SINGLE CELL TRANSCRIPTOMICS IN SCHIZOPHRENIA POSTMORTEM BRAIN: MOVING BEYOND BULK LYSATE

Richard Crist
June 8th, 2020
Schizophrenia Transcriptomics

- Microarray and RNA sequencing

- Differentially expressed genes across many cortical and sub-cortical regions
 - Dorsolateral prefrontal cortex (dIPFC) (Fillman et al, 2013)
 - Anterior Cingulate Cortex (Zhao et al, 2015; Hong et al, 2013)
 - Superior temporal gyrus (Wu et al, 2012)
 - Amygdala (Chang et al, 2017)

- Enrichment of pathways and gene networks
 - Neural development
 - Axon guidance
 - Inflammation and immune-related proteins
CommonMind Consortium

- Largest transcriptomic analysis of schizophrenia
 - 258 cases/279 controls
 - RNAseq in dLPFC

- 693 differentially expressed genes

Fromer et al, 2016
Cell Diversity in Postmortem Brain

- Brain, like all tissues, consists of many cell types
 - Major cell populations (e.g. astrocytes)
 - Distinct sub-populations (e.g. PVALB+ interneurons)

- Problems in assessing differential expression in bulk lysate
 - Inability to identify which cells are affected
 - Missed expression changes in less common cell types

Penney et al, 2019
Schizophrenia Single Cell Transcriptomics

- Immunofluorescence and laser capture microdissection to collect individual populations of cells

- Layer III/V pyramidal neurons (Arion et al, 2017)
 - 72 PFC samples – 36 cases/36 controls
 - 100 cells per layer for each sample
 - Expression assessed by microarray
 - 1,783 differentially expressed probe sets corresponding to 1,420 genes

- Parvalbumin positive (PVALB+) interneurons (Enwright et al, 2018)
 - Same samples and methods
 - 1,044 differentially-expressed probe sets corresponding to 872 genes
Technical Hurdles with Single Cells

- Laser capture microdissection
 - Low-throughput
 - Targeted

- Pooling cells
 - Lost information on variability between cells
 - Collapses sub-populations

- Frozen human brain tissue
 - Freeze/thaw ruptures cell membranes making single cell methods impossible
 - Single cells and nuclei have similar transcriptomes
 - Same relative levels of 98% of transcripts (Grindberg et al, 2013)
snRNAseq in Human Brain

- Single nuclei isolated from frozen human brain
 - FACS sort after staining for NeuN
 - One brain, multiple regions, multiple methods

- Fluidigm C1 platform for capture and library preparation
 - Microfluidics chip designed for single cell
 - 96 nuclei per chip
snRNAseq in Human Brain

- Different layers of excitatory neurons

- Distinct interneuron populations
 - *PVALB*, *SST*, etc

- Regional differences
 - e.g. *Ex2* and *Ex3* are layer 4 neurons from rostral and caudal areas, respectively

Lake et al, 2015
10x Genomics Chromium Controller
10x Genomics

■ Pros
 - High-throughput
 - Indexing at three levels: sample, nucleus/cell, transcript
 - Performs equally well on cells and nuclei
 - Theoretically cell type agnostic

■ Cons
 - Expensive/fixed costs
 - Splicing not addressed (mostly)
 - Possibly not cell type agnostic?
10x Genomics in Human Brain

- Five studies using 10x in postmortem human brain samples
 - Alzheimer’s (Mathys et al, 2019)
 - Autism (Velmeshev et al, 2019)
 - MS (Schirmer et al, 2019)
 - MDD (Nagy et al, 2020)
 - Huntington’s (Al-Dalahmah et al, 2020)

- Successfully distinguished cell populations using snRNAseq data
Experimental Design

- 32 postmortem dlPFC (BA9)
 - 16 cases (14M/2F)
 - 16 controls (14M/2F)
 - European ancestry

- Nuclei isolated using a modified version of previous protocol (Nagy et al. 2020)
 - Homogenization, 2x wash and filter, resuspend ~1,000 nuclei/µl

- 10x library production and sequencing
 - CHOP Center for Applied Genomics

- Sequencing on NovaSeq 6000

Modified from Nagy et al., 2020
Quality Control and Clustering

- Deconvolution and alignment with 10x CellRanger

- QC using Seurat package
 - Genes <3 nuclei, nuclei <200 genes, nuclei with high or low UMI
 - Normalize to 10,000 counts/nucleus

- Clustering
 - First 50 PCs calculated from 2215 “highly variable genes”
 - Low resolution first run, remove additional low UMI clusters and two SZ samples
 - High resolution second run, remove clusters specific to only a few individuals

- Final results: ~323,821 nuclei in 27 clusters
 - Previous 4 papers: ~313k total
Cell Type Proportions
Sub-populations
Sub-populations

- Our single nuclei transcriptomic data differentiates known sub-populations
 - *Multiple interneuron types*
 - *Layer markers*

- How many clusters is the correct number?
 - *Sample size*
 - *Number of nuclei*
 - *Sequencing depth*
Expression Data in snRNAseq

- Single cell/nuclei RNAseq data forms a bimodal distribution for each gene
 - *Genes will not be detected in all cells or nuclei*
 - *Large number of zeroes*

- What is the best way to handle this in a statistical model?
Analyzing snRNAseq: The Wild West

- There is no consensus yet on the best methods for analyzing snRNAseq data
 - Mathys – LMM/Wilcoxon
 - Velmeshev/Schirmer – MAST
 - Nagy – LMM

- The methods for those manuscripts in the field also include different:
 - Covariates
 - FDR – 0.05 vs 0.1
 - logFC Cutoff – 0.25 vs 0.14 vs none
Analyzing snRNAseq: The Wild West

- Systematic analysis of statistical methods
 - Wide variation in efficacy
 - Single cell methods on average were not better than other methods

- May be specific to the data set being analyzed or the questions being asked

Soneson and Robinson, 2018
The MAST Hurdle Model

- Hurdle model is a combination of two different models to address the bimodal distribution of snRNAseq data.

- Discrete model
 - *Is the gene detected in a larger percentage of nuclei in cases compared to controls?*

- Continuous model
 - *In non-zero nuclei, is expression of the gene higher in cases compared to controls?*
The MAST Hurdle Model

Discrete Model

Continuous Model

90% 75%

5 4.75
Differential Expression Analysis

- MAST – Hurdle Model

- Fixed effects
 - Case/control status, sex, age, batch
 - Gene detection rate

- Random effect
 - Subject

- Significance
 - FDR = 0.1
 - $\log_2 FC \geq 0.14$ (10% difference)
Differentially Expressed Genes

- Differential genes found in 21/27 clusters
- 2,853 differentially expressed genes
 - 957 upregulated, 1896 downregulated
- 2,196 unique genes
- Top 5 clusters accounted for 95.9% of differentially expressed genes

<table>
<thead>
<tr>
<th>Cell Type</th>
<th># DEGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhibitory Neuron #2 – PVALB+</td>
<td>1092</td>
</tr>
<tr>
<td>Excitatory Neuron #1 - Layer V HTR2C+</td>
<td>814</td>
</tr>
<tr>
<td>Excitatory Neuron #4 – Layer II/III</td>
<td>340</td>
</tr>
<tr>
<td>Inhibitory Neuron #5</td>
<td>254</td>
</tr>
<tr>
<td>Excitatory Neuron #3 – Layer IV</td>
<td>237</td>
</tr>
<tr>
<td>Excitatory Neuron #6 – Layer VI</td>
<td>53</td>
</tr>
<tr>
<td>Oligodendrocyte</td>
<td>18</td>
</tr>
<tr>
<td>Excitatory Neuron #9 – Layer V</td>
<td>7</td>
</tr>
<tr>
<td>Microglia #2</td>
<td>6</td>
</tr>
<tr>
<td>Excitatory Neuron #5 – Layer II/III</td>
<td>6</td>
</tr>
<tr>
<td>Astrocyte #4</td>
<td>5</td>
</tr>
<tr>
<td>Inhibitory Neuron #6 – VIP+</td>
<td>4</td>
</tr>
<tr>
<td>Excitatory Neuron #2 – Layer IV/V</td>
<td>4</td>
</tr>
<tr>
<td>Excitatory Neuron #10 – Layer VI</td>
<td>3</td>
</tr>
<tr>
<td>Inhibitory Neuron #4</td>
<td>2</td>
</tr>
<tr>
<td>Inhibitory Neuron #7</td>
<td>2</td>
</tr>
<tr>
<td>Inhibitory Neuron #3 – PVALB+</td>
<td>2</td>
</tr>
<tr>
<td>Endothelial</td>
<td>1</td>
</tr>
<tr>
<td>Astrocyte #3</td>
<td>1</td>
</tr>
<tr>
<td>Excitatory Neuron #7</td>
<td>1</td>
</tr>
<tr>
<td>Inhibitory Neuron #1 – SST+</td>
<td>1</td>
</tr>
</tbody>
</table>
Neurons and Schizophrenia

- Schizophrenia GWAS hits are enriched for genes expressed in mouse neurons (Skene et al., 2018)
 - Medium spiny neurons
 - Pyramidal cells in hippocampal CA1
 - Pyramidal cells in somatosensory cortex
 - Cortical interneurons

- Similar results from limited human data (Skene et al., 2018)

- PVALB+ interneurons have reduced density or altered gene expression in schizophrenia (Chung et al. 2016; Enwright et al. 2018; Fung et al. 2014; Hashimoto et al. 2008; Joshi et al. 2015; Volk et al. 2016)
Larger Clusters Do Not Have More Differentially Expressed Genes
Cell Type Specificity
Molecular Clocks and Circadian Rhythm

- Schizophrenia patients frequently report sleep abnormalities (Kaskie et al, 2017)

- Evidence for altered rhythmic expression of clock genes in schizophrenia (Johansson et al, 2016)

- Inhibitory Neuron #2 – PVALB+
 - Upregulated - CLOCK, CRY1, NPAS3
 - Downregulated - PER2, CSNK1D

- Other Clusters
 - CLOCK, ARNTL, BHLHE41

Gooley et al, 2014
Schizophrenia as a “Channelopathy”

- Calcium channel genes
 - **CACNA1C**, CACNA1L, CACNB1, CACNB3

- Potassium channel genes
 - KCNAB2, KCNC4, KCNJ3, KCNJ9, KCNK12, KCNK3, KCNQ5, KCNV1, KCTD2

- Sodium channel genes
 - SCN2B, SCN3B

Ripke et al, 2014
Gene Ontology Term Enrichment

- Inhibitory Neuron #2 – PVALB+
 - *Ubiquitin-Dependent Protein Catabolic Process*
 - Intracellular Transport
 - *Mitochondrion*
 - Spliceosomal snRNP Complex

- Excitatory Neuron #1 - Layer V HTR2C+
 - *ATP Synthesis Coupled Electron/Protein Transport*
 - Ribonucleoprotein Complex Assembly
 - Vesicle Fusion to Plasma Membrane

Bousman et al, 2019
Mitochondria and Schizophrenia

- **NDUFV1** downregulated in five clusters
 - Previously linked to schizophrenia

- Genes encoding mitochondrial proteins
 - **NDUFAB1, NDUFAF5, NDUFAF7, NDUFB2, NDUFB5, NDUFB7, NDUFB9, NDUFC1, NDUFS, NDUFS2, NDUFS5, NDUFS8**
 - **UQCC1, UQCC2, UQCR10, UQCR1C1, UQCR1C2, UQCRH, UQCRQ**
 - **COX18, COX20, COX4I1, COX5B, COX6B1, COX7B, COX7C**
 - **MTFR1**
Ingenuity Pathway Analysis
Transcription Factor Analysis

- A number of transcription factors appear in our list of differentially expressed genes
 - Do the genes they regulate also appear?
 - Are those target genes enriched for particularly GO terms or pathways?

- Target genes identified using TF2DNA

- Enrichment analyzed using DAVID

GO Cellular Compartment: Synapse
The Missing Glia

- Gray matter from the cortex contains more glia than neurons
 - 1.48 ratio (Azevedo et al, 2009)

- snRNAseq from postmortem human brain has found the reverse

- Technical issues
 - Nuclear isolation
 - Glia have fewer UMIs than neurons

Mathys et al, 2019
Future Directions

- Non-sequencing Validation
 - *RNAscope with Dr. Lauren Stein*

- Replication
 - *Sample size and individual variation*

- Expand Into Substance Use Disorders
 - *Opioid use disorder*
 - *Animal models*
Acknowledgements

- Benjamin Reiner

- Berrettini Lab
 - Wade Berrettini
 - Glenn Doyle
 - Andrew Weller
 - Gabriella Arauco-Shapiro
 - Emilie Davila
 - Aditya Rao

- Hayes Lab
 - Lauren Stein
 - Matthew Hayes

- Rachel Kember

- Center for Applied Genomics

- Funding
 - R01 MH109260 (Berrettini)
 - BBRF Young Investigator (Reiner)