Table 1: Current viral measurements and strategies to estimate HIV reservoir size.

Assay	What it measures?	Advantages	Drawbacks	Involves stimulation and/or expansion?	Available at Virus & Reservoirs Core?
	Assays meas	suring levels of replication	-competent virus or intact	HIV genomes	
Quantitative Viral Outgrowth assay (QVOA). ¹⁻⁵	Frequencies of cells harboring replication- competent HIV that can be induced <i>ex vivo</i> to produce infectious virus.	Has been regarded as the definitive assay to measure the size of the replication-competent HIV reservoir; clade independent.	Underestimates the size of the replication- competent HIV reservoir; requires a large number of cells; time-consuming and labor-intensive; cost- intensive.	<i>ex vivo</i> stimulation followed by expansion.	Yes
Modified QVOA using cell lines supporting HIV replication. ⁶	Frequencies of cells harboring replication- competent HIV that can be induced <i>ex vivo</i> to produce infectious virus.	Less labor-intensive and more consistent compared to the traditional QVOA; clade independent.	Underestimates the size of replication-competent HIV reservoir; requires a large number of cells; cost-intensive.	<i>ex vivo</i> stimulation followed by expansion.	No
The qualitative and quantitative viral outgrowth assay (Q2VOA). ⁷	Frequency of cells encoding HIV proviral DNA that can be induced <i>ex vivo</i> , as well as genetic and potentially phenotypic	Provides additional insights on the qualitative nature of HIV proviral DNA.	Underestimates the size of the replication- competent virus as it misses replication- competent non-induced proviruses, similar to	<i>ex vivo</i> stimulation followed by expansion.	No

Intact proviral	characterization of latent viruses. Frequency of cells	Eliminates 97% of	traditional QVOA. Labor, time, and cost-intensive; the sequencing part of the assay could be clade dependent. Sequence polymorphisms	No stimulation or	
DNA assay (IPDA): HIV DNA by digital droplet PCR targeting multiple regions of proviral DNA to exclude deleted and hypermutated proviruses. ⁸	encoding intact and defective proviral HIV DNA.	defective proviruses and is predicted to overestimate the size of the latent reservoir by only ~ 1.5 fold; simple, medium cost, and fast compared to traditional QVOA.	could preclude amplification in some patients; alternative primers/probes needed; clade-dependent; does not measure the inducibility of the proviruses.	expansion.	Yes. Available for HIV+ human cells, SIV/SHIV+ NHP cells
HIV DNA by limiting dilution four-probe qPCR assay followed by sequence verification of reactions positive for two or more probes (Q4PCR). ⁹	Frequency of cells encoding intact and defective proviral HIV DNA confirmed by sequencing.	Estimates levels of replication-competent virus; results are verified by sequencing; sensitive.	Lower throughput and more time-consuming, and labor-intensive compared to IPDA; cost- intensive; clade dependent; does not measure the inducibility of the proviruses; does not provide absolute quantification.	No stimulation or expansion.	No

Near full-length individual proviral sequencing (FLIP-Seq). ^{4,10}	Levels and genetic characteristics of genetically-intact proviruses.	Measures the levels of genetically-intact proviruses in a definitive manner.	Time-consuming and labor-intensive; cost- intensive; requires custom design of primers.	No stimulation or expansion.	No
Proviral ultra- deep sequencing. ¹¹	Could measure levels of genetically-intact proviruses.	Cost-effective; simple compared to single- genome sequencing.	Potential template resampling and PCR errors/bias; cost-intensive; clade dependent.	No stimulation or expansion.	No
High throughput integration site sequence analysis. ^{12 13}	Distributions of integration HIV proviruses, with linked information on clonal abundance	Efficiently reports locations of integration sites, and associations of insertional mutagenesis and clonal expansion	Requires specialized expertise; cost-intensive; requires workable numbers of proviruses to analyze in samples	No stimulation or expansion.	Yes
Matched integration site and proviral sequencing (MIP-Seq). ¹⁴	Individual proviral sequences and corresponding chromosomal integration site.	Investigate chromosomal positioning and integration site features of intact HIV-1 proviruses.	Technically complex and cost-intensive.	No stimulation or expansion.	No
Murine viral outgrowth assay (mVOA). ¹⁵	Presence/absence of replication-competent virus within the number of cells/tissues tested.	Can detect low levels of latent infection; clade independent.	Multiple animals are required per sample if a quantitative value is needed; needs a large number of cells; cost- intensive.	<i>In vivo</i> expansion.	No

