Comparing an Opioid Use Disorder-Associated SNP with a Polygenic Risk Score as Predictors of Mu-Opioid Receptor Binding Potential

Background

• Opioid use disorder (OUD) is a common, often fatal disorder that is polygenic and moderately heritable.
• Substantial sex differences exist in OUD prevalence and risk factors.
• Only one replicable OUD-related variant has been identified through genome-wide association studies (GWAS): rs1799971(A118G) in OPRM1, which encodes the μ-opioid receptor (MOR).
• Polygenic risk scores (PRS) could account for OUD risk beyond that accounted for by rs1799971.
Aims

• Elucidate the mechanism(s) by which genetic factors contribute to OUD risk

• Evaluate sex differences both during a control (pre-challenge) condition and an acute stress paradigm
PET Study Sample

- **144 individuals of European ancestry** (88 females, 56 males; age 18-55) who underwent 11C carfentanil PET brain imaging in one of 5 studies conducted at the University of Michigan

- **Inclusion Criteria**: Right-handed, non-smokers who drank <10 standard drinks of alcohol per week, performed physical exercise no more than 1 h/d, with no history of recreational drug use

- **Exclusion Criteria**: Reported use of any centrally acting medications, including nicotine, during the past 2 months
Scan Sessions

• Participants underwent one (n=69) or two (n=75) 90-min PET scans to measure pre-challenge receptor availability and changes in receptor availability during moderate levels of sustained pain.

• The pain condition consisted of the introduction of noxious hypertonic (5%) saline into the relaxed masseter muscle at low volume to maintain a standardized target pain level of 40 on a 100-mm VAS over 20 min.
Genetic Analysis

• Genotyping used the Infinium PsychArray
• PCA for ancestral matching and population stratification adjustment
• PRS for OUD at an *a priori* p-value threshold (p<0.05) calculated using summary statistics from Zhou et al. (2020) and PRSice 2.0
• Follow-up tests examined PRS for height, major depression, and chronic pain in similar models.
Analysis of Scan Data

• MOR non-displaceable binding potential (BP_{ND}) measured in five addiction-related regions of interest (ROIs) using the positron emission tomography radioligand [11C]carfentanil

 • Nucleus accumbens
 • Ventral pallidum
 • Amygdala
 • Subgenual anterior cingulate
 • Dorsal striatum
Regions of Interest in Sagittal, Frontal, and Transverse Planes

Red=Nucleus Accumbens, Blue=Ventral Pallidum, Purple=Amygdala, Green=Subgenual Cingulate Cortex, Orange=Dorsal Striatum
Analysis of Scan Data

• Linear mixed model association testing of BP_{ND} with rs1799971 and PRS as independent variables and age and the first 10 ancestry PCs as covariates

• Analyses conducted on the entire sample and separately by sex

• Benjamini-Hochberg false discovery rate correction ($q<0.05$) for multiple testing
Association of *OPRM1* functional coding variant with opioid use disorder. A genome-wide association study

JAMA Psychiatry

Jun 3:e201206, 2020
Samples

• Meta-GWAS of OUD in MVP, Yale-Penn, and SAGE samples
 • European ancestry: 8,529 affected individuals and 71,200 opioid-exposed controls
 • African ancestry: 4,032 affected individuals and 26,029 opioid-exposed controls

Zhou et al. 2020
Results

• A functional coding variant (rs1799971, encoding Asn40Asp) in \textit{OPRM1} (mu- opioid receptor gene, the main biological target for opioid drugs) was genome-wide significant ($p=1.51 \times 10^{-8}$) in the European-ancestry sample.

• Replicated in two independent samples

• Final meta-analysis p-value for this variant in all samples was 7.81×10^{-10}

Zhou et al. 2020
GWAS of OUD (MVP, Yale-Penn, and SAGE Samples)
N=10,544 European-ancestry cases and 72,163 opioid-exposed controls

OPRM1, rs1799971, p=1.51x10^-8, OR=1.07

Zhou et al., JAMA Psychiatry, 2020
Functional Variation at *OPRM1*

- *OPRM1* (6q24-25) encodes the μ-opioid receptor, a 7-transmembrane, G-protein-coupled receptor.
- Rs1799971 is an A118G single nucleotide polymorphism in *OPRM1* that encodes an amino acid substitution in the 40th residue of the receptor protein: Asn40Asp
- The SNP has functional effects in model systems, the most consistent finding being a loss of function.
Variation at the OPRM1 Locus

```
1  cggatgagcc  tctgtgaact  actaaggttg  gagggggcta  tacgcagagg  agaatgtcag
61  atgctcagct  cgctcccttc  cgctcaacgc  tctctctgt  ctcagccagg  actgtggtct
121  gtaagaaaca  gacgagagct  tggcagcggc  gaaagggagg  ggtgggctgc  cagctcaggt
181  gaaagattctc  ggtgtccttgt  gctactgcct  acagcgcggc  gcccgggca  tcagttaccat
241  ggacagcgcg  gctgccccca  gaaacgggct  caatggctct  gatgcctcag  gcgtcagcag
301  tgctccctca  gccaccaggc  cgggtctctg  gttcaacttg  tcacccctcg  atgcagagcag
361  gtcgccacccg  tgcgtgccga  accggccaga  cctgggggag  agagacgagg  tgccatttcg
421  gacggccgct  ccctccctgg  tcaacgcctg  cagacgatgc  ccctctctgt  ctcagccagg
481  cgctgggggct  tctcttggc  acctgtcctg  ctatgtaatg  acacacccag  gcaagatcag
541  gaagactgctg  accaaaccat  accatccca  cctgtctgct  gcagatgcct  tgcacaccac
601  taccctgccg  ttcctcactg  tgaattactc  aaagactgcc  acacgccgct  gccctctctg
661  ttcacgagata  gtgatccttc  tagattacct  taaacgttcc  accagcacat  gcaatcttcc
721  ccctctccgt  gtgttagctg  acaatgcagtt  gtcgaccctc  gtcaagctcg  tagattttcg
781  tacctccccga  aatggccaaa  ttacatttgt  cttgcaatgc  atctctttct  cagcatttgc
841  ttctctctag  atgtctccct  tctacaggcc  gttgcttact  atgcctact  cacagtgcag
901  aacctctctc  catccacaccg  ggtctccgga  aacactctgg  aaccactctg  ttctcttcct
961  cgccctcttg  atgcagctgg  ttcctccttc  gtcagcagtt  gatgctgtcc  gagatgtaata
ttcgctgctg
1021  caagactgctg  cgggtcgtgcg  cttggtccttcc  cttgggaaaa  gggagttctt  gaagcttctc
1081  caggtgtggtg  cttggttact  tggcgt tgtgtgaggtatctc  tggactctcc  tggacgatgtt
1141  cgtcctcattc  aatgctgcttg  ttcactctcc  agaactaagtc  tccagacgct  tttctctgca
1201  ctctgtctatc  gctgctagct  acacattaccg  gttgcgtgttct  ctgcctctctc  atgcctactt
1261  ggtactggcct  ttgacccagt  gttgcagagga  ggtctgtact  cccacctctctc  cccacatgta
1321  gcccacaccg  tctacattgc  tttcctctgc  cttggcagaca  ccccacctcc  cggccatatc
1381  aagtggata  actatactctg  agtctgctg  tctggaaacc  gaaactgtgctg  cgtgctcaca
1441  acagggctcc  atgcatactcc  gacctctcc  aagctgttacctac  gcccctagct  atggtagaacc
1501  agtgctgtgc  aagatagttg  agggactgcc  aatttcacttg  gaaaggtcct  gccttcttgcg
1561  ctctccactt  ctctctctctctctctctctctctctctctctctctctctctctctctctctctctctctc
```
Diagnoses by A118G Genotype

<table>
<thead>
<tr>
<th>DIAGNOSIS</th>
<th>AA (n=100)</th>
<th>AG/GG (n=44)</th>
<th>TOTAL (n=144)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls (No Diagnosis)</td>
<td>50</td>
<td>24</td>
<td>74</td>
</tr>
<tr>
<td>Mood Disorder</td>
<td>20</td>
<td>8</td>
<td>28</td>
</tr>
<tr>
<td>Anxiety Disorder</td>
<td>13</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>Personality Disorder</td>
<td>8</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Eating Disorder</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Any Axis I or II Disorder</td>
<td>29</td>
<td>10</td>
<td>39</td>
</tr>
<tr>
<td>Chronic Non-Specific Back Pain</td>
<td>24</td>
<td>13</td>
<td>37</td>
</tr>
<tr>
<td>Any Chronic Pain, Axis I or II Disorder</td>
<td>50</td>
<td>20</td>
<td>70</td>
</tr>
</tbody>
</table>
Baseline Characteristics and psychophysiological responses during pain.

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th></th>
<th>AG/GG</th>
<th></th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Males (n=30)</td>
<td>Females (n=43)</td>
<td>Total (n=73)</td>
<td>Males (n=15)</td>
<td>Females (n=21)</td>
<td>Total (n=36)</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>38</td>
<td>62</td>
<td>100</td>
<td>18</td>
<td>26</td>
<td>44</td>
</tr>
<tr>
<td>Age</td>
<td>32.9 ± 11.1</td>
<td>32.6 ± 11.1</td>
<td>32.7 ± 11.0</td>
<td>30.0 ± 10.1</td>
<td>34.4 ± 9.6</td>
<td>32.6 ± 9.9</td>
</tr>
<tr>
<td>Affective Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Affect</td>
<td>21.6 ± 8.9</td>
<td>17.9 ± 9.7**</td>
<td>19.3 ± 9.5</td>
<td>23.4 ± 9.5</td>
<td>21.6 ± 9.6*</td>
<td>22.0 ± 9.5</td>
</tr>
<tr>
<td>Negative Affect</td>
<td>12.5 ± 10.1</td>
<td>8.7 ± 7.2**</td>
<td>10.2 ± 8.6</td>
<td>8.9 ± 5.9</td>
<td>7.9 ± 6.6*</td>
<td>8.3 ± 6.3</td>
</tr>
<tr>
<td>Experimental Pain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain Intensity</td>
<td>37.9 ± 19.3*</td>
<td>39.9 ± 17.6*</td>
<td>39.1 ± 18.2</td>
<td>32.9 ± 13.5</td>
<td>39.0 ± 14.7**</td>
<td>35.3 ± 14.3</td>
</tr>
<tr>
<td>McGill Pain Sensory</td>
<td>15.7 ± 6.0*</td>
<td>16.0 ± 7.8*</td>
<td>15.9 ± 7.1</td>
<td>12.9 ± 5.5</td>
<td>16.4 ± 6.7**</td>
<td>14.9 ± 6.4</td>
</tr>
<tr>
<td>Average 15-sec VAS</td>
<td>30.2 ± 13.0*</td>
<td>32.4 ± 14.6*</td>
<td>31.5 ± 13.9</td>
<td>27.9 ± 11.6</td>
<td>32.5 ± 14.8</td>
<td>30.6 ± 13.6</td>
</tr>
<tr>
<td>Affective Ratings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain Unpleasantness</td>
<td>36.0 ± 22.9*</td>
<td>46.1 ± 26.4*</td>
<td>42.0 ± 35.4</td>
<td>29.3 ± 15.5</td>
<td>42.9 ± 20.6**</td>
<td>36.9 ± 19.5</td>
</tr>
<tr>
<td>McGill Pain Affective</td>
<td>1.7 ± 2.4*</td>
<td>1.9 ± 2.3*</td>
<td>1.8 ± 2.3</td>
<td>0.7 ± 1.3</td>
<td>1.4 ± 2.0**</td>
<td>1.1 ± 1.7</td>
</tr>
<tr>
<td>ΔPANAS Positive</td>
<td>0.2 ± 3.9</td>
<td>0.3 ± 3.8*</td>
<td>0.3 ± 3.8</td>
<td>0.3 ± 3.5</td>
<td>-0.9 ± 5.8*</td>
<td>-0.3 ± 4.9</td>
</tr>
<tr>
<td>ΔPANAS Negative</td>
<td>0.2 ± 4.6</td>
<td>0.4 ± 3.1*</td>
<td>0.3 ± 3.8</td>
<td>0.4 ± 1.4</td>
<td>0.6 ± 7.0*</td>
<td>0.5 ± 5.3</td>
</tr>
</tbody>
</table>
Association of A118G with MOR BP_{ND}

AA

AG

GG

Left Nucleus Accumbens

Mu-Opioid Receptor Binding Potential

A118G
Pre-Challenge Scan (Receptor Availability): n=144

Variance (R^2) Accounted for by rs1799971

*q <0.05
A118G Results: Two group comparison, AA > AG + GG (p=0.05, uncorrected)

V. pallidum, amygdala, and N. accumbens significant only in women and striatum only in men
Polygenic Risk Scores

- Very little of the heritability is explained by the significant GWAS SNP
- SNPs that are non-significant contain real signal
 - Why are they not significant?
 - Very small effect sizes, stringent multiple-testing correction
- What if we want to predict the phenotype in a different sample?
 - Calculate polygenic risk scores!
PRS methods

• Used summary statistics provided by Hang Zhou from OUD meta-analysis

• Used two methods to develop PRS: PRS-CS (1 score) and clumping/thresholding with a number of p-value cut offs (9 scores)
Polygenic Risk Scores

\[\beta_A = 0.02 \]
\[\beta_G = -0.04 \]
\[\beta_C = -0.05 \]
\[\beta_T = 0.09 \]

\[\text{PRS} = 0.04 \]
\[\text{PRS} = 0.01 \]
Penn Medicine BioBank (PMBB)

- Provides researchers with centralized access to a large number of blood and tissue samples with attached health information.
- Facility banks blood specimens (i.e., whole blood, plasma, serum, buffy coat, and DNA isolated from leukocytes) and tissues (i.e., formalin-fixed paraffin embedded, fresh and flash frozen).
- ~60,000 individuals
- Multiple ancestries
Determining the Best PRS

- To determine best PRS, tested for association of PRS with OUD phenotype
- OUD phenotype determined by ICD-9 and -10 codes (summary table from Zhou et al.)
- ICD-9 and -10 codes restricted to subset of encounters that represent encounters with a physician
- In 52,354 PMBB individuals, 566 have at least 1 code for OUD
- In 10,182 EUR individuals with genetic data, 85 have at least 1 code for OUD
- Logistic regression model to test for association between PRS and OUD phenotype, with age, sex and PCs 1-10 as covariates
Determining the best PRS

<table>
<thead>
<tr>
<th>PRS method</th>
<th>Parameter</th>
<th>OR (95% CI)</th>
<th>P</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRS-CS</td>
<td>-</td>
<td>1.34 (1.08-1.67)</td>
<td>0.0083</td>
<td>0.7042</td>
</tr>
<tr>
<td>Clumping/thresholding</td>
<td>p<1x10⁻⁶</td>
<td>0.84 (0.68-1.04)</td>
<td>0.1178</td>
<td>0.69</td>
</tr>
<tr>
<td></td>
<td>p<1x10⁻⁵</td>
<td>0.99 (0.80-1.23)</td>
<td>0.9212</td>
<td>0.687</td>
</tr>
<tr>
<td></td>
<td>p<1x10⁻⁴</td>
<td>1.20 (0.96-1.48)</td>
<td>0.1032</td>
<td>0.6911</td>
</tr>
<tr>
<td></td>
<td>p<1x10⁻³</td>
<td>1.19 (0.95-1.47)</td>
<td>0.1233</td>
<td>0.6903</td>
</tr>
<tr>
<td></td>
<td>p<0.01</td>
<td>1.38 (1.11-1.72)</td>
<td>0.0032</td>
<td>0.708</td>
</tr>
<tr>
<td></td>
<td>p<0.05</td>
<td>1.55 (1.25-1.92)</td>
<td>(7.49\times10^{-5})</td>
<td>0.7222</td>
</tr>
<tr>
<td></td>
<td>p<0.1</td>
<td>1.52 (1.22-1.89)</td>
<td>0.0002</td>
<td>0.719</td>
</tr>
<tr>
<td></td>
<td>p<0.5</td>
<td>1.51 (1.22-1.88)</td>
<td>0.0002</td>
<td>0.7149</td>
</tr>
<tr>
<td></td>
<td>p<1</td>
<td>1.50 (1.20-1.86)</td>
<td>0.0003</td>
<td>0.7143</td>
</tr>
</tbody>
</table>
Case Prevalence Clumping/Thresholding PRS (p<0.05)

• Split PRS into deciles
• Calculated case prevalence per decile
• Compared top 10% of PRS to rest (90%): OR=2.05 (1.17-3.57), p=0.012

<table>
<thead>
<tr>
<th>Decile</th>
<th># cases</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0.49</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>0.49</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0.39</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>0.79</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0.20</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>0.98</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0.69</td>
</tr>
<tr>
<td>8</td>
<td>19</td>
<td>1.87</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>0.88</td>
</tr>
<tr>
<td>10</td>
<td>16</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Pain Challenge-Induced Changes in Receptor Availability: Total Sample (n=109)

Variance (R^2) Accounted for by OUD SNP vs. PRS

- Cingulate
- V. Pallidum
- Amygdala
- N. Accumbens
- D. Striatum

SNP vs. PRS comparison chart showing the variance accounted for in different brain regions.
Pain Challenge-Induced Changes in Receptor Availability: Women (n=64)

Variance (R²) Accounted for by OUD SNP vs. PRS

*q <0.05
B_{PD} Reflecting Endogenous Opioid Release by Sex
Left Amygdala, Scatterplot, PRS Mu-Opioid System Activation

The scatterplot illustrates the relationship between Polygenic Risk Score (PRS) and Mu-Opioid System Activation. The x-axis represents the Polygenic Risk Score (0.05), while the y-axis shows the % Change, Baseline-Pain/Baseline. The data points are color-coded by gender: blue for males and red for females. The graph shows a positive correlation between PRS and Mu-Opioid System Activation.
Conclusions

• We replicated the association of the G allele with lower MOR receptor availability during the pre-challenge scan.

• There were no significant associations of the PRS with pre-challenge receptor availability.

• In women only, during a pain stimulus (which releases endogenous opioids), the OUD PRS was significantly associated with changes in opioid system activation.

• Parallel analyses of PRS for height, chronic pain, and MDD showed no effects on receptor availability at either timepoint.

• Both the effects of the SNP and of the PRS were most evident in women, who comprised 60% of the sample.
Possible Future Directions

• Prospective replication study in patients from the PMBB who are at the extremes of OUD PRS
 • Use either the acute pain paradigm or a pharmacological challenge such as amphetamine to activate the opioid system

• Evaluate effects in detoxified, opioid-free OUD patients