for patients with SCD is needed.