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Abstract
Objective. Micro-tissue engineered neural networks (micro-TENNs) are anatomically-
inspired constructs designed to structurally and functionally emulate white matter pathways 
in the brain. These 3D neural networks feature long axonal tracts spanning discrete neuronal 
populations contained within a tubular hydrogel, and are being developed to reconstruct 
damaged axonal pathways in the brain as well as to serve as physiologically-relevant in vitro 
experimental platforms. The goal of the current study was to characterize the functional 
properties of these neuronal and axonal networks. Approach. Bidirectional micro-TENNs were 
transduced to express genetically-encoded calcium indicators, and spontaneous fluorescence 
activity was recorded using real-time microscopy at 20 Hz from specific regions-of-interest 
in the neuronal populations. Network activity patterns and functional connectivity across the 
axonal tracts were then assessed using various techniques from statistics and information 
theory including Pearson cross-correlation, phase synchronization matrices, power spectral 
analysis, directed transfer function, and transfer entropy. Main results. Pearson cross-
correlation, phase synchronization matrices, and power spectral analysis revealed high values 
of correlation and synchronicity between the spatially segregated neuronal clusters connected 
by axonal tracts. Specifically, phase synchronization revealed high synchronicity of  >0.8 
between micro-TENN regions of interest. Normalized directed transfer function and transfer 
entropy matrices suggested robust information flow between the neuronal populations. Time 
varying power spectrum analysis revealed the strength of information propagation at various 
frequencies. Signal power strength was visible at elevated peak levels for dominant delta  
(1–4 Hz) and theta (4–8 Hz) frequency bands and progressively weakened at higher 
frequencies. These signal power strength results closely matched normalized directed transfer 

Journal of Neural Engineering

Assessing functional connectivity across 
3D tissue engineered axonal tracts using 
calcium fluorescence imaging

A V Dhobale et al

Printed in the UK

056008

JNEIEZ

© 2018 IOP Publishing Ltd

15

J. Neural Eng.

JNE

1741-2552

10.1088/1741-2552/aac96d

Paper

5

Journal of Neural Engineering

IOP

7 Co-senior authors.

2018

1741-2552/18/056008+25$33.00

https://doi.org/10.1088/1741-2552/aac96dJ. Neural Eng. 15 (2018) 056008 (25pp)

https://orcid.org/0000-0001-8211-0681
mailto:reuben.kraft@psu.edu
mailto:dkacy@pennmedicine.upenn.edu
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/aac96d&domain=pdf&date_stamp=2018-07-11
publisher-id
doi
https://doi.org/10.1088/1741-2552/aac96d


A V Dhobale et al

2

function analysis where near synchronous information flow was detected between frequencies 
of 2–5 Hz. Significance. To our knowledge, this is the first report using directed transfer 
function and transfer entropy methods based on fluorescent calcium activity to estimate 
functional connectivity of distinct neuronal populations via long-projecting, 3D axonal tracts 
in vitro. These functional data will further improve the design and optimization of implantable 
neural networks that could ultimately be deployed to reconstruct the nervous system to treat 
neurological disease and injury.

Keywords: axonal tracts, functional connectivity, fluorescence calcium imaging, directed 
transfer function (DTF), transfer entropy (TE), engineered neural networks

(Some figures may appear in colour only in the online journal)

1. Introduction

Recent advancements in neural tissue engineering methodolo-
gies allow for the in vitro fabrication of more sophisticated 
three-dimensional (3D) constructs designed to replicate the 
structure and function of specialized neural networks in the 
brain [1–4]. Micro-tissue engineered neural networks (micro-
TENNs) are living, 3D constructs consisting of discrete popu-
lations of neurons (i.e. aggregates with specified phenotype) 
spanned by aligned axonal tracts protected in a soft hydrogel 
cylinder (figure 1). These micro-TENNs reconstitute the 
architecture of long-distance axonal tracts in the brain, and are 
being developed for two complementary purposes: (1) to be 
transplanted en masse to integrate with targeted brain circuitry 
and thereby reconstruct and/or modulate damaged axonal 
pathways, and (2) to serve as biofidelic in vitro test-beds to 
study development, functionality, injury/disease responses, 
and/or pharmacologic strategies in an anatomically-relevant, 
yet controlled setting.

We have previously demonstrated potential applications 
of micro-TENNs to reconstruct long-distance white matter 
(i.e. axonal) pathways in the brain [1–4]. Further, we have 
recently begun to apply micro-TENNs as the first implant-
able ‘living electrodes’ designed to biologically integrate 
with deep host neurons while the other end remains quasi-
externalized, thereby serving as the living component of a 
biohybrid neural interface with non-organic components 
relegated to the brain surface (figure 1(c)) [4, 5]. As ‘living 
electrodes’, we are exploring the capability of these neuron-
based constructs to form stable synaptic connections in tar-
geted cortical layers to selectively display a facsimile of 
deep brain activity to the cortical surface and/or provide a 
conduit to modulate host network activity upon stimulation 
of the dorsal neuronal aggregate within the micro-TENN. To 
realize this long-term goal, we have to first understand the 
underlying organizational connectivity patterns associated 
with micro-TENNs. This can be evaluated in two phases. In 
the first phase, which is the goal of the current study, we 
aim to characterize the functional attributes of fully formed 
micro-TENN neurons and axonal tracts in vitro. Specifically, 
we seek to characterize the activity patterns, degree of syn-
chronization, and functional connectivity of micro-TENNs 
non-invasively (i.e. without penetrating the aggregates 

with electrodes) based on real-time microscopy of spatial 
dynamics of calcium oscillations using GCaMP6, a genet-
ically-encoded calcium indicator (GECI). This powerful 
method allows the acquisition of a spatial map of activity 
patterns both within the segregated neuronal populations as 
well as across the long axonal tracts connecting them, with 
sophisticated statistical and information theory methods 
then deployed to understand relationships between activity 
patterns and functional connectivity of these complex, 3D 
neuronal networks with long-projecting axonal tracts. In 
the second phase, to be completed in future work, we will 
characterize alterations in network activity and functional 
activity patterns following implantation and synaptic inte-
gration of micro-TENNs in the brain [1, 2].

