# University of Pennsylvania Perelman School of Medicine High-Throughput Screening Core

Sara Cherry, Ph. D. David C. Schultz, Ph. D. dschultz@mail.med.upenn.edu (215) 573-9641 67 John Morgan Building



# **Mission**

#### Provide the PSOM community with HTS resources.

- To <u>educate</u> and assist with HTS assay development, optimization, miniaturization, and validation
- To provide laboratory robotics <u>infrastructure</u> and technically trained staff for HTS
- To provide <u>libraries</u> of small molecule and genetic tools for HTS
- To facilitate small-scale screens from <u>user-defined gene-sets</u>
- Develop novel technology
- Seed collaborative research programs and grants.
- Educate the SOM on utility and uses of HTS

# SOM Screening Core

## > Libraries

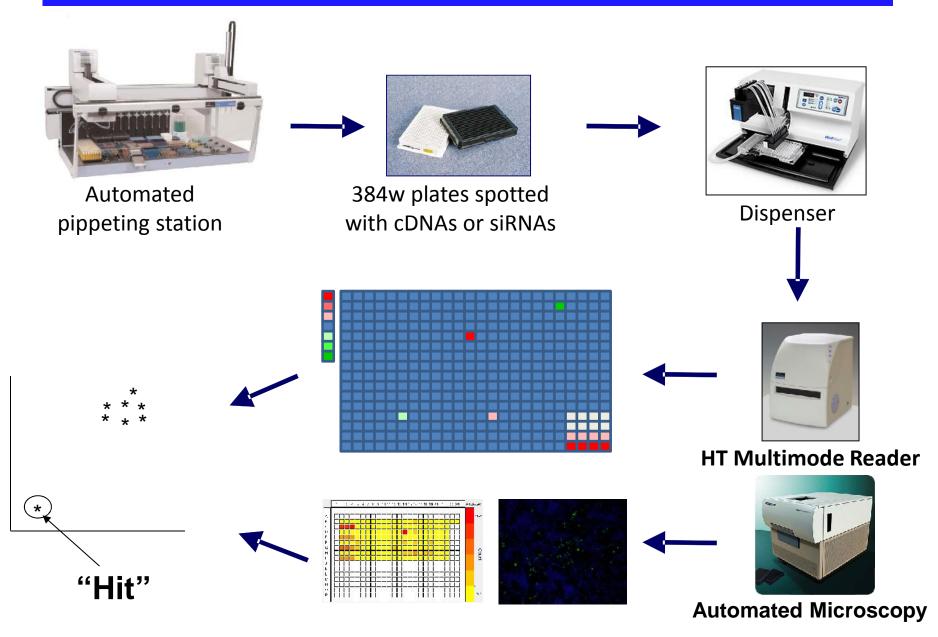
- > Maintenance
- > Distribution

# › Liquid handling

- Janus MDT/Verispan 8-tip
- > Bulk reagent dispensors
- > ELx405 microplate washer

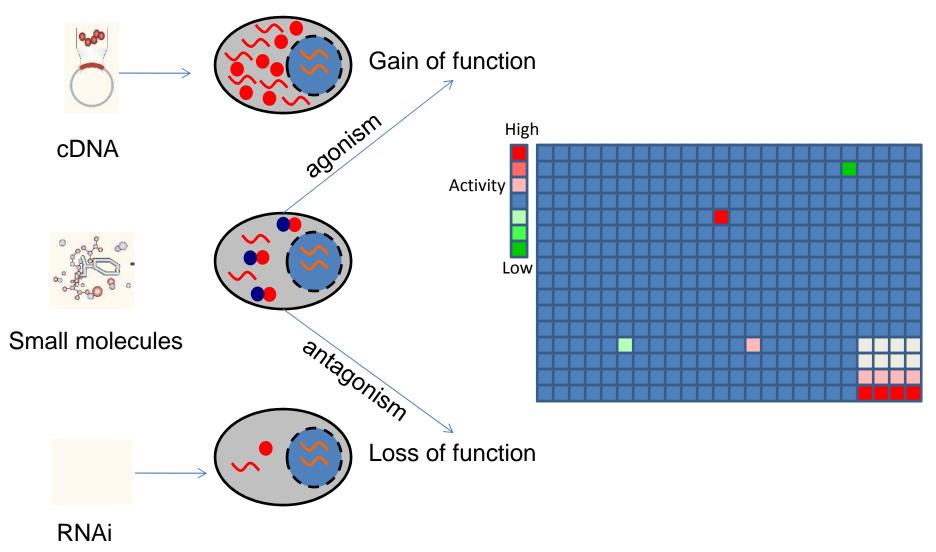
## > Assay Detection

- > EnVision multi-mode microplate reader
- > ImageXpress Micro
- > FLIPR screening system


