New mechanical approaches to perform cell transfections

Todd Sulchek

Georgia Tech Woodruff School of Mechanical Engineering Wallace H. Coulter Department of Biomedical Engineering CellFE, Inc., Co-Founder

Cellicon Valley '21—Viral Vector Free

http://www.sulchek.gatech.edu/ todd.sulchek@me.gatech.edu todd@cellfebiotech.com ector Free Delivery May 6, 2021

Overview of talk

- Review of challenges associated with cell engineering
- History of using mechanical forces for transfections
- Phenomena of using rapid deformations to compress cells and generate active delivery of cargo
- Applications of the technology for cell and gene engineering

Cell Engineering

The cell therapy roadblocks—payload delivery

Currently used approaches

Viral Delivery

Chemical Membrane Permeabilization

- Expensive (\$50K-\$150K / patient)
- Limited access (~1 year wait time)
- Limits to vector size (~ 8 kb)
- Safety concerns

- Relatively cheap
- Not effective for all cell types
- Need for GMP approved reagents

Flow-through electroporation

- Cell loss of >50% of cells common
- Cell phenotype and functional changes
- Challenges to scale from benchtop to clinical scale

The use of mechanical forces to deliver payloads

Cell Squeezing: PNAS 2012, Sci Rep 2015

A number of other promising techniques...

CRISPR-Cas9 delivery via membrane deformation, <u>Science Advances</u> 2015, **L. Qin** Intracellular Delivery of Nanomaterials via an Inertial Microfluidic Cell Hydroporator, <u>Nano</u>

Letters 2018, A. Chung

Intracellular delivery of mRNA to human primary T cells with microfluidic vortex shedding, <u>Sci</u> <u>Reports</u> 2019, **R. Pawell** <u>First mechanical approach:</u> "A Technic for the Inoculation of Bacteria and Other Substances Into Living Cells," J. Infectious Diseases (1911).

<u>Squeezing:</u> Reagentless Mechanical Cell Lysis. <u>Lab on a</u> <u>Chip 2003</u>, **Di Carlo**

Shock wave / acoustic molecular delivery:
Biochimica et Biophysica Acta, 2002,
HamblinSci. Reports 2016 Fedorov

<u>Shear force molecular delivery:</u> *Biochimica et Biotechnol Bioeng.* 2008, **M. Prausnitz**

With a few exceptions, mechanical approaches have had limited success with delivery of large payloads

Delivery hypothesis for mechanical forces

For delivery of genetic cargo, we need:

- A hole in the cell
- A transport mechanism

Diffusion provides limited capacity for transport of large cargo: D=T/6πηa

Active transport dextran delivery

- Delivery via ridged microfluidics did not show decrease with size expected from diffusive transport
- Mechanical mode is more of an impact and deformation
- Opportunity to leverage new transport mechanisms

Liu, Materials Today 2018

Active **molecular delivery** without electric fields—volume exchange for convective transfections (VECT)

Liu, Materials Today 2018

- Ultrafast, microfluidic cell compressions cause <u>cell</u> volume exchange for convective transfer (VECT) of molecules.
- Convective delivery is (relatively) <u>independent of</u> <u>molecule size</u>.
- a wide array of macromolecules and particles can be delivered.
- Rapid (10⁷ cells/min/channel),
- Simple to scale from bench to clinical throughputs

Delivery mechanism hypothesis: compressed state of cell due to rapid deformation **Cell biophysical responses**

0.0

0.1

100

1000

10

Ericksen number

- Cells expand under the ridge at low velocity, but not at fast velocity
- Volume loss increases with faster flow

Design of "mechanical programs" to hone mechanical and hydrodynamic forces to elicits desired cell responses

20

Cell viscous responses

2) Yet, ridge spacing can be tuned to cell

Step 2: convective delivery via cell relaxation

Transfection Results in Primary Cell Carriers

Cell types and payloads tested by CellFE and academic collaborations

Instrument and Consumable Leads to High(er) Efficiency RNP Mediated Knock Out in T Cells

- RUO Condition #1
- RUO Condition #2
- RUO Condition #3

Preliminary data shows successful pDNA transfection across a variety of cell types, both primary cells (T cells and HSPCs cells) and cell lines (Jurkat).

Data set courtesy: Dr. Miguel Calero-Garcia (CellFE)

Delivering large vectors for gene correction of large transgenes in induced pluripotent stem cells

- Large transgenes and vectors (i.e. >8 kilobases) express poorly using viral or lipofection approaches.
- An emerging need exists for large vector delivery (e.g. large therapeutic transgene, plasmids with multi-functional cassettes).
 - Several genetic diseases (e.g. dystrophin: 11 kb; Factor VIII: 7 kb, Ush2A: 15 kb)

Data set courtesy: Dr. Budd Tucker (U Iowa)

Preserved Cell Functionality

Productization and Operational Capacity

RUO Instrument & Consumable Development

RUO Consumable

- 8 channels
- Each channel processes 0.1–1 ml at a cell density of 1 – 8M cells/mL (processing time: 10 sec - 1 min)
- Automatic processing of 8 samples

Elegant device design can be adapted to any workflow to enable seamless transition from discovery to clinical manufacturing

High Throughput consumable

- Processing tolerates broad range of cell densities
- Multichannel-processing results in equivalent product yield
- 330 channels demonstrated.

Total cell number: 100M cells

Cell density: 4 M cells/mL mRNA concentration: 50 µg/mL Applied pressure: 5 bar Gap size: 5 µm

Data set courtesy: Dr. Sewoon Han (CellFE)

19

1B cells, 1 step, 1 minute Scaled to clinically relevant throughput for cell therapy

Consumable is scaled through multiplexing channels Viability and transfection rate are maintained

SellFE

The average cell type distribution consistent with the No Device, the un-VECTed sample.

Data set courtesy: Dr. Sewoon Han (CellFE) CellFE

Future Directions and Specific Challenges

VECT platform is uniquely positioned to address transfection needs in cell therapy

CELLFE CAPABILITIES	CHALLENGES ADDRESSED			
FUNCTIONAL, HEALTHY CELLS	AUTOLOGOUS CELL THERAPY	 Enables complicated genetic engineering Reduces risk of manufacturing failures Reduces manufacturing time and cost Enables point of care systems 1B cells in 1 minute 		
HIGHLY SCALABLE	ALLOGENEIC CELL THERAPY	 Reduces manufacturing time and cost Enables efficient scale up Can perform multiplexed knock-outs more safely 		
Find the second	uture Ilenges • Rapid manufactor operations or r • Safer multiplex • Solutions to vis	cturing workflows with minimal unit need for cell expansion steps; ked editing; sualize therapeutic cell trafficking <i>in vivo</i> . 22		

Rapid Manufacturing workflows: <u>T Cells</u> and <u>NK Cells</u> Can Be Transfected As PBMCs With mRNA at High Efficiency

PBMC Transfection with mRNA

PBMC populations are <u>maintained</u> <u>through the transfection</u> process. T cells and NK cells can be <u>transfected at high</u> <u>efficiency</u> when processed as raw PBMCs

VECT Efficiently Co-Transfects Multiple CRISPR/Cas9 RNPs in T Cells

Data set courtesy: Dr. Miguel Calero-Garcia (CellFE)

RNP Co-Transfection in T Cells

- Efficient co-delivery of CRISPR/Cas9 RNPs, as exemplified by the generation of TCR/CD5 double KO cells.
 - Can new transfection tools alter the modality of multiplexed edits to avoid risks of genomic instability and translocations?

Liu and Sulchek, Small 2019

"One-step" labeling of cell therapies for in vivo tracking of homing

VECT can be used to deliver 1 pg/cell ferumoxytol magnetic nanoparticles to 30M cells in 15 mins to enable *in vivo* imaging

Negative contrast MRI Imaging

MRI data set courtesy: Dr. Heike Daldrup-link (Stanford) PET data set courtesy: Dr. Guillem Pratx (Stanford)

- Nejadnik et al., *Theranostics* 2020, Vol. 10, Issue 13
- "Tracking of stem cell using instant mechanoporation with radiolabeled MSNs in PET" Jung et al., in review
- "In vivo imaging of nanoparticle labeled CAR T-cells", Kiru et al. in review

- Summary and Thanks! Sulchek BioMEMS Group: Anna Liu, Dr. Muhymin Islam, Nick Stone, Academic Collaborators: <u>GT:</u> Alex Alexeev, Peng Qiu, Emory: Wilbur Lam, Edmund Waller, Sunil Raikar, Trent Spencer, Stanford: Heike Daldrup-Link, Guillem Pratx, U lowa: Budd Tucker, CUNY Albany: Alexander Shekhtman, UPenn: Bruce Levine, Joseph Fraietta
- Funding (GT & CellFE):
 - NSF CBET (2010-2013); NSF CMMI/BMMB (2015-2018); NIIMBL (2020-2021); NSF/CMAT (2020) NIH/SBIR NCI; NIH/SBIR NHLBI; NIH/SBIR NCI Anna Nick
- Mechanical forces can be used to deliver large payloads provided the deformation forces act at fast timescales
- Large deformation forces acting on short time scale can avoid altering cell phenotype.
- Productization of precise microfluidic components into silicon and plastic are possible
 - Improves the reliability of results
- Scaleup of processing rates to <u>1B PBMCs/min</u> is possible
- Addressing manufacturing challenges of therapies can unlock access.

Publications:

- A Liu, "Microfluidic generation of transient cell volume exchange for convectively driven intracellular delivery of large macromolecules" Materials Today 2018
- A. Liu "Cell mechanical and physiological behavior in the regime of rapid mechanical compressions that lead to cell volume change" Small 2019
- H. Nejadnik "Instant labeling of therapeutic cells for multimodality imaging" Theranostics 2020
- N. Stone "Microfluidic processing of stem cells for autologous photoreceptor cell replacement" under review
- "Tracking of stem cells using instant mechanoporation with radiolabeled MSNs in PET" Jung et al., in review
- "In vivo imaging of Nanoparticle labeled CAR T-cells", Kiru et al., in review
- "Microfluidic transfection of mRNA into human primary lymphocytes and hematopietic stem cells using ultra-fast physical deformations", Loo et al., in review.

Edmund

http://www.sulchek.gatech.edu/ todd.sulchek@me.gatech.edu todd@cellfebiotech.com

High Efficiency RNP Mediated Knock Out in <u>T Cells</u> and **Consistent Across Donors**

Highly efficient delivery of CRISPR/Cas9 RNPs, as measured by the generation of TCR KO T cells.

Data set courtesy: Dr. Miguel Calero-Garcia (CellFE)

Immunophenotype

	Tn	Tscm	Tcm	Tem	Temra
CD45RA	+	+	-	-	+
CD45RO	-	-	+	+	-
CD62L	+	+	+	-	-
CD95	-	+	+	+	+

Data set courtesy: Dr. Miguel Calero-Garcia (CellFE)

Flexible in a Wide Range of Cell Densities and Payload Concentrations

Delivery and Co-Delivery of mRNA into Primary Human CD34+ HSPCs

n = 3
24 hrs post-transfection
Recovery Rate = Output Live Cell # / Input Live Cell # x 100%
Product Yield = Recovery Rate x Transfection Efficiency

vormalized To Mode

Representative image of VECT transfection in HSPCs

mRNA Co-Transfection in Human CD34⁺ HSPCs 100-10 **Q**1 Transfection efficiency (%) eGFP 1.30 75-:: GFP FITC-A 50-FL1-A 25- -10^{3} nctory" off nave ncteryment estPmpha **n** = 3

- n = 324 hrs post-transfection
- Highly efficient delivery of mRNA into HSPCs
- High viability and recovery of the cell product
- Co-transfection is equally successful, and results in co-localization of both mRNA molecules

Data set courtesy: Dr. Miguel Calero-Garcia (CellFE)

Simplified Workflow Enables Rapid Manufacturing

VECT with CellFE Device

The cell therapy roadblocks

- Bongiorno, Stemness-based sorting, *PLoS One* 2018
- Stone, photoreceptor cell isolation, Experimental Eye Research 2020

A unique opportunity to apply microfluidics technologies to integrate workflows