Fluorescent calcium imaging methods have emerged as 
a powerful non-invasive tool for studying the synaptic net-
work at cellular resolution. Somatic calcium influx gener-
ates action potentials within neurons that provide a way to 
detect and visualize neurophysiological and/or synaptic con-
nectivity. Calcium imaging connectivity methods address 
certain drawbacks of multi-electrode recordings from elec-
trophysiological (MEA in vitro; EEG, MEG in vivo) and 
functional magnetic resonance imaging techniques (fMRI in 
vivo) [7–18]. Specifically, high-impedance micro-electrodes 
can only capture the action potentials generated by closely 
proximal neurons with particular source-sink geometries; 
lower impedance electrodes can capture the activity of more 
distant neurons, albeit as a volume average from which the 
activity of more distant units cannot be definitively dis-
criminated [10]. Calcium recordings permit simultaneous 
observation of numerous neurons at cellular resolution and 
can quantify the calcium activity of any neuron visualized, 
enabling more comprehensive study of neuronal networks 
through the monitoring of simultaneous interactions between 
active neuronal populations [10, 19, 20]. While functional 
calcium imaging does not address all shortcomings of MEA-
based recordings, it has generally been shown to present a 
useful reflection of action potentials. For instance, whereas 
calcium imaging fundamentally reflects calcium ion flux and 
calcium ion propagation, in certain cases it can be used to 
infer action potential activity, as seen in studies by Lutcke 
et al [21] where spikes were reconstructed from calcium sig-
nals acquired even at low sampling rates of 20–30 Hz [21, 
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22]. Further advancements in the development of GECI’s 
(such as GCaMP6, used in the current study) have consid-
erably improved the response kinetics, dynamic range and 
signal to noise ratio [23].

In the current study we have employed the use of calcium 
imaging signals and high-speed fluorescent microscopy to 
estimate connectivity patterns within micro-TENNs featuring 
discrete neuronal populations spanned by long-projecting, 3D 
axonal tracts. Methods to estimate functional connectivity 
included action potential recordings [24], cross-correlation, 
phase synchronization [25], coherence, transfer entropy (TE) 

and Granger causality [26]. Many of these methods have pre-
viously been applied to investigate connectivity patterns in 
neural networks. For instance, Falli et al [27] conducted func-
tional analysis on calcium imaging from a zebrafish spinal 
cord using cross-correlations and Granger causality methods. 
Similarly, Astolfi et al [12] demonstrated the use of the direct 
transfer function (DTF) method to estimate connectivity from 
EEG data signals. In the study by Dombeck et al [20], correla-
tion analysis was implemented on fluorescent calcium signals 
from awake, mobile mice, revealing strong cross-correlations 
among observed neuron signals and treadmill running activity.

Figure 1. Micro-TENNs as a platform technology for brain pathway reconstruction or as ‘Living Electrodes’ [1, 4–6]. (A) Micro-TENNs 
initially consist of a 3D hydrogel cylinder (gray) encasing an extracellular matrix core of collagen and laminin (red), to date measuring up 
to several centimeters in length. (B) Bidirectional micro-TENNs have neuronal aggregates placed at both ends of the cylinder, with axonal 
tracts growing to span the cylinder length. (C) In the ‘Living Electrode’ paradigm, an optical probe may record activity (1) from vertically 
implanted bidirectional micro-TENNs (2) upon their synaptic integration with host neurons from specific cortical layers within the brain 
(e.g. Layer V) (3) (D) Left: phase microscopy images of a 1.5 mm bidirectional micro-TENN at 1, 3, 4, and 7 d in vitro (DIV). Right: 
confocal reconstructions of the same micro-TENN stained to identify axons (Tuj-1; red), cell soma/dendrites (MAP-2; green), and cell 
nuclei (Hoechst; blue). Scale bars: 100 µm. (E) Phase microscopy images of a ~9 mm bidirectional micro-TENN at 1, 3, and 7 DIV. The 
bottom image is a confocal reconstruction of this micro-TENN with the same labeling as in (D). Scale bars: 500 µm.
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However, to our knowledge no previous studies have 
focused on estimation of functional connectivity using the 
DTF and TE methods applied to fluorescent calcium imaging 
of neuronal networks. Here, our objective is to establish a 
framework to quickly and efficiently analyze non-linear mul-
tivariate micro-TENN datasets to reveal activity levels and 
connectivity patterns in the future. This framework involves 
TE and DTF in conjunction with two additional functional 
connectivity methods: cross-correlation and phase synchro-
nization. We assert that none of these methods are indepen-
dently conclusive; rather, by implementing a combination 
of these techniques we can reliably estimate functional con-
nectivity. Moreover, the non-directed and directed analyses 
complement each other and provide additional insights into 
information flow patterns. Additionally, electrophysiological 
processes exhibited by neural systems have similar oscilla-
tory signal structures, making them well suited for frequency 
domain analysis [28]. Accordingly, in the current study we 
first describe the methods employed for estimating the func-
tional connectivity within micro-TENNs. We provide detailed 
descriptions of the mathematical approach for applying these 
methods. Then, we describe results of applying the characteri-
zation techniques, discuss their implications, and note impor-
tant limitations of our approach.