Assays measuring inducible translationally- or transcriptionally-competent virus

Modified QVOA using ultra- sensitive readouts (including QVOA p24 SIMOA and QVOA cfRNA). ¹⁶⁻ ¹⁸	Frequencies of cells harboring transcription- competent and translation-competent HIV that can be induced <i>ex vivo</i> .	Simple, fast, and requires fewer cells compared to QVOA; detects transcriptional- competent and translation-competent virus.	Can detect cells infected with a replication- incompetent virus that is able to produce viral RNA or protein; Semi-labor intensive unless automated; cost-intensive.	<i>ex vivo</i> stimulation followed by expansion (unless done in the presence of ART).	No		
Cell-associated p24 protein quantification. ¹⁹	Productive HIV p24 expression in the presence or absence of <i>ex-vivo</i> stimulation.	Sensitive; simple; fast; relatively cost-effective; requires relatively few cells; application across sample types; measurement of productively expressing "active" and "inducible" reservoirs; closer to replication competence when compared to measuring HIV transcripts; biologically relevant target for immune response and immune-based	May overestimate reservoir size as detects translation-competent and replication-competent provirus rather than the replication-competent virus.	Can be done without stimulation but usually done with short <i>ex vivo</i> stimulation but no expansion.	Available at CFAR Immunology Core		

		interventional approaches.			
Induction-based viral RNA reactivation assays (including TILDA). ^{16,20,21}	The number of cells harboring transcriptionally reactivatable HIV tat/rev msRNA.	Simpler, faster, and requires fewer cells compared to QVOA; can be useful in measuring the response to LRAs <i>ex</i> <i>vivo</i> .	Measure inducible levels of HIV transcripts (transcriptional competence) without distinction of defective or replication-competent (replication competence); cost-intensive; semi-labor intensive unless automated.	short <i>ex-vivo</i> stimulation but no expansion.	No
Single-cell analysis of inducible virus (including FISH/flow). ²²	Measures the frequency of cells undergoing HIV transcription and/or translation upon stimulation at the single-cell level.	Single-cell insights of HIV transcription and/or translation and phenotypic characterization of individual cells; clade independent; relatively cost-effective.	Do not measure replication competence.	Can be done without stimulation but usually done with short <i>ex-vivo</i> stimulation but no expansion.	No
	Assays meas	suring constitutive levels o	of HIV DNA and cell-associa	ated HIV RNA	
Cell-associated HIV RNA by real- time or droplet digital PCR. ²³⁻³⁰	Levels of HIV transcripts (a surrogate of transcription- competent cellular HIV) without distinction of	Fast, relatively cost- effective, and sensitive; cell-sparing; application across sample types; Different HIV transcripts	Overestimates the size of the latent HIV reservoir. Doesn't measure translation- or replication-	No stimulation or expansion.	Yes. Available for HIV+ human cells, SIV/SHIV+ NHP cells

	defective, translation- competent, or replication-competent.	can be measured to indicate the degree of HIV transcriptional activity; may provide a surrogate measure for reservoir size as levels of HIV RNA during ART predict time to viral rebound upon treatment cessation.	competence; clade dependent.		
HIV DNA by real- time PCR or droplet digital PCR. ^{23,24,26,31-37}	Levels of selected regions of total, integrated, or circular HIV DNA measure without distinction of defective or replication- competent provirus.	Fast, cost-effective, and sensitive; cell-sparing, application across sample types; most available assays span across different clades.	Vastly overestimates the size of the HIV reservoir, as only a small fraction of HIV genomes is able to be reactivated upon <i>ex</i> <i>vivo</i> stimulation to produce replication- competent virus.	No stimulation or expansion.	Yes. Available for HIV+ human cells, SIV/SHIV+ NHP cells
<i>In situ</i> hybridization- based assays, e.g., DNAscope and RNAscope. ^{26,38,39}	Cellular location and levels of HIV sequences associated with integration (DNA) or transcription (RNA) without distinction of defective or replication- competent.	Visualize and phenotypically characterize infected cells in tissues; allow for a better understanding of the anatomical distribution of infected cells <i>in vivo</i> ; cost-	Do not measure replication competence; clade dependent.	No stimulation or expansion.	No

		effective; near sensitivity to qRT-PCR.			
	'	Assays measure the <i>in vi</i>	vo burden of HIV reservoirs	1	'
Ultra-sensitive residual viremia. ⁴⁰⁻⁴²	The release of HIV particles <i>in vivo</i> during ART, without distinction of tissue origin.	Could represent virus release from stable reservoirs, including these in tissues; relatively cost-effective.	Requires large volumes of plasma or body fluid; limited dynamic range; the relationship between the HIV reservoir and low- level viremia during ART viremia is unclear; clade dependent.	No stimulation or expansion.	No
Common strategy to test for viral burden on ART yet not an "Assay," included here for comparison only: Analytical Treatment Interruptions (ATI). ^{43,44}	Systemic virus replication <i>in vivo</i> after ART-cessation, without distinction of tissue origin.	Determines the duration of HIV remission upon the cessation of ART. It is the most clinically relevant measure of the impact of interventions on the total body burden of HIV infection.	Potential clinical risks to individuals stopping therapy and to their partners; clinically demanding; substantial reservoir reductions are needed to produce significant delays in viral rebound, so unlikely any current interventions could result in a significant delay in viral rebound. Effort and monitoring cost-intensive	<i>In vivo</i> expansion.	-

References:

- 1. Finzi, D., *et al.* Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. *Science* **278**, 1295-1300 (1997).
- 2. Wong, J.K., *et al.* Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. *Science* **278**, 1291-1295 (1997).
- 3. Chun, T.W., *et al.* Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. *Proc Natl Acad Sci U S A* **94**, 13193-13197 (1997).
- 4. Ho, Y.C., *et al.* Replication-competent noninduced proviruses in the latent reservoir increase barrier to HIV-1 cure. *Cell* **155**, 540-551 (2013).
- 5. Hosmane, N.N., *et al.* Proliferation of latently infected CD4(+) T cells carrying replication-competent HIV-1: Potential role in latent reservoir dynamics. *The Journal of experimental medicine* **214**, 959-972 (2017).
- Laird, G.M., *et al.* Rapid quantification of the latent reservoir for HIV-1 using a viral outgrowth assay. *PLoS Pathog* 9, e1003398 (2013).
- Lorenzi, J.C., *et al.* Paired quantitative and qualitative assessment of the replication-competent HIV-1 reservoir and comparison with integrated proviral DNA. *Proceedings of the National Academy of Sciences of the United States of America* **113**, E7908-E7916 (2016).
- 8. Bruner, K.M., et al. A quantitative approach for measuring the reservoir of latent HIV-1 proviruses. *Nature* **566**, 120-125 (2019).
- 9. Gaebler, C., *et al.* Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir. *J Exp Med* **216**, 2253-2264 (2019).

- 10. Lee, G.Q., *et al.* Clonal expansion of genome-intact HIV-1 in functionally polarized Th1 CD4+ T cells. *The Journal of clinical investigation* **127**, 2689-2696 (2017).
- 11. Lee, S.K., *et al.* Quantification of the Latent HIV-1 Reservoir Using Ultra Deep Sequencing and Primer ID in a Viral Outgrowth Assay. *Journal of acquired immune deficiency syndromes* **74**, 221-228 (2017).
- 12. Sherman, E., *et al.* INSPIIRED: A Pipeline for Quantitative Analysis of Sites of New DNA Integration in Cellular Genomes. *Mol Ther Methods Clin Dev* **4**, 39-49 (2017).
- 13. Berry, C.C., *et al.* INSPIIRED: Quantification and Visualization Tools for Analyzing Integration Site Distributions. *Mol Ther Methods Clin Dev* **4**, 17-26 (2017).
- 14. Einkauf, K.B., *et al.* Intact HIV-1 proviruses accumulate at distinct chromosomal positions during prolonged antiretroviral therapy. *J Clin Invest* **129**, 988-998 (2019).
- 15. Metcalf Pate, K.A., *et al.* A Murine Viral Outgrowth Assay to Detect Residual HIV Type 1 in Patients With Undetectable Viral Loads. *The Journal of infectious diseases* **212**, 1387-1396 (2015).
- 16. Cillo, A.R., *et al.* Quantification of HIV-1 latency reversal in resting CD4+ T cells from patients on suppressive antiretroviral therapy. *Proceedings of the National Academy of Sciences of the United States of America* **111**, 7078-7083 (2014).
- 17. Plantin, J., Massanella, M. & Chomont, N. Inducible HIV RNA transcription assays to measure HIV persistence: pros and cons of a compromise. *Retrovirology* **15**, 9 (2018).
- 18. Massanella, M., *et al.* Improved assays to measure and characterize the inducible HIV reservoir. *EBioMedicine* **36**, 113-121 (2018).
- 19. Cabrera, C., Chang, L., Stone, M., Busch, M. & Wilson, D.H. Rapid, Fully Automated Digital Immunoassay for p24 Protein with the Sensitivity of Nucleic Acid Amplification for Detecting Acute HIV Infection. *Clin Chem* **61**, 1372-1380 (2015).

- 20. Bullen, C.K., Laird, G.M., Durand, C.M., Siliciano, J.D. & Siliciano, R.F. New ex vivo approaches distinguish effective and ineffective single agents for reversing HIV-1 latency in vivo. *Nat Med* **20**, 425-429 (2014).
- 21. Procopio, F.A., *et al.* A Novel Assay to Measure the Magnitude of the Inducible Viral Reservoir in HIV-infected Individuals. *EBioMedicine* **2**, 874-883 (2015).
- 22. Pardons, M., *et al.* Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. *PLoS Pathog* **15**, e1007619 (2019).
- Abdel-Mohsen, M., *et al.* Select host restriction factors are associated with HIV persistence during antiretroviral therapy. *Aids* 29, 411-420 (2015).
- 24. Eriksson, S., *et al.* Comparative analysis of measures of viral reservoirs in HIV-1 eradication studies. *PLoS pathogens* **9**, e1003174 (2013).
- Kumar, A.M., Borodowsky, I., Fernandez, B., Gonzalez, L. & Kumar, M. Human immunodeficiency virus type 1 RNA Levels in different regions of human brain: quantification using real-time reverse transcriptase-polymerase chain reaction. *J Neurovirol* 13, 210-224 (2007).
- 26. Abdel-Mohsen, M., *et al.* CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. *Sci Transl Med* **10**(2018).
- 27. Yukl, S.A., *et al.* HIV latency in isolated patient CD4(+) T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing. *Sci Transl Med* **10**(2018).
- Li, J.Z., *et al.* The size of the expressed HIV reservoir predicts timing of viral rebound after treatment interruption. *Aids* **30**, 343-353 (2016).

- 29. Pasternak, A.O., *et al.* Highly sensitive methods based on seminested real-time reverse transcription-PCR for quantitation of human immunodeficiency virus type 1 unspliced and multiply spliced RNA and proviral DNA. *J Clin Microbiol* **46**, 2206-2211 (2008).
- 30. Pasternak, A.O., Lukashov, V.V. & Berkhout, B. Cell-associated HIV RNA: a dynamic biomarker of viral persistence. *Retrovirology* **10**, 41 (2013).
- 31. Liszewski, M.K., Yu, J.J. & O'Doherty, U. Detecting HIV-1 integration by repetitive-sampling Alu-gag PCR. *Methods* **47**, 254-260 (2009).
- 32. O'Doherty, U., Swiggard, W.J., Jeyakumar, D., McGain, D. & Malim, M.H. A sensitive, quantitative assay for human immunodeficiency virus type 1 integration. *Journal of virology* **76**, 10942-10950 (2002).
- 33. Strain, M.C. & Richman, D.D. New assays for monitoring residual HIV burden in effectively treated individuals. *Curr Opin HIV AIDS* **8**, 106-110 (2013).
- 34. Yu, J.J., *et al.* A more precise HIV integration assay designed to detect small differences finds lower levels of integrated DNA in HAART treated patients. *Virology* **379**, 78-86 (2008).
- 35. Henrich, T.J., *et al.* HIV-1 persistence following extremely early initiation of antiretroviral therapy (ART) during acute HIV-1 infection: An observational study. *PLoS medicine* **14**, e1002417 (2017).
- 36. Williams, J.P., et al. HIV-1 DNA predicts disease progression and post-treatment virological control. Elife 3, e03821 (2014).
- 37. Butler, S.L., Hansen, M.S. & Bushman, F.D. A quantitative assay for HIV DNA integration in vivo. *Nat Med* 7, 631-634 (2001).
- 38. Deleage, C., Chan, C.N., Busman-Sahay, K. & Estes, J.D. Next-generation in situ hybridization approaches to define and quantify HIV and SIV reservoirs in tissue microenvironments. *Retrovirology* **15**, 4 (2018).
- 39. Deleage, C., et al. Defining HIV and SIV Reservoirs in Lymphoid Tissues. Pathog Immun 1, 68-106 (2016).

- 40. Dinoso, J.B., *et al.* Treatment intensification does not reduce residual HIV-1 viremia in patients on highly active antiretroviral therapy. *Proc Natl Acad Sci U S A* **106**, 9403-9408 (2009).
- 41. Hong, F., *et al.* Associations between HIV-1 DNA copy number, proviral transcriptional activity, and plasma viremia in individuals off or on suppressive antiretroviral therapy. *Virology* **521**, 51-57 (2018).
- 42. Palmer, S., et al. New real-time reverse transcriptase-initiated PCR assay with single-copy sensitivity for human immunodeficiency virus type 1 RNA in plasma. *J Clin Microbiol* **41**, 4531-4536 (2003).
- 43. Julg, B., *et al.* Recommendations for analytical antiretroviral treatment interruptions in HIV research trials-report of a consensus meeting. *The lancet. HIV* **6**, e259-e268 (2019).
- 44. Hill, A.L., Rosenbloom, D.I., Fu, F., Nowak, M.A. & Siliciano, R.F. Predicting the outcomes of treatment to eradicate the latent reservoir for HIV-1. *Proceedings of the National Academy of Sciences of the United States of America* **111**, 13475-13480 (2014).