## > BSL2 Tissue Culture capabilities

- > Hood
- Incubators

### > Informatics


- > Automated image analysis
- > Statistical analysis
- Validation analysis

# **Automation: Screening**



Slide courtesy of J.Hogenesch

# Cell-based functional screening approaches



# **SOM Screening Core Chemical Libraries**

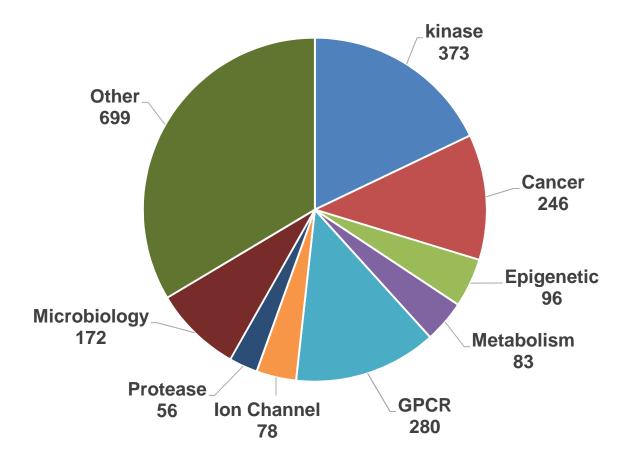
## **Bioactives, FDA approved, and FDA-like compounds**

- <u>SelleckChem Bioactives (~2100)</u>
  - Kinase Inhibitors, Epigenetic Inhibitors, Cancer compounds, GPCR/Ion Channel, Metabolism, Microbiology, FDA approved/FDA-like
- LOPAC (1280): Library of Pharmacologically Active Compounds

## **Natural Products**

<u>Microsource Purified Natural Products</u> (800)

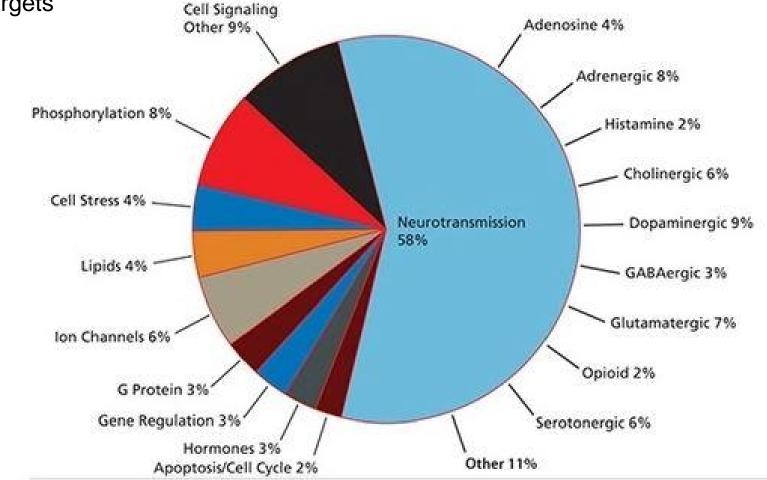
# **Diversity set**


Chembridge (32,000 total)

20,000 from Core set and 12,000 from Express Pick set ChemDiv (12,000 total)

SMART library

# Chemical Libraries: SelleckChem Bioactive Library (2083 cmpds)


•Kinase Inhibitors, Epigenetic Inhibitors, Cancer compounds, GPCR/Ion Channel, Metabolism, Microbiology, FDA approved/FDA-like

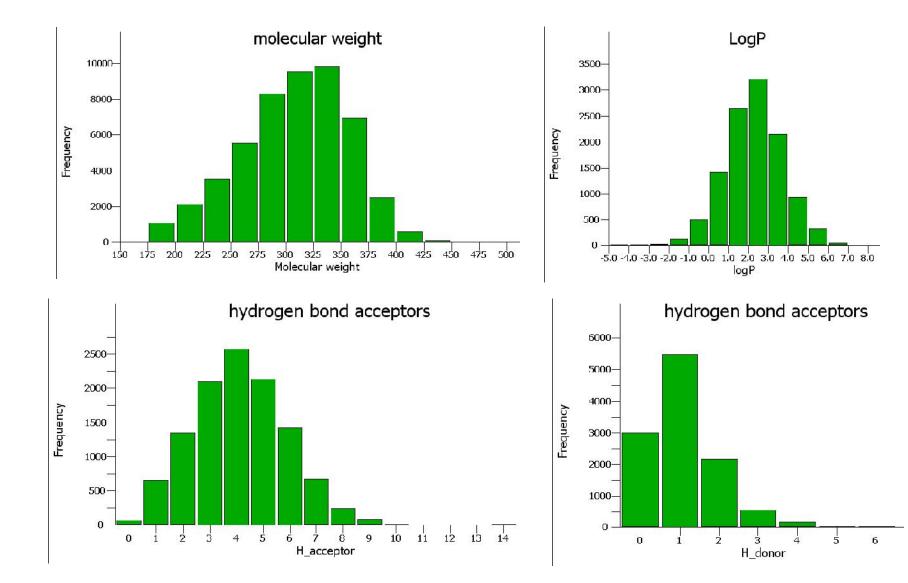


http://www.selleckchem.com/screening/chemical-library.html

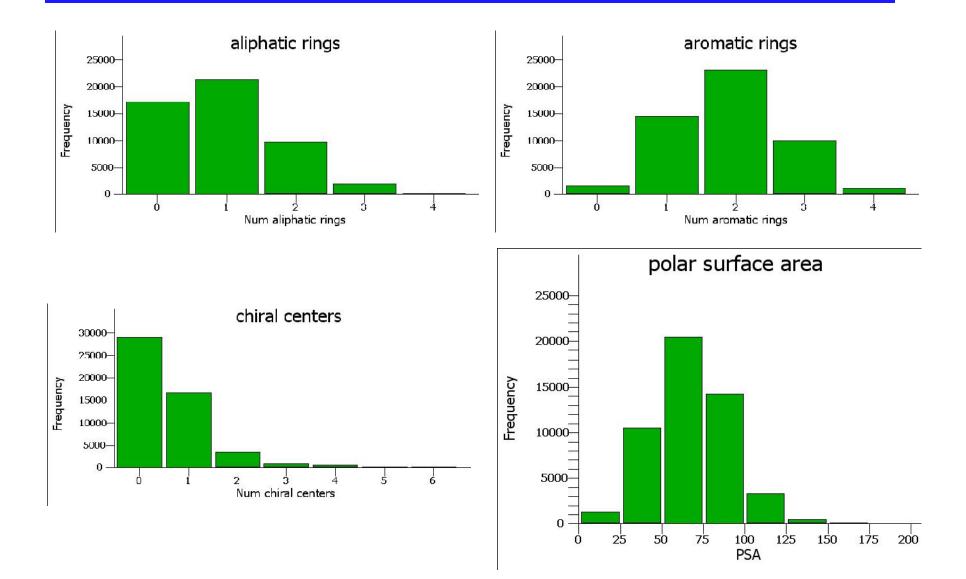
### Chemical Libraries: LOPAC<sup>1280</sup>: Library of Pharmacologically Active Compounds

1,280 FDA approved, marketed drugs with annotated biological activities, predictable activities and proven scaffolds directed against a wide range of drug targets




http://www.sigmaaldrich.com/catalog/product/sigma/lo1280?lang=en&region=US

### Diversity Library: cherry picked 44K from...


- Started with <u>~200,000</u> compounds
- Used modified Lipinski parameters to filter the set.
- Removed Reactive groups (e.g. Michael acceptors) and compounds with undesirable functionalities.
- Duplicates were removed.
- Lead Finder Clustering and MACCS fingerprints were generated.
- PAINS1, PAINS2 and PAINS3 substructure filters were applied.
- REOS filters were applied.
- Property Based Selection of 50K cpds was performed
- Vendor re-supply validated

Joe Salvino & Dora Schnur, Drexel SOM

# **44K Diversity Set Characteristics**



# **44K Diversity Set Characteristics-II**



# **SOM Screening Core Genetic Libraries**

#### siRNA

- human genome-wide, human drugable genome, human GO categories
- <u>user-defined</u> human and mouse

#### **Non-coding RNAs**

- IncRNAs (human)
- miRNA mimics/antagonists (human V20)

#### Human TRC 2.0 and Mouse TRC1.0 Lentivirus shRNA library

- Screening pools: GO categories; <u>user-defined</u> sets
- Order groups/individuals

#### MGC cDNA collection (CMV-driven)

- 18,000 full length, sequenced, mouse and human (arrayed);
- <u>user-defined</u> sets
- Order groups/individuals

## Genetic Libraries: Ambion Silencer Select siRNA & miRNA mimics/inh.

#### A. Human genome Silencer Select siRNA

|                       | Genes | siRNAs | siRNAs/GT | format | # plates* |
|-----------------------|-------|--------|-----------|--------|-----------|
| Druggable genome^     | 9032  | 27093  | 3         | pooled | 26        |
| Druggable genome Ext. | 1383  | 4149   | 3         | pooled | 4         |
| Rest of Genome        | 11170 | 33510  | 3         | pooled | 34        |

^ Further organized into GO categories (e.g. kinases, NHRs, GPCRs)

#### B. Human non-coding RNA siRNA (Incs) & miRNA mimics/inhibitors

|                             | Targets | siRNAs | siRNAs/Tar | format     | # plates* |
|-----------------------------|---------|--------|------------|------------|-----------|
| long non-coding RNAs (Incs) | 2220    | 6660   | 3          | pooled     | 8         |
| miRNA mimics (human V20)    | 2555    | 2555   | 1          | individual | 8         |
| miRNA inhibitors (human     | 2555    | 2555   | 1          | individual | 8         |
| V20)                        |         |        |            |            |           |

\* All assay plates are pre-spotted with siRNAs/miRNAs, including controls

# **Control siRNAs**

| Control    | siRNA_ID | Туре                          | Library          |
|------------|----------|-------------------------------|------------------|
| Neg1       | S813     | Negative                      | Genome, Inc      |
| Neg2       | S814     | Negative                      | Genome, Inc      |
| GAPDH      | S815     | Positive<br>mammalian         | Genome, Inc      |
| GFP        | s229097  | Positive<br>Non-mammalian     | genome           |
| Luciferase | s229095  | Positive<br>Non-mammalian     | genome           |
| Kif11      | S7903    | Positive<br>Mammalian (death) | Genome, Inc, mir |
| MALAT1     | s239370  | Positive<br>Mammalian         | Lnc              |

\* Controls are pre-spotted in all assay plates

- Custom siRNA libraries are provided by Ambion/Life technologies
- Minimum order of 20 siRNAs REQUIRED
- > 0.1 nmol of <u>Silencer Select</u> siRNA (human)
- ➤ 1 nmol of <u>Silencer</u> siRNAs (human and mouse)
- ➢ siRNAs are received in microtiter plates (96 or 384)
- > All orders are submitted through the HTSC

# **Custom Library Ordering**

# Complete the order form

- Customer information (26 digit Penn fund no) (REQUIRED)
- NCBI Gene ID, Gene Symbol, # of siRNAs/ gene target, species (REQUIRED)
- Email to <u>dschultz@upenn.edu</u>

| Product Line<br>(select from dropdown list) |  |   | Catalog Number | Entrez Gene ID** | Gene Symbol  |
|---------------------------------------------|--|---|----------------|------------------|--------------|
| Silencer <sup>®</sup> Select siRNA          |  | 3 | 4427030        | 23468            | CBX5         |
| Silencer <sup>®</sup> Select siRNA          |  | 3 | 4427030        | 1660             | DHX9         |
| Silencer <sup>®</sup> Select siRNA          |  | 3 | 4427030        | 3069             | HDLBP        |
| Silencer <sup>®</sup> Select siRNA          |  | 3 | 4427030        | 27316            | RBMX, RBMXL1 |
| Silencer <sup>®</sup> Select siRNA          |  | 3 | 4427030        | 23435            | TARDBP       |
| Silencer <sup>®</sup> Select siRNA          |  | 3 | 4427030        | 5725             | PTBP1        |

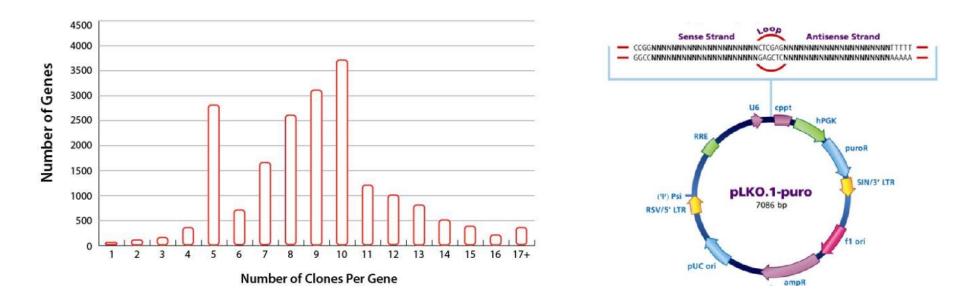
# **Custom Library Ordering (cont)**

## Costs

HTS/Omics validation set

100 gene targets x 3 siRNAs is ~\$4,500

• **Custom library** (Epigenetics/metabolism)


500 gene targets x 3 siRNAs is ~\$12,000

## > Turnaround

| Order size       | Order to deliver    |
|------------------|---------------------|
| 20-250 siRNAs    | 5-15 business days  |
| 251-500 siRNAs   | 16-25 business days |
| 501-1000 siRNAs  | 20-30 business days |
| 1001-2500 siRNAs | 25-30 business days |

# Genetic libraries: TRC human/mouse LV-shRNA library

|        |          | Gene<br>Targets | clones  | Validated | % val |  |  |
|--------|----------|-----------------|---------|-----------|-------|--|--|
| Human  | complete | 20,018          | 129,695 | 43,470    | 34    |  |  |
| Mouse  | V1.0     | 15,960          | 77,819  | 20,564    | 26    |  |  |
| Totals |          | 35,978          | 207,514 | 64,034    |       |  |  |



http://www.sigmaaldrich.com/life-science/functional-genomics-and-rnai/shrna/library-information.html

# shRNA library services

### > Distribution of Individual clones

- \$100.00 per Gene Target (5+ clones)
- Investigator should sequence confirm shRNA sequence
- Investigator responsible for validating knock-down

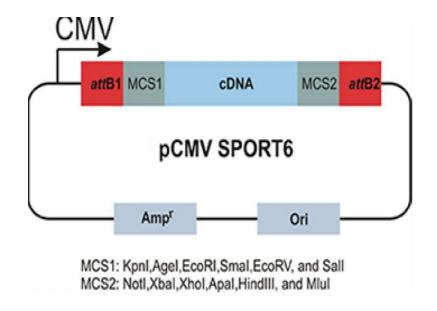
## > Preparation of Custom Gene Sets

- Cherry-pick and array clones of interest into new plates <u>GO categories (e.g. Epigenetic targets)</u> <u>User-defined sets (e.g. 'omics validation)</u>
- Glycerol stock plate + pooled plasmid DNA
- 150 gene Targets/625 clones: \$2000
- 600 gene Targets/3000 clones: \$5000

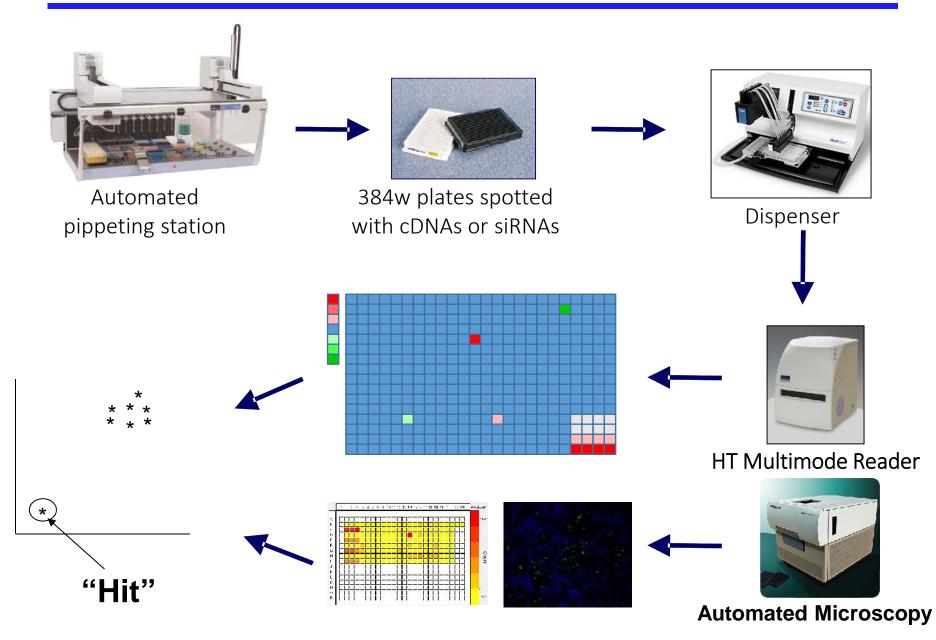
# **Ordering shRNA clones**

#### • Complete the order form

- Customer information (26 digit Penn fund no) (REQUIRED)
- NCBI Gen ID, Gene Symbol, Refseq no., species (REQUIRED)
- Email to dschultz@upenn.edu


| Instruction                                                           | ns              |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
|-----------------------------------------------------------------------|-----------------|------------------------------|----------------|------------|---------------|---------------------|-------------------|------------|-----|-----|---------|-------------|-----------|-----------|-----------|
|                                                                       |                 |                              |                | Price: \$1 | 00.00 per com | plete set of clones | for a Gene Target | :          |     |     |         |             |           |           |           |
| As shown in the example, please provide:<br>Entrez Gene_ID (required) |                 | the example, please provide: |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
|                                                                       |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| Gene_sym                                                              | bol (required)  |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
|                                                                       | umber (require  |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| species-hu                                                            | iman or mous    | e (required)                 |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| Leave the                                                             | remaining field | ds blank.                    |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
|                                                                       |                 |                              |                |            |               | EXA                 | AMPLE             |            |     |     |         |             |           |           |           |
| #                                                                     | GENE_ID         | SYMBOL                       | REFSEQ_ID      | species    | clone_#       | TRC_ID              | TRE_ver           | PLATE_NAME | Row | Col | Freezer | Freezer_loc | Sense_seq | VALIDATED | CELL_LINE |
| 1                                                                     | 1654            | DDX3X                        | NM_001356.3    | human      |               |                     |                   |            |     |     |         |             |           |           |           |
| 2                                                                     | 10155           | TRIM28                       | NM_005762.2    | human      |               |                     |                   |            |     |     |         |             |           |           |           |
| 3                                                                     | 1029            | CDKN2A                       | NM_058197.4    | human      |               |                     |                   |            |     |     |         |             |           |           |           |
| 4                                                                     | 7157            | TP53                         | NM_001126116.1 | human      |               |                     |                   |            |     |     |         |             |           |           |           |
| Order                                                                 | Form            |                              |                |            |               |                     |                   |            |     |     | -       |             |           |           |           |
| #                                                                     | GENE_ID         | SYMBOL                       | REFSEQ_ID      | species    | one_#         | TRC_ID              | TRC_ver           | PLATE_NAME | Row | Col | Freezer | Freezer_loc | Sense_seq | VALIDATED | CELL_LINE |
| 1                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 2                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 3                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 4                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 5                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 6                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 7                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 8                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 9                                                                     |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |
| 10                                                                    |                 |                              |                |            |               |                     |                   |            |     |     |         |             |           |           |           |

# **Genetic libraries:MGC cDNA collection**


- Obtained by <u>J.Hogenesch</u>
- 18,000 full length, sequenced, mouse and human cDNAs pre-cloned into pCMV-SPORT6
  - Insert is fully sequenced and guaranteed to match corresponding BC Accession Number
  - Expression-ready vectors eliminate additional cloning steps
  - Robust CMV promoters drive cDNA expression
  - Gateway sites flanking coding sequence allow for additional flexibility
  - Stored as bacterial glycerol stocks, arrayed in 96 well microtiter plates

#### Screen:

- Complete library
- user-defined sets (e.g. Interferon Stimulated Genes-ISGs)
- Order individual clones or groups
  - \$50.00/clone



# Automation: Screening



Slide courtesy of J.Hogenesch

# **Envision Xcite: multi-mode microplate reader**

# **A. Measurement Technologies**

- absorbance,
- flouresence intensity (FI),
- fluorescence polarization (FP),
- time-resolved fluorescence (HTRF)
- ultra-luminesence
- AlphaScreen (Amplified Luminescence Proximity Homogeneous Assay)

# **B.** Assays

#### Anything that requires a plate reader!

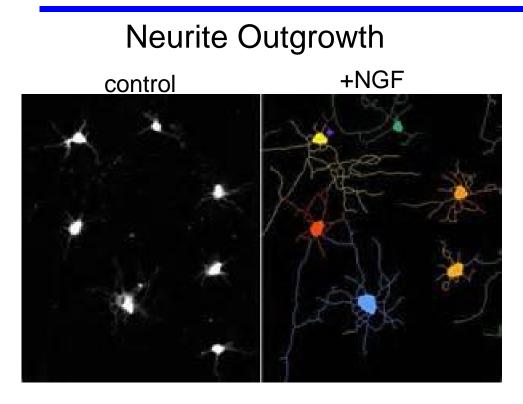
- Luciferase Reporter Gene Assays (RGAs)
- Viability assays (e.g. Cell-titer Glo)
- Enzymatic assays (FI)
- Protein: nucleic acid interaction (FP, HTRF, alphascreen)
- Protein: protein interactions (FP, HTRF, alphascreen)
- AlphaLISA



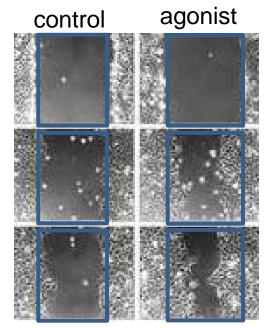
# ImageXpress Micro XLS

- A. Enables automated acquisition of multi-channel fluorescence images in microtiter plates
  - 5 colors

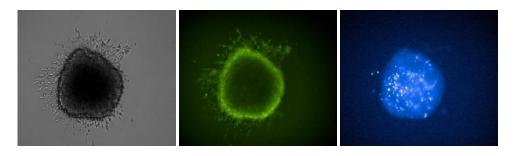
## **B.** Phenotypic assays upto 40X


- Physical properties of cells (size, shape, etc.)
- Puncta formation (autophagy, lipid droplets, etc)
- Activity (migration, invasion, neurite outgrowth)
- Expression and localization of native proteins
- Measurement of fluorescent labels (antibody stains, EdU/BrdU, Calcein, PI uptake, mitochondria, etc.)
- FRET

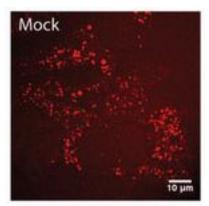
## C. Image analysis: MetaXpress


- Easy analysis pipelines in-house
- Computational analysis of images enables measurement of multiple cellular properties of interest at the object/cell level and/or population level.




# **High-content Screening Assays**




## Migration/scratch assay



## 3D tumor spheroids (Invasion/viability)



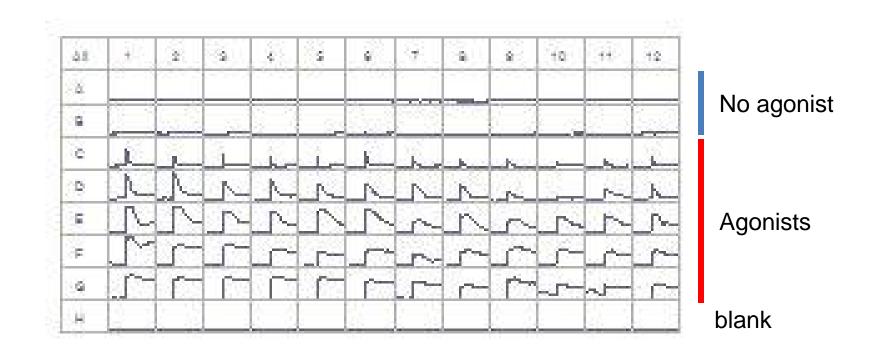
## Lipid droplets/puncta



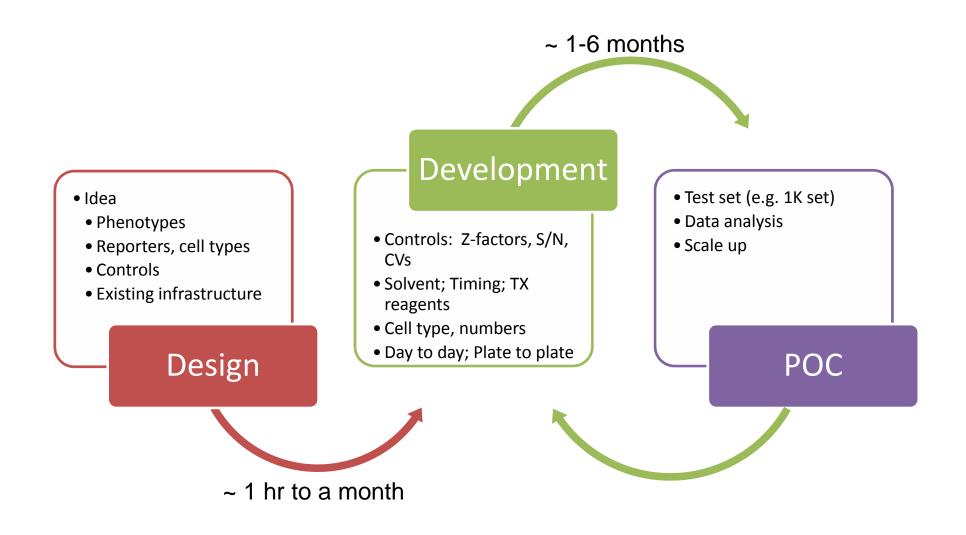
# **FLIPR Tetra: Flouresence Imaging Plate Reader**

## A. Measurement Technology:

- Integrates liquid handling with rapid whole plate imaging of <u>fluorescence</u> and <u>luminescence</u>
- Can read at sub-second intervals, which enables the <u>kinetics</u> of the response to be captured
- Integrated pipettor enables successive liquid additions, providing an opportunity to detect agonists, antagonists, and allosteric modulators all in one assay


## B. Assays:

- Intracellular Ca2+ flux: cell permeable Ca2+ sensitive fluorescent dye (e.g. cardiotoxicity);
- 2. <u>Fatty acid or neurotransmitter uptake of</u> fluorescence dyes.
- 3. <u>Membrane potential</u>: lipophilic, anionic, fluorescent dye that partitions across the cytoplasmic membrane of live cells based membrane potential.




# **FLIPR Assays**

# Monitoring Intracellular Ca2+ Mobilization



# **The Assay Development Process**



Slide courtesy of J.Hogenesch

# **Assay Design and Development**

- Is the nature of the response clearly defined?
- Is the response dependent only on the activity of the compound being tested or is it conditioned by another stimulus?
- What is the duration of the response?
- What sort of 'secondary assays' exist to confirm activity and determine selectivity of newly identified probes?
- What structural classes of known actives exist and what are the limitations to their use?

Goal: To design an assay that is robust and sensitive

# What biology and assays are readily screened?

- Enzymatic
- Protein: protein interactions
- Protein: nucleic acid interactions
- Reporter Gene Assay
- Sensitivity to drugs
- Simple design and robust signals...

# **Biochemical Assays**

#### • Enzymatic assays

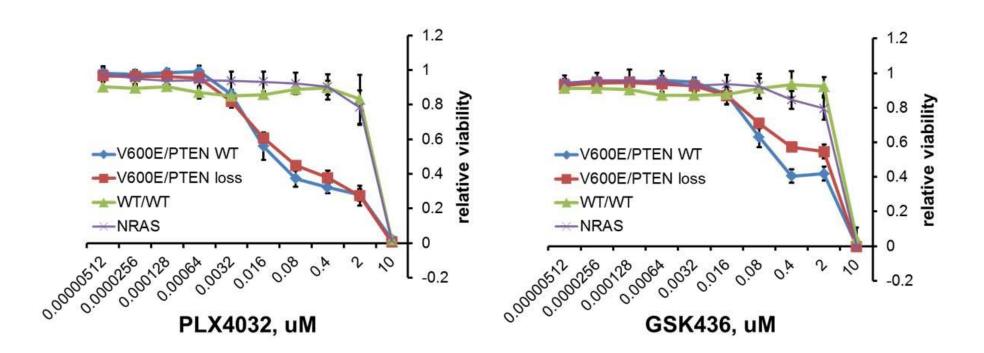
- Luminescence (e.g. ADP-Glo)
- Fluorescence (e.g. QFRET, AmplexRed)
- Transcreener

#### Protein-protein interactions

- ALPHAscreen
- HTRF
- ELISA (e.g. luminescence)

#### • Protein-nucleic acid interactions

- ALPHAscreen
- HTRF


### • Ligand binding

- Differential Scanning Flourimetry/Thermal Stability
- SPR

# **Profiling and Sensitivities**

- Phenotypic profiling of cell lines
  - FDA and FDA-likes
  - Annotated gene family (e.g. kinome)
  - Synthetic lethality screens
  - Synergy studies (combinations gene-gene; gene-drug; drug-drug)
- Differentiated iPSC from individuals
- Across tumors (e.g. melanomas)
- Of a particular patient tumor line (to define responsiveness)

# Pharmacological Response of Genetically Defined Tumor Cells



# **Cell-based Assays**

# • Anything you can read in a plate reader

- Reporter Gene Assays (e.g. luciferase)
- Survival (e.g. Cell-titer Glo, Alomar Blue, MTS)
- Signaling (e.g. alphascreen, alphaLISA)

# • Microscopy assays

- EdU/BrDU incorporation
- Autophagy (e.g. LC3-GFP/RFP)
- Migration assays (e.g. scratch assay)
- Neurite Outgrowth
- Infection
- Nuclear/cytoplasmic shuttling
- Antigen localization/staining
- **Signaling** (e.g. Ca<sup>2+</sup>, membrane potential)

# **Cell types**

- Chemical screens- all cells amenable
- Genetic screens
  - Transformed cells
  - Many primary cells
    - Fibroblasts, endothelial, epithelial, macrophages, etc
    - Lymphocytes challenging
    - Stem cells
  - Mixed cultures
    - Perturb one cell type and assay another
    - e.g. siRNA in fibroblast but read tumor cell biology; siRNA in macrophage but read T cell biology

# What scale is useful to you?

- Do you have a defined set of genes or pathways you are interested in?
  - Functional study of 'OMICS data
    - RNAseq
    - CHIPseq
    - GWAS
    - Exome
  - Interested in Kinases or another 'category'

# Services

- **Consultations** (per hour)
  - Assay development
  - Assay optimization
  - Assay validation
  - Grant submissions
- Equipment usage (per hour)
  - With help
  - Without help
- Small scale screens
  - User-defined (siRNAs, shRNAs, cDNAs, chemicals)
  - Library plates (e.g. kinome)
- Large scale screens
  - Library plates

#### • Data Analysis

- Normalization, annotation
- HCA analysis sequence dev.
- Screen reports
- Reagents
  - Transfection
  - Plastics
    - Tips
    - Plates
- siRNAs, shRNAs, cDNAs
  - User defined sets
  - Individual clones

# **Funding Opportunities**

#### • NIH

- PAR-13-364 Development of Assays for High-Throughput screening for use in Probe and Pre-therapeutic Discovery (R01)
- PAR-14-283/PAR-14-284, High-Throughput Screening (HTS) to Discover Chemical Probes (R21/R01)
- PAR-14-279, Discovery of *in vivo* Chemical Probes (R01)
- PAR-13-049/PAR-13-048, Drug Discovery for Nervous System Disorders (RO1/R21)
- PAR-13-007, Early-stage Pharmacological Validation of novel Targets and Accompanying Pre-therapeutic Leads for Diseases of Interest to the NIDDK (RO1)
- PAR-14-006, Seeding Collaborations for Translational Research to Discover and Develop New Therapies for Diseases and Conditions within NIDDK's Mission (RO1)
- PAR-15-056, Building on High Impact Neurobiology Through Assay Development: Advancing Tools for Therapeutic Development (RO1)
- PAR-15-070, Innovation Grants to Nurture Initial Translational Efforts (IGNITE): Assay Development and Therapeutic Agent Identification and Characterization to Support Therapeutic Discovery (R21/R33)
- PAR-15-071, Innovation Grants to Nurture Initial Translational Efforts (IGNITE): Pharmacodynamics and In vivo Efficacy Studies for Small Molecules and Biologics/Biotechnology Products (R21/R33)

# Funding Opportunities (part II)

- **NIH** (continued)
  - PAR-13-267, Novel NeuroAIDS Therapeutics: Integrated Preclinical/Clinical Program (P01)
  - PAR-15-041, Targeting Persistent HIV Reservoirs (TaPHIR) (R21/R33)
- NCAT/TRND opportunities
- Foundations (e.g. Welcome Trust, Melanoma Research Foundation, Leukemia/Lymphoma Society, Gates, Cystic Fibrosis)
- **Commercial** (e.g. Bayer Grants4targets, Astrazeneca Openinnovation)
- Institute/Center/Program Pilot project funds
  - Institute for Immunology
  - Center for Orphan Disease Research
  - Institute for Regenerative Medicine
  - Epigenetics Program

# Input from the Community

We are expanding based on SOM needs....

- FLIPR from Physiology
- cDNA library from J. Hogenesch (Pharm)
- Mouse shRNA library
  - Contributions: CHOP, Cancer Biology and IRM
- Small molecule libraries
  - Diversity library contributions: CDB, Biochemistry and Microbiology
  - LOPAC from J. Hogenesch (Pharm)

What libraries or functionality would be useful to you?

# **HOW TO GET STARTED?**

- Contact David Schultz at <u>dschultz@mail.med.upenn.edu</u> or 215-573-9641 for an initial consultation
  - Define the project
  - Determine if the facility has relevant expertise/technology to pursue the project
  - Develop a management plan
  - Set expectations
  - Get started!