2. Materials and methods

2.1. Micro-TENN fabrication, staining, and image acquisition

Embryonic day 18 (E18) rat cortical neurons were extracted 
from brain tissue, dissociated, and forced into cell aggregates 
via centrifugation as previously described [6]. Aggregates were 
transduced with the genetically encoded calcium reporters 
GCaMP6f or RCaMP1b (Penn Vector Core, Philadelphia, 
PA). At 24 h post-transduction, aggregates were seeded within 
3% agarose micro-columns (outer and inner diameters: 345 
and 180 µm, respectively; length: 2–10 mm) that had been 
filled with a collagen-laminin extracellular matrix (1 mg ml−1 
each). In this study, aggregates were placed at both ends of 
each micro-column to create so-called ‘bi-directional’ micro-
TENNs with two axonally-linked neuronal populations that 
were as long as the agarose micro-columns in which they 
were grown: 1.5 mm (n  =  7) or 9–10 mm (n  =  3) in length 
(figure 1). Micro-TENNs were then allowed to grow in neu-
ronal culture media and monitored via phase and fluorescent 
microscopy to assess growth and calcium reporter expression. 
After 10 d in vitro, spontaneously active micro-TENNs were 
imaged on a Nikon Eclipse Ti confocal microscope paired with 
an ANDOR Neo/Zyla Camera through Nikon Elements AR 

Figure 2. Micro-TENN ROI Image Segmentation. (A) Tiff stacks containing images of fluorescent calcium activity over time within 
micro-TENNs were imported into FluoroSNNAP. (B) Using image segmentation, ROIs within the aggregates were manually segmented. 
(C) FluoroSNNAP’s automated spike detection methodology yielded normalized fluorescence (ΔF/F) trace activity for the duration of the 
recordings. (D) Experimental calcium transients from the recordings were identified in NIS Elements. The intensities of selected ROIs were 
plotted over time relative to non-active background.
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4.50.00 (Nikon Instruments). Micro-TENNs were recorded 
at  ⩾20 Hz for 120 s, with the resultant recordings exported as 
TIFF image stacks for data processing and analysis.

For immunocytochemistry, selected micro-TENNs were 
fixed in 4% formaldehyde in 1×  PBS for 35 min. Post-fixation, 
micro-TENNs were rinsed with 1×  PBS and permeabilized in 
0.3% Triton X100  +  4% normal horse serum in 1×  PBS for 
1 h. Micro-TENNs were then incubated overnight at 4 °C with 
the primary antibodies beta-III tubulin/Tuj-1 (T8578, 1:500 
dilution, Sigma-Aldrich) and microtubule-associated protein 
2/MAP2 (AB5622, 1:500, Millipore). Micro-TENNs were 
subsequently rinsed in 1×  PBS and incubated for 2 h at 18 °C–
24 °C with fluorescently labeled secondary antibodies (1:500, 
Life Technologies). Micro-TENNs were then incubated with 
Hoechst (33 342, 1:10 000, ThermoFisher) for 10 min before 
being rinsed in 1×  PBS and imaged on a Nikon A1RSI scan-
ning confocal microscope paired with NIS Elements 4.50.00 
(Nikon Instruments). All confocal images presented are max-
imum intensity projections of sequential slices along the z-
axis; slices were 10–20 µm thick. Of note, the use of optical 
calcium recording has been shown to be a reliable approach to 
measure neuronal network activity as compared to electrical 
microstimulation [29].

2.2. FluoroSNNAP data processing

The acquired TIFF image stacks contained time-lapse images 
of fluorescent calcium activity collected for 120 s generating 
2400 frames at 20 Hz sampling rate. We used FluoroSNNAP 
[30] open source software to perform image segmentation and 
spike detection to generate calcium signals from the regions 
of interest (ROIs). This was done by importing the TIFF stack 
into the software and manually defining the ROIs. Multiple 
bright-field ROIs were selected from a time-averaged image 
with an approximate size of 20 µm (figures 2(A) and (B)). Note 
that figures 2(B)–(D) are for the left side of the micro-TENN 
shown—similar plots exist for the right-hand side as well. In 
the next step, FluoroSNNAP computed normalized fluores-
cence trace waveforms representing calcium transient activity 
(figure 2(C)). The software delineates neuronal activity from a 
baseline fluctuation and produces waveforms using a database 
of known transient waveforms. This discriminates calcium 
activities from other intercellular sources. Since active neu-
rons were selected based on the standard deviation of the fluo-
rescence signal for the length of the recording, the number of 
considered regions could differ across distinct micro-TENNs 
(figure 2(A)). ROI shapes were selected by two or more inves-
tigators based upon visual inspection of luminance fluctuation 
following the methodology from [30].

2.3. Methods for estimating functional connectivity

Briefly, there are three main types of connectivity studies 
used to describe the inter communication between brain 
regions or neuronal populations: structural, functional and 
effective connectivity. Friston [15] puts forward definitions 
between functional and effective connectivity to outline 

distinct differences between the two measures. Functional 
connectivity is defined as the temporal correlation of mea-
sured signals from spatially remote neurophysiological 
events. Functionally connected neural networks exhibit syn-
chronized activity patterns measured using various linear 
and non-linear computational tools such as cross-corre-
lation, coherence, Granger causality and transfer entropy 
(TE). These methods are useful in measuring the existence 
and summarizing the types of interactions that are recorded 
from activity within the neuronal population [14, 31].

Effective connectivity is a specific form of functional con-
nectivity. It is defined as the simplest independent model of 
system component interactions used to generate temporal 
relationships as observed experimentally. Effective con-
nectivity is used to postulate the consequences of coupling 
actions. In the case of micro-TENNs, effective connectivity 
measures would allow us to postulate and model the network 
structure. However, in order to verify the accuracy of model, 
neuron stimulation and high-resolution imaging techniques 
are required. Therefore, based on the experimental limita-
tions of maintaining live neuron cultures during the stimula-
tion process, we focused our study on fundamental functional 
connectivity analysis to quantify the temporal relationship 
between different loci of calcium influx activity within the 
micro-TENN.

2.3.1. Pearson cross-correlation. Pearson cross-correlation 
is the most common non-directed time-domain linear measure 
of interaction (a detailed description of the mathematics of 
this approach is included in the supplementary material). The 
computation of higher correlations implies greater functional 
relationships between the related neuronal populations. This 
method does not always identify causal relationships but is 
a computationally robust and inexpensive tool to determine 
network synchronizations [32, 33].

2.3.2. Phase Synchronization. To infer the synchrony among 
the neuron populations, we computed phase synchronization 
to estimate dependencies between n ROI signals. This method 
was based on calculating the instantaneous phases through 
Hilbert transformation of signals [34] and applying the syn-
chronization equation  derived by Allefeld [35]. That is, the 
phase synchronization Rij of two oscillators i and j can be 
defined as the peak of the distribution of the phase difference 
φjl − φil:

Rij =

∣∣∣∣∣
1
n

n∑
i=1

exp (i (φjl − φil))

∣∣∣∣∣ (1)

where l = 1 . . . n enumerates the realizations in given sample 
and takes values from 0 to 1. In our study, the two oscilla-
tors i and j represents the two ROI signals selected. Pearson 
cross-correlation and phase synchronization are used to infer 
non-directed synchronous patterns in the micro-TENN ROIs. 
Phase synchronization has previously been demonstrated both 
in vitro and in vivo, including from cortical and hippocampal 
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local field potentials, and whole cell voltage clamp recordings 
of thalamic neurons [36, 37].

2.3.3. Directed transfer function (DTF) and power spectral 
analysis. Kaminski and Blinowska [38] first introduced 
Directed Transfer Function formulations to estimate the 
direction of information flow activity (appendix A). The nor-
malized DTF (nDTF) method can be used to estimate directed 
information flow within the neural network [9, 16, 39, 40]. 
Directed Transfer Function is defined as the causal influence 
of channel j on channel i at frequency f. The normalized ver-
sion of DTF, nDTF, takes values from 0 to 1 producing a 
ratio between the inflow from channel j to channel i to all the 
inflows to channel i. Therefore, using the DTF approach, we 
can provide evidence for direction of activity flow between 
micro-TENN structures as a function of frequency. In this 
method, a spectral transfer matrix is computed from a fitted 
multichannel autoregressive (MVAR) model [10]. The SIFT-
EEGLAB manual [41] presents several information criterions 
for the user to estimate an appropriate model order to fit the 
data. Briefly, these include akaike information criterion (AIC), 
schwarz bayes criterion (SBC), final prediction error criterion 
(FPE), and hannan-quinn criterion (HQ). In other words, we 
interpret information flow from the estimated MVAR coeffi-
cients fitted on the original calcium signal data. One of the 
major advantages of nDTF analysis is the unrestricted limita-
tion to analyze many channels in different frequency bands. 
Since our dataset involves a considerable number of ROI cal-
cium signals, this feature proves to be useful. Power Spectrum 
reveals the network’s connectivity strength as a function of 
frequency based on the original signal data [42–45]. Power 
spectrum analysis of the calcium signals was calculated using 

fast Fourier transformation (appendix B). Power Spectrum 
analysis results were used to verify the relevancy of nDTF 
MVAR model results.

2.3.4. Transfer entropy (TE). To verify the results obtained 
by the previous methods, we also employed transfer entropy 
(TE) method [46–48] to quantify information transfer within 
the cortical aggregates of the micro-TENN. Recent work on 
TE developed by Kaiser and Schreiber [46] highlights the 
mathematical formulations and advantages of TE on con-
tinuous signal processes namely when TE method takes into 
account the linear and non-linear information flows to define 
causality strength between two signals. Orlandi et  al [48] 
demonstrates the use of TE method to study functional con-
nectivity interactions for simulated calcium imaging signals. 
Similarly, Gourevitch et al [47] employed TE methodology to 
study information transfer between auditory cortical neurons. 
They analyzed spike trains from 16 recording sites from the 
auditory cortex of 21 ketamine-anesthetized cats with record-
ing signal length of 900 s. Transfer entropy metrics have also 
revealed patterns of information flow between thalamus and 
cortex in the anesthetized rat [49]. In our case, we use this 
tool to investigate spontaneous non-stimulated activity of up 
to 30 ROI signals collected from the micro-TENN. Transfer 
Entropy results were obtained using the Java Information 
Dynamics Toolkit (JIDT) toolbox [50].

3. Results

To focus on synchronizing properties between these signals, 
Pearson cross-correlation (figure 3(A)) and phase synchroni-
zation studies (figure 3(B)) were computed. All data analyses 

Figure 3. Micro-TENN pearson cross-correlation (A) and phase synchronization (B). The plots are divided into four sub-blocks. ROIs 
1...15 are from one aggregate of the micro-TENN (i.e. left cluster of ROIs in figure 2(A)) and 16...30 from the other aggregate (i.e. right 
cluster of ROIs in figure 2(A)). The diagonal elements represent Pearson cross-correlation and phase synchronization within the region 
itself, while the off-diagonal blocks represent the different regions. The Pearson cross-correlation matrix reveals high correlation values 
(greater than 0.5). Note that Pearson cross-correlation goes from  −1 (anti-correlation) to  +1 (perfect correlation), with 0 indicating no 
correlation. In this case, we observe high correlation between micro-TENN ends that produce no values below zero. Similarly, the phase 
synchronization plot reveals high synchronicity values (greater than 0.8) between the ROIs’ signals.
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include intra- and cross-population measurements for every 
pair of ROIs. The computation of higher correlations implies 
greater functional relationships between the related neuronal 
populations. Both studies generated values of cross-correla-
tion and phase synchronization greater than 0.8, suggesting 
that micro-TENN aggregates exhibit synchronous activity and 
have a high probability of being functionally connected.

To further infer causal dependencies between the calcium 
firing patterns within the micro-TENN neuronal aggregates 
ROIs, normalized directed transfer function (nDTF) con-
nectivity matrices were generated using the EEGLAB SIFT 

[42] multivariate autoregressive (MVAR) model fitted to the 
signals. The nDTF method can be used to estimate directed 
information flow within the neural network [9, 16, 39, 40]. In 
our case, we use it to estimate the information flow across the 
micro-TENN construct. The nDTF estimates were obtained 
by using a numerically stable 10th order MVAR model with 
an 80 s sliding window length and 40 s time step (appendix A). 
The nDTF coefficients were obtained over the frequency band 
between 1 to 9 Hz. Given these parameters, nDTF matrices 
revealed information flow across the micro-TENN par-
ticularly for frequencies 2 to 5 Hz (figure 4(A)). Time varying 

Figure 4. Micro-TENN nDTF (A) and power spectral analysis (B). The nDTF information flow matrix: the diagonal elements represent 
information flow within the region itself while the off-diagonal block represents the cross-talk information flow across the micro-TENNs. 
The nDTF matrices at frequencies 19 Hz: at each frequency, both diagonal and off-diagonal blocks are non-empty indicating information 
flow within the left and right regions and across the micro-TENN. This is more prominent at frequencies between 1 to 4 Hz (delta frequency). 
(B) Power spectral frequency analysis reveals stronger signal power frequencies 1–5 Hz in correspondence with DTF analysis.

Figure 5. (A) Micro-TENN transfer entropy and (B) probability density distribution. Transfer Entropy connectivity metrics suggest 
dynamical dependence between the calcium signals. These results are visually consistent with the phase synchronization plot. Probability 
density distribution from the information flow nDTF matrices obtained using different micro-TENN images were collected at varying 
frequencies and growth days. Positively skewed distribution shows excitatory-only connectivity patterns within the micro-TENN.

J. Neural Eng. 15 (2018) 056008
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power spectrum analysis revealed the strength of information 
propagation at various frequencies. Signal power strength is 
visible at elevated peak levels for dominant delta (1–4 Hz) and 
theta (4–8 Hz) frequency bands and progressively weakens at 
higher frequencies (figure 4(B)). These signal power strength 
results closely matched nDTF analysis where near synchro-
nous information flow was detected between frequencies 2 to 
5 Hz.

Observing neural oscillations at distinct low frequencies 
has broad impact on cognitive multiplexing processes [51] 
such as memory performance [52] and regulating large-scale 
networks [53]. In the case of micro-TENNs, information flow 
across different frequencies suggest mechanisms of neural 
multiplexing communication whereby multiple information 
streams share a common neural substrate. Similar results have 
been found in in vitro models of the brain connectome, wherein 
paired clusters of cortical neurons formed complex intercel-
lular circuits and exhibited multiplexed input responses [54].

Multivariate model independent TE calculation was based 
on continuous-valued micro-TENN data using the kernel-esti-
mator [51]. Transfer entropy is an additional metric that may 
reveal patterns of information flow between ROIs. The TE 
connectivity matrix (figure 5(A)) revealed distinct sub-blocks 
representing the two micro-TENN aggregates and non-zero 
mutual information transfer across the aggregates. Results 
computed using DTF and TE in the functional connectivity 
framework have delivered consistent results (figure 5(B)) 
demonstrating that neuronal aggregates within micro-TENN 
have dynamic coupling connectivity.

This same series of analysis tools was carried out on six 
additional micro-TENNs (individual results included in 
appendix C). For all seven micro-TENNS, we performed a 
pairwise Kolmogorov–Smirnoff test (KST) on the nDTF 
values at 1 Hz (a dominant activity frequency in the micro-
TENNs) as shown in figure 6. The KST is a nonparametric test 
comparing the probability distributions of the samples for a 

given statistical significance level, in this case p  =  0.01. Since 
the KST does not require any preliminary knowledge about 
the probability distributions of the samples, it is suitable for 
comparison of the activity patterns across the different micro-
TENNs. We applied the KST to test the hypothesis that the 
given micro-TENN nDFT datasets are from the same distri-
bution (a value of 1 indicates that two samples have similar 
probability distributions of nDTF, whereas a value 0 indicates 
that the probability distributions are not similar). This analysis 
showed that of all the possible comparisons across the dif-
ferent micro-TENNs, all yielded a value of 1 (showing con-
sistent nDTF probability distributions) with the exception of 
a single comparison (micro-TENN 4 versus micro-TENN 5). 
This suggests that the patterns of activity or communication 
are similar across all of the micro-TENNs at this time point 
and frequency, with the exception of a single pair where the 
nDTF patterns were statistically different (although these ‘dif-
ferent’ micro-TENNs were similar to the others). In these dif-
ferent functioning micro-TENNs, the activity patterns could 
become more similar as the neuronal networks continue to 
mature and/or similar activity patterns could be occurring at 
different frequencies.

4. Discussion

Micro-TENNs are anatomically-inspired constructs designed 
to structurally and functionally emulate white matter pathways 
in the brain. As such, they are being developed to be trans-
planted en masse to reconstruct and/or modulate damaged 
axonal pathways as well as to serve as biofidelic test-beds to 
study neurophysiology and/or pharmacologic interventions in 
an anatomically-relevant, yet controlled in vitro setting. This 
paper provides the first report of functional connectivity of 
distinct neuronal populations via long-projecting, 3D axonal 
tracts based on fluorescent calcium activity analyzed via novel 
application of nDTF and TE methods. These functional data 

Figure 6. Results of pairwise Kolmogorov–Smirnoff test (KST) on the nDTF values at 1 Hz for a p-value of 0.01 for all the micro-TENNS.
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are a crucial step to not only understanding tactics employed 
for information flow across 3D axonal tracts, but also for the 
future development of ‘all-optical’ techniques for probing and 
modulating these networks based on the addition of optoge-
netic techniques for controlled stimulation. Collectively, this 
improved understanding and precisely engineered control will 
allow us to further improve the design and optimization of 
implantable neural networks that could ultimately be deployed 
to reconstruct the nervous system to treat neurological disease 
and injury.

Synchronous neuronal activity appears critical for cer-
tain behaviorally relevant computations, while hypersyn-
chrony can impair information coding and cause epileptiform 
responses [36]. Synchronization of neural populations has 
been shown not to require a common driving source and 
instead relies on the length of the tract connecting them, the 
number of cells involved, and upon the mixture of recurrent 
and feedforward connections [37, 55]. The cross-correlation 
and phase synchronization analysis of calcium signaling in 
the micro-TENN suggests a strong degree of synchronous co-
activation within a cluster, and to a lesser yet still significant 
degree, synchronous co-activation between the two clusters 
as mediated by the axon tracts (figures 3(A) and (B)). The 
apparent difference in synchronization between and within the 
two neural populations of the micro-TENNs (i.e. the two clus-
ters of ROIs seen in figure 2(A)) also implies that the spatial 
geometry afforded by the micro-TENN fabrication induces 
a kind of functional segregation while simultaneously sus-
taining functional connectivity. This pattern is in contrast to 
dissociated cultures which tend to form hypersynchronized 
bursting networks [56]. The micro-TENN mixture of synchro-
nization results mirror results seen previously in dissociated 
neuron cultures grown on MEAs that have physical barriers 
to promote regional clustering [57] and of organotypic slice 
cultures [58], with the crucial distinction that micro-TENNs 
are 3D, self-contained constructs that can be implanted into 
the brain as a unit [3].

The nDTF and TE analyses demonstrated that information 
(entropy) flows within and between the cluster populations of 
the living micro-TENN and this flow has an asymmetric direc-
tionality (anisotropy) (figures 4 and 5). These results reveal 
that the micro-TENN spontaneously exhibits information 
flow dynamics across the long, 3D axonal tracts that is analo-
gous to what has previously been described in vivo [47, 49]. In 
addition to these results being inherently interesting as a first 
characterization of a novel bioengineered axon-based con-
struct, they also provide a crucial baseline necessary before 
proceeding to analyzing micro-TENN activity once implanted 
and allowed to integrate in vivo. Indeed, the in vitro results 
hence form a kind of ‘null hypothesis’ ‘deafferented’ state that 
can inform interpretation of calcium imaging and other physi-
ological assays once deployed in vivo either to anatomically 
reconstruct missing/damaged brain pathways or as a ‘living 
electrode’ for biological/synaptic-based modulation of deep 
neural circuitry.

In order to demonstrate the robustness of the analysis tools 
presented in this paper, we analyzed functional connectivity 

by applying the same suite of analyses in six additional indi-
vidual micro-TENNs (included in appendix C). Based on these 
additional analyses, our major findings and conclusions do not 
change for 5 of the 6 additional micro-TENNs. That is, we see 
cross- and phase-synchronization, information flow as shown 
by nDTF and cross-communication (or cross-talk) as shown 
by transfer entropy. However, the 6th additional micro-TENN 
that we examined was particularly interesting: we observed 
high correlation, synchronization and communication within 
the ends of the micro-TENN, however, we observe limited 
cross-talk between the ends of this micro-TENN (referred to 
as micro-TENN 07 in appendix C). We noticed in this case 
that the right side of micro-TENN 07 had two distinct regions 
with significant activity in each and that they were not syn-
chronized (observed visually). It appeared as there were two 
functional systems at one end of the micro-TENN—a kind 
of smaller micro-TENN system within a larger micro-TENN 
system. So, anatomically this micro-TENN was somewhat 
different than the others, nonetheless, the reasons for limited 
cross-talk across the ends for this micro-TENN are unknown. 
There could be competition occurring between functional 
regions, with the two sub-regions on the right side being ini-
tially more coupled since they were closer together. It is also 
possible that long-distance cross-talk may develop with dif-
ferent timing in this system and therefore would manifest at a 
later time post-plating, which will be the scope of future work. 
In total, these additional findings support that primary conclu-
sions of the paper and demonstrate generalized axon-based 
interconnectivity across the discrete neuronal populations in 
bidirectional micro-TENNs.

Of note, the functional connectivity analysis described 
here could be applied to other tissue engineered constructs 
and in fact provides an approach/framework to compare the 
functional physiology of a variety of engineered constructs 
with each other and with in vivo recordings, in a manner that 
complements static imaging and histology. In this particular 
case of the micro-TENNs, our analysis approach confirms 
the presence of a repertoire of connectivity patterns more 
complex than found in dissociated cultures and suggests that 
intentionally designed 3D scaffolds—mimicking features of 
gray matter to white matter architecture—can induce connec-
tivity patterns with more in vivo-like features.

5. Limitations

In this paper, we demonstrate a framework for understanding 
the synaptic connectivity of micro-TENNs via information 
flow across long, integrated, 3D axonal tracts. We established a 
process using correlation, phase synchronization, power spec-
trum, TE and DTF methods to study calcium fluorescent sig-
nals efficiently. By implementing DTF method, we were able 
to establish that the majority of the micro-TENN information 
transfer between aggregates occurs at frequency levels 1–5 
Hz. However, it is plausible that a number of limitations may 
arise from two main factors: temporal-spatial resolution and 
firing rate. First, the experimental resolution of the high-speed 
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images captured by our confocal microscope system was lim-
ited by trade-offs between acquisition rate and resolution, as 
well as optical/diffraction limitations of the visible spectrum. 
Inevitably, this limits our ability to structurally identify cell 
membranes where calcium action primarily occurs. Aggressive 
imaging techniques can potentially cause permanent pho-
tobleaching that can damage or kill the live tissue. Another 
limitation arises from the inherent slow time constant decay 
of calcium indicators, restricting the ability to capture high 
frequency activity as noticed in the power spectral analysis. 
Despite these limitations, converging results obtained from a 
combination of all the functional methods applied to study the 
micro-TENNs suggest there is compelling evidence of func-
tional information transfer within and across the aggregates. 
This functional methods framework will support our future 
work to quickly process large sample sizes, assess functional 
categorization at various stages of micro-TENN development/
growth, and assess connectivity patterns across numerous 
micro-TENNs linked together to replicate complex 3D cir-
cuits in the brain. Importantly, this will allow us to establish 
a functional baseline immediately prior to implantation into 
the brain while not directly contacting the constructs, which 
could compromise their structural integrity and/or sterility. Of 
note, our findings agree with Poli et al [59], who also applied 
correlation methods and TE to establish network connectivity 
and concluded that no single method was inferior or superior 
in assessing the neuronal network properties, but it was useful 
to apply these in combination while interpreting the findings 
based on limits of applicability of the chosen methods.

Another limitation is that the current paper only valid-
ates these methods for a single 3D neural construct design. 
However, we should note there are many alternative approaches 
for creating 3D engineered nervous tissue. Excellent reviews 
are given by Zhuang et al [60], Hopkins et al [61] and Schmidt 
and Leach [62]. A few popular technologies that are being 
investigated include spheroids [63–65], organoids [66–68], 
and scaffold-based constructs for which there are extensive 
types of materials studies, ranging from gelatin [69] to silk 
[70, 71]. In addition, microfluidic [72] and bioprinting-based 
constructs [73] are also being investigated. It would be inter-
esting to explore the methods presented herein for evaluating 
functional connectivity for these complimentary approaches 
to 3D neural tissue fabrication.

6. Conclusions

We presented a novel approach to characterize micro-TENN 
connectivity using multiple methodologies such as transfer 
entropy (TE) and directed transfer function (DTF) analysis 
on calcium imaging signals. To date, most of the functional 
connectivity techniques presented in this paper have been 
previously established for in vivo neuroimaging analysis, 
here we demonstrate and validate their applicability to 
analyze calcium activity across 3D axonal tracts spanning 

discrete neuronal networks. This analysis framework dem-
onstrated that micro-TENNs exhibit cross-talk activity using 
multiple information transfer metrics. These results suggest 
functional connectivity across engineered 3D axonal tracts, 
and significantly contribute to the overall functional charac-
terization of cortical neuronal networks in micro-TENNs to 
support their application to reconstruct white matter path-
ways or as anatomically-fidelic test-beds of long-distance 
brain networks.
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Appendix A

A.1. Normalized directed transfer function (nDTF) method

The DTF technique is applied to a set of cortical estimated 
waveforms dataset S  obtained for N  ROIs considered [12, 16].

S = [s1 (t) , s2 (t) , . . . ., sN (t)]T . (A.1)
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The following MVAR model is fitted on the estimate wave-
forms dataset S  under the condition that E(t) is a vector of 
multivariate zero mean uncorrelated white noise process.

p∑
k=0

Λ (k) S (t − k) = E (t)withΛ (0) = 1 (A.2)

where Λ (1) ,Λ (2) , . . .Λp, are the N ∗ N matrices of model 
coefficients where p is the model order chosen by information 
criterion. Next, the equation is transformed into the frequency 
domain to investigate the spectral properties of the examined 
process.

Λ ( f ) S ( f ) = E( f ) (A.3)

where

Λ ( f ) =
p∑

k=0

Λ(k)e−j2πf∆tk. (A.4)

Therefore, equation (A.4) can be rewritten as:

S ( f ) = Λ−1 ( f )E ( f ) = H ( f )E ( f ) . (A.5)

H ( f ) is the transfer matrix of the system, whose element 
Hij  characterizes the connection between the jth input and 
the ith output of the system. With these definitions, the causal 
influence of cortical waveform estimated in jth ROI wave-
form on that estimated in ith ROI is defined as:

θ2
ij ( f ) = |Hij( f )|2. (A.6)

In order to compare the results obtained across different 
power spectra, these values are normalized from 0 to 1, where 
the normalization factor is defined by the sum along the rows 
of the spectral transfer matrix.

γij ( f ) =

√√√√ |Hij( f )|2∑k
m−1 |Him( f )|2

 (A.7)

where |Hij( f )| is an element of Ĥ( f ) matrix (Hij �= Hji). 
The squared sum of all elements of the relevant row in the 
denominator of equation (A.7) normalizes γij ( f ) in the range 

from 0 to 1. γij  expresses the ratio of influence of the cortical 
waveform estimated in the jth ROI on the cortical waveform 
estimated on the ith ROI with respect to the influence of all 
waveforms.

Appendix B

B.1. Power spectrum method

The power spectrum Sxx,j is defined as the magnitude squared 
of the Fourier transform of the data [16]. The power spectrum 
Sxx,j is defined as the magnitude squared of the Fourier trans-
form of the data [44].

Sxx,j =
2∆2

T
XjX∗

j (B.1)

where Δ is sampling interval, T  is the duration of recording 
and Xj  is the Fourier transform of x at frequency fi(Xi). The 
units of power spectrum here is µV2 Hz−1.

Frequency resolution and Nyquist Frequency are two 
important measures to consider when computing the power 
spectrum. The first term is the reciprocal of the total recording 
duration and latter is defined as half of the sampling frequency. 
The Nyquist frequency sets the limits for the highest observ-
able frequency value one can detect in the analysis.

Appendix C

We analyzed functional connectivity in six additional indi-
vidual micro-TENNs in order to demonstrate the robustness 
of the analysis tools presented in this paper. These findings 
support that primary conclusions of the paper and demon-
strate generalized axon-based interconnectivity across the 
discrete neuronal populations in bidirectional micro-TENNs. 
Table  C1 summarizes our results and the raw data can be 
found on the following pages. Figures C1–C12 provide raw 
and post-processed details on the additional micro-TENNs 
2–7.

Table C1. Summary of findings for all micro-TENNs.

Micro-TENN ID
Pearson cross-correlation 
(PCC)

Phase synchronization 
(PC)

Normalized directed 
transfer function (nDTF)

Transfer entropy 
(TE)

High/low definitions
Cross micro-TENN PCC 
values  >  0.5 (%)

Cross micro-TENN 
PC values  >  0.5 (%)

Off-diagonal values of 
nDTF at 1 Hz  >  0.005 (%)

Off-diagonal TE 
values  >  0.05 (%)

1 (discussed in main body 
of manuscript)

59 31 85 100

2 100 100 55 94
3 100 100 79 99
4 100 100 70 100
5 100 100 85 100
6 100 100 95 100
7 0 0 34 100
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Figure C1. Micro-TENN 2 processing results. (A1) Left calcium imaging concentration contours visible in FluoroSNNAP and (A2) right 
calcium imaging. (A3) Left ROIs after segmentation and (A4) right ROIs after segmentation. (A5) Normalized fluorescence (ΔF/F) trace 
activity for the duration of the recordings for left side of micro-TENN and (A6) normalized fluorescence (ΔF/F) trace activity for the 
duration of the recordings for right side of micro-TENN.
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Figure C2. Micro-TENN 2 processing results, continued. (A7) Pearson cross-correlation and (A8) phase synchronization. (A9) Power 
spectral analysis and (A10) nDTF information flow matrix. (A11) Transfer entropy connectivity matrix.
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Figure C3. Micro-TENN 3 processing results. (B1) Left calcium imaging concentration contours visible in FluoroSNNAP and (B2) right 
calcium imaging. (B3) Left ROIs after segmentation and (B4) right ROIs after segmentation. (B5) Normalized fluorescence (ΔF/F) trace 
activity for the duration of the recordings for left side of micro-TENN and (B6) normalized fluorescence (ΔF/F) trace activity for the 
duration of the recordings for right side of micro-TENN.
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Figure C4. Micro-TENN 3 processing results, continued. (B7) Pearson cross-correlation and (B8) phase synchronization. (B9) Power 
spectral analysis and (B10) nDTF information flow matrix. (B11) Transfer entropy connectivity matrix.
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Figure C5. Micro-TENN 4 processing results. (C1) Left calcium imaging concentration contours visible in FluoroSNNAP and (C2) right 
calcium imaging. (C3) Left ROIs after segmentation and (C4) right ROIs after segmentation. (C5) Normalized fluorescence (ΔF/F) trace 
activity for the duration of the recordings for left side of micro-TENN and (C6) normalized fluorescence (ΔF/F) trace activity for the 
duration of the recordings for right side of micro-TENN.
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Figure C6. Micro-TENN 4 processing results, continued. (C7) Pearson cross-correlation and (C8) phase synchronization. (C9) Power 
spectral analysis and (C10) nDTF information flow matrix. (C11) Transfer entropy connectivity matrix.
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Figure C7. Micro-TENN 5 processing results. (D1) Left calcium imaging concentration contours visible in FluoroSNNAP and (D2) right 
calcium imaging. (D3) Left ROIs after segmentation and (D4) right ROIs after segmentation. (D5) Normalized fluorescence (ΔF/F) trace 
activity for the duration of the recordings for left side of micro-TENN and (D6) normalized fluorescence (ΔF/F) trace activity for the 
duration of the recordings for right side of micro-TENN.
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Figure C8. Micro-TENN 5 processing results, continued. (D7) Pearson cross-correlation and (D8) phase synchronization. (D9) Power 
spectral analysis and (D10) nDTF information flow matrix. (D11) Transfer entropy connectivity matrix.
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Figure C9. Micro-TENN 6 processing results. (E1) Left calcium imaging concentration contours visible in FluoroSNNAP and (E2) right 
calcium imaging. (E3) Left ROIs after segmentation and (E4) right ROIs after segmentation. (E5) Normalized fluorescence (ΔF/F) trace 
activity for the duration of the recordings for left side of micro-TENN and (E6) normalized fluorescence (ΔF/F) trace activity for the 
duration of the recordings for right side of micro-TENN.
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Figure C10. Micro-TENN 6 processing results, continued. (E7) Pearson cross-correlation and (E8) phase synchronization. (E9) Power 
spectral analysis and (E10) nDTF information flow matrix. (E11) Transfer entropy connectivity matrix.
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Figure C11. Micro-TENN 7 processing results. (F1) Left calcium imaging concentration contours visible in FluoroSNNAP and (F2) right 
calcium imaging. (F3) Left ROIs after segmentation and (F4) right ROIs after segmentation. (F5) Normalized fluorescence (ΔF/F) trace 
activity for the duration of the recordings for left side of micro-TENN and (F6) normalized fluorescence (ΔF/F) trace activity for the 
duration of the recordings for right side of micro-TENN.
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Figure C12. Micro-TENN 7 processing results, continued. (F7) Pearson cross-correlation and (F8) phase synchronization. (F9) Power 
spectral analysis and (F10) nDTF information flow matrix. (F11) Transfer entropy connectivity matrix.
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