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Abstract The potential for rehabilitation to improve recovery after traumatic brain
injury (TBI) is limited by a lack of inherent regenerative capacity in the brain as well
as the chronic disabilities and ongoing pathologies of various injury
endophenotypes. A large body of previous work has shown that traditional rehabil-
itative therapies in combination with dietary modifications and regular exercise can
enhance brain plasticity and, in some cases, neurogenesis, but prolonged secondary
injury and limits to plasticity and regeneration significantly limit the impact of
rehabilitation. Therefore, there is an urgent need for therapeutic strategies to promote
regeneration and complement rehabilitation efforts to maximize recovery from TBI.
In the following chapter, we discuss the unique translational challenges for devel-
oping TBI therapeutics, existing approaches to rehabilitation, promising therapeutic
targets for enhancing regeneration and plasticity, and emerging regenerative medi-
cine approaches that could significantly expand attainable levels of functional
recovery following TBI.

Keywords Traumatic brain injury · Regenerative medicine · Rehabilitation

13.1 Introduction

Traumatic Brain Injury (TBI) is a surprisingly common injury that can have devas-
tating health consequences. According to a recent report from the Centers for
Disease Control and Prevention, there were approximately 2.87 million TBI Emer-
gency Department visits or hospitalizations in the USA in 2014—a 53% increase
from 2006—of which 56,800 resulted in death (CDC 2019). Incidence has also
increased in the modern military, with 22% of all combat casualties from Iraq and
Afghanistan estimated to be TBIs compared to 12% from Vietnam (VA Office of R
& D). While TBI is among the leading causes of death, survival can also be
devastating as roughly 2% of the U.S. population currently lives with chronic
TBI-related disabilities (Langlois et al. 2006; Wilson et al. 2017). Long-term
disability along with increased risk for neurodegenerative disease, stroke, and
other maladies have led many to view TBI as a chronic health condition (Wilson
et al. 2017; Edlow et al. 2018). Thus, TBI has a tremendous impact on health and the
overall economy, resulting from both direct medical expenditures and indirect costs
totaling over $60 billion annually (Langlois et al. 2006). This underscores the fact
that there are currently no targeted medical therapeutic agents to attenuate
TBI-induced neural degeneration or to promote effective regeneration.

While TBI creates a chronic health condition, it begins with a physical event that
generates injurious forces in the brain. More detailed descriptions of the mechanical
forces of TBI and their translation to brain pathology can be found in several
in-depth reviews (LaPlaca et al. 2007; Meaney and Smith 2015; Meaney and Cullen
2016; Keating and Cullen 2020). For the convenience of the reader, we are providing
illustrations from the recent review by Keating and Cullen in Fig. 13.1. Mechanical
loading in TBI can occur via direct impact, impulsive motion, blast pressure waves
from an explosion, or a combination thereof (Fig. 13.1a). For example, while
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impulsive loading can be initiated without direct impact to the head (e.g., car
accidents rapidly accelerating/decelerating the entire body), it most often occurs
due to a direct impact to the head that sets the head in motion. Conversely, in the case
of impulsive loading initiated by rapid body movement, the resulting head motion
can also lead to impact loading due to the moving head encountering an object.
Therefore impact-to-impulsive and impulsive-to-impact injuries are common (also
impact-to-impulsive-to-impact). While primary impulsive loading with no focal
impact lesion is common in mild TBI, impact to an immobilized head with no
impulsive component is rare. The centrality of impulse loading to human TBI
presents a challenge in preclinical studies, since the injurious forces are dependent
on acceleration and brain mass, requiring large gyrencephalic animal models like
non-human primates or swine to study mechanisms of injury and novel therapeutics
in the context of impulse-generated TBI (Cullen et al. 2016; O’Donnell et al. 2019).

Fig. 13.1 Mechanical loading and deformation in TBI. Impact, impulse, and blast loading mech-
anisms of TBI are depicted (a). Head motion relative to the brain’s center of mass affects impulse
loading (b). Mechanical loading produces a variety of brain tissue deformations (c). Figure adapted
with permission from Keating and Cullen (2020) (http://creativecommons.org/licenses/by-nc-
nd/4.0/)
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Despite the impractical accelerations necessary to account for the small brain mass of
rodents, there have been attempts to apply impulse loading in small animal TBI
models, but unfortunately, it does not appear possible to reach scaled thresholds with
such disparate masses (Meaney et al. 2001; Sauerbeck et al. 2018). Blast TBI often
also includes impulsive or impact loading components, contributing to the hetero-
geneity of the injury. Adding to this heterogeneity, the magnitude, distribution, and
consequences of injurious forces generated by impulse loading vary based on the
way the head moves relative to the brain’s center of mass (Fig. 13.1b). Translational
(a.k.a. linear) impulse loading occurs when the center of mass moves without
rotation, and may be associated with brain surface injury that can occur due to the
brain impacting the skull (sometimes referred to as contrecoup injury). Rotational
loading involves head swivel around the brain’s center of mass, and angular rota-
tional loading involves rotational acceleration affecting the brain’s center of mass.
While injury at the surface of the brain from translational/linear loading can be a
concern, there are far more injurious forces generated by angular rotational loading.
Foundational work in non-human primates revealed that angular rotational loading
(not translational/linear) was necessary and sufficient to produce extended loss of
consciousness, a key element for clinical classification of TBI severity as shown in
Table 13.1 (Denny-Brown and Russell 1941; Ommaya and Gennarelli 1974). Later
work in the swine model utilizing pure impulse loading demonstrated that angular
rotational head acceleration in the axial plane produced diffuse injury throughout the
brain and prolonged coma, with lesions in the pons associated with coma duration
(Smith et al. 2000; Cullen et al. 2016). The pons is a key branch point of the

Table 13.1 Classification of TBI severity

(If a patient meets criteria in more than one category of severity, the higher severity level is
assigned)

Criteria Mild Moderate Severe

Structural imaging Normal Normal or
abnormal

Normal or
abnormal

Loss of consciousness (LOC) 0–30 min >30 min and
<24 h

>24 h

Alterations of consciousness/mental state
(AOC)a

Up to
24 h

>24 h; severity based on other
criteria

Posttraumatic amnesia (PTA) 0–1 day >1 day and
<7 days

>7 days

Glasgow Coma Scale (GCS) (best available
score in first 24 h)b

13–15 9–12 <9

aAlteration of mental status must be immediately related to the trauma to the head. Typical
symptoms would be looking and feeling dazed and uncertain of what is happening, confusion,
and difficulty thinking clearly or responding appropriately to mental status questions, and being
unable to describe events immediately before or after the trauma event.
bIn April 2015, the DoD released a memorandum recommending against the use of GCS scores to
diagnose TBI. See the memorandum for additional information
Table reproduced from VA/DoD Clinical Practice Guideline for the Management of Concussion-
Mild Traumatic Brain Injury
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Ascending Reticular Activating System (ARAS), and trauma to deep brain structures
of the ARAS are associated with coma and prolonged Disorders of Consciousness
(DoC) in humans following TBI (Edlow et al. 2012, 2013; Snider et al. 2019, 2020).

Direction of head rotation was a key determinant of outcomes such as duration of
unconsciousness in a piglet model of TBI, and a more recent study suggests that
properties of individual kinematic elements of head rotation (e.g., maximum nega-
tive velocity and peak-to-minimum acceleration time, both associated with more
abrupt deceleration) influence recovery parameters in adult swine (Eucker et al.
2011; Wofford et al. 2021). These various mechanical loading parameters result in a
variety of distinct types of tissue deformation determined by the type of loading as
well as the physical properties and relative orientation of the material (in this case the
brain) being deformed (Fig. 13.1c). Forces generated by mechanical loading will
result in a combination of these deformations, with impact generally associated with
direct compression at the brain’s surface, and impulse generally associated with
shear deformation throughout the brain. These deformation patterns may result in
gross damage to vasculature and diffuse axonal injury (DAI), and at a sub-cellular
level may cause cytoskeletal damage, loss of membrane potential due to opening
mechanically-sensitive ion channels, plasma and organelle membrane
permeabilization, disruption of the extracellular matrix and cell contacts, and other
primary pathologies (Meaney and Smith 2015; Keating et al. 2020; Keating and
Cullen 2020). The mechanical loading and tissue deformation of TBI is a rapid,
high-energy event that typically lasts only milliseconds, but can produce patholog-
ical consequences that last a lifetime.

Following the initial mechanical TBI, secondary injury cascades produce waves
of additional pathology and dysfunction over days, weeks, months, and even years.
There are currently no approved therapeutics to mitigate this ongoing secondary
injury. The varied consequences of the initial mechanical injury and the resulting
multi-faceted secondary sequelae have been termed “endophenotypes.” The concept
of endophenotypes recognizes the heterogeneity of TBI and its consequences and
allows a focus on treatment strategies and targeted therapeutics based on affecting
specific phenomena. The heterogeneity of the primary injuries of TBI along with that
of the patient population (e.g., age, sex, genetic background, medical history)
contribute to the emergence of distinct endophenotypes—like microvascular injury
and post-traumatic epilepsy (PTE)—with varying levels of contribution to the
overall patient outcome (Diaz-Arrastia et al. 2009; Sandsmark et al. 2019).
Endophenotypes that make major contributions to secondary injury cascades include
inflammation, excitotoxicity, mitochondrial dysfunction, and oxidative stress at a
cell/molecular level, and blood–brain barrier (BBB) disruption, microvascular
injury, and PTE at the organ/systems level. Other endophenotypes of TBI exist as
disabilities that impair rehabilitation and limit recovery but are not typically catego-
rized as secondary injuries due to less-than-direct contributions to ongoing pathol-
ogy. These include consequences such as sleep disturbances, confusion, and fatigue.
Just as characteristics of the acute physical trauma are associated with—and
indeed directly initiate—the subacute secondary injury cascades, the presence of
various endophenotypes of secondary injury have been associated with increased
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likelihood of chronic sequelae, such as pathological protein aggregation and
neuroinflammation, potentially adding an additional layer of chronic neurodegener-
ative disease and disability. The line between injury and recovery is blurred
following TBI due to prolonged secondary injury processes and ongoing
neurodegeneration. Therefore, regenerative rehabilitation approaches to TBI must
address both recovery and ongoing sequelae to be effective.

13.2 Current Approaches to TBI Rehabilitation

As highlighted above, there is significant heterogeneity inherent with a clinical
diagnosis of TBI (Zasler et al. 2007). This includes variations in the number and
severity of possible TBI-induced endophenotypes (e.g., DAI, cerebral microvascular
injury, intraparenchymal contusion, intracranial hemorrhage, cerebral edema) within
one or more regions of the brain (e.g., focal, multifocal, or diffuse injury), depending
on the mechanism of injury and direction of the applied mechanical force(s). Further,
patients exposed to TBI often have a wide variety of pre-existing medical
comorbidities, many of which further contribute to compromised neurocognitive
function and/or predict a worse outcome. In an effort to parse this heterogeneity,
current diagnostic guidelines classify TBI as “mild,” “moderate,” or “severe” based
on specific diagnostic criteria at the time of injury, including the presence and
duration of any loss of consciousness, the duration of an alteration in consciousness
or mental state, the duration of post-traumatic amnesia, the presence or absence of
pathological findings on traditional structural neuroimaging, and the best available
Glasgow Coma Scale (GCS) within 24-h of the TBI exposure, as shown in
Table 13.1 (VA/DoD 2016).

As a result of the considerable heterogeneity and the non-specific nature of TBI
diagnoses, current neurorehabilitation interventions are not designed to target or
mitigate specific neuropathological component(s) (e.g., DAI, microvascular injury,
or persistent neuroinflammation), whether present in discrete regions of the brain or
diffusely throughout the brain parenchyma. Rather, an individualized treatment/
neurorehabilitation plan is developed for each patient by a Physiatrist (physician
specializing in Physical Medicine and Rehabilitation, often sub-specializing in Brain
Injury Medicine) centered around common physical, cognitive, and neurobehavioral
symptoms and/or functional deficits, which occur across the spectrum of TBI
severity (Zasler et al. 2007; VA/DoD 2016). The resulting individualized
neurorehabilitation plan is generally implemented through collaboration with a
multidisciplinary team, including Physical Therapy, Occupational Therapy,
Speech-Language Pathology, Neuropsychology, and Neuro-Optometry, amongst
others. For each component of the overall neurorehabilitation prescription (e.g.,
Vestibular Physical Therapy), there is an emphasis on goal-based interventions to
improve specific neurological symptoms or functional deficits, which are continually
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reevaluated to ensure the prescribed neurorehabilitation interventions are leading to
symptomatic and/or functional improvement. Thus, neurorehabilitation interven-
tions selected for each patient are modified throughout the rehabilitation course,
based on their individual therapeutic response. Three of the most common neuro-
logical deficits seen throughout all severities of TBI for which neurorehabilitation
interventions are prescribed include cognitive, oculomotor, and vestibular deficits.

13.2.1 Cognitive Deficits

Cognitive complaints are often the most concerning symptom for patients following
TBI exposure, and the extent of objective cognitive deficits vary widely during the
acute and sub-acute phase of TBI recovery, throughout the spectrum of TBI severity
(Esslinger et al. 2007; VA/DoD 2016). Initial clinical evaluation includes screening
for orientation, executive, visuospatial, naming, memory, attention, and language
deficits. Depending on the findings and the overall clinical presentation, the cogni-
tive rehabilitation plan may be to (1) monitor for natural recovery and re-assess at a
future date; (2) prescribe specific cognitive rehabilitation with Speech-Language
Pathology and/or Occupational Therapy; or (3) refer to Neuropsychology for
in-depth cognitive evaluation. The decision for referral for comprehensive neuro-
psychological testing depends on both the severity of TBI and the time post-TBI
exposure. When performed, neuropsychological testing involves extensive objective
testing of multiple cognitive domains, such as memory, working memory, attention,
executive and academic functioning, language, reasoning, processing speed, visual-
spatial perception, visual-motor construction, and motor function (Lezak et al. 2004;
Esslinger et al. 2007). Neuropsychological testing can be used to (1) identify the
specific cognitive domains that demonstrate an impairment, weakness, or strength;
(2) help guide the cognitive rehabilitation provided by Speech-Language Pathology
and/or Occupational Therapy; (3) generate specific accommodation request(s) for
school or work; and (4) perform longitudinal evaluations to evaluate for cognitive
improvement or secondary cognitive decline. This last point is becoming especially
important given the increasing numbers of epidemiological studies demonstrating an
association between TBI exposure and an increased risk of age-related cognitive
decline or dementia (Fleminger et al. 2003; Gardner and Yaffe 2014, 2015; Gardner
et al. 2014), including a recent large cohort study involving over 350,000 Veterans
which documented a dose–response relationship between the severity of TBI (from
“mild” TBI without a loss of consciousness through “moderate-to-severe” TBI) and
the cumulative incidence of dementia diagnosis as illustrated in Fig. 13.2 (Barnes
et al. 2018).
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13.2.2 Oculomotor Deficits

Given that approximately half of the brain’s neural networks are involved in
binocular vision, abnormalities of oculomotor function are very sensitive to neuro-
logical insult and are commonly diagnosed throughout the spectrum of TBI severity
(Padula et al. 2007; Ventura et al. 2014; VA/DoD 2016). Initial clinical assessment
of oculomotor function often utilizes the validated Vestibular/Ocular Motor Screen-
ing (VOMS) assessment, which documents a patient’s symptomatic response (head-
ache, dizziness, nausea, and mental fogginess) when testing smooth pursuits,
horizontal and vertical saccades, near point of convergence, the vestibulo-ocular
reflex (VOR), and visual motion sensitivity (Mucha et al. 2014). When abnormalities
are identified, patients are referred to Neuro-Optometry and/or Vestibular Physical
Therapy for further sub-specialty evaluation and treatment (Padula et al. 2007;
Scheiman and Wick 2008). Convergence insufficiency is then treated with either
neuro-optometric rehabilitation or custom prism glasses when neuro-optometric
rehabilitation is not indicated or available, while abnormalities of saccadic and
smooth pursuit eye movements are treated by varied combinations of Vestibular
Therapy, Occupational Therapy, and Neuro-Optometric Rehabilitation, depending

Fig. 13.2 Cumulative Incidence of Dementia by TBI Severity. The unadjusted cumulative inci-
dence of dementia (age at dementia diagnosis) is shown as a function of TBI severity. After
adjustment for demographics, medical conditions, and psychiatric disorders, there was a dose–
response relationship between TBI severity and dementia diagnosis with hazard ratios of 2.36 (95%
CI, 2.10-2.66) for mild TBI without loss of consciousness (LOC); 2.51 (95% CI, 2.29-2.76) for mild
TBI with LOC; 3.19 (95% CI, 3.05-3.33) for mild TBI with LOC status unknown, and 3.77 (95%
CI, 3.63-3.91) for moderate to severe TBI. Reproduced with permission from Barnes et al. (2018)
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on the overall clinical presentation (Padula et al. 2007; Shepard et al. 2007;
Scheiman and Wick 2008; Gallaway et al. 2017).

13.2.3 Vestibular Deficits

Vestibular deficits are commonly present throughout all severities of TBI and can be
central and/or peripheral in origin (Shepard et al. 2007). Initial clinical evaluation
often includes the validated Balance Error Scoring System (BESS) for static balance
assessment, and components of a Functional Gait Assessment (FGA) for evaluation
of dynamic balance (Wrisley et al. 2004; Bell et al. 2011; Iverson and Koehle 2013).
Static balance screening with the BESS is a standardized assessment that evaluates a
patient’s stability during double limb stance, non-dominant single limb stance, and
tandem stance, on both firm ground and a soft foam pad (Bell et al. 2011; Iverson and
Koehle 2013). In contrast, dynamic balance screening with the FGA is a standard-
ized gait assessment under ten conditions, including ambulation on level surfaces
with changes in gait speed, horizontal and vertical head movements, eyes open
versus closed, normal versus narrow base of support, pivot turns, stepping over
obstacles, and ambulating backward (Wrisley et al. 2004). When abnormalities of
static and/or dynamic balance are identified on initial clinical screening, referral is
made to vestibular physical therapy for formal vestibular evaluation and treatment,
where a more thorough assessment is conducted (Nashner 1993; Powell and Myers
1995; Shepard et al. 2007; Alahmari et al. 2014; Horn et al. 2015; VA/DoD 2016).
Vestibular physical therapy evaluation commonly includes computerized dynamic
posturography, which quantifies the ability to maintain postural stability through the
use of visual, proprioceptive, and/or vestibular cues (Nashner 1993; Alahmari et al.
2014). TBI-induced static and/or dynamic vestibular deficits are then treated with a
course of vestibular physical therapy, with the goal of retraining the vestibular
system to maintain both static and dynamic postural control, utilizing a combination
of visual and somatosensory substitution techniques, gaze stabilization exercises,
saccadic and smooth pursuit eye movement exercises during both static stance and
ambulation, and techniques to habituate the patient to chronic vestibular deficits
which may remain despite targeted rehabilitation interventions (Shepard et al. 2007).

13.2.4 Developing the Evidence-Base for Rehabilitation
Interventions

Apparent in the above overview of neurorehabilitation following TBI is the fact
that there is substantial heterogeneity not only in TBI exposure and diagnosis
but also in the subsequent neurorehabilitation prescribed. Further, the current
neurorehabilitation interventions prescribed are targeting resulting neurological
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symptoms and functional deficits, rather than targeting specific underlying neuropa-
thology. Perhaps that is one reason why—despite numerous clinical studies—it is
not currently possible to distinguish the effectiveness of different rehabilitation
approaches after TBI (Injury et al. 2012; Brasure et al. 2013; Oberholzer and Müri
2019). Available neurorehabilitation interventions, while better than doing nothing,
have indistinguishable efficacy and are limited to mechanistically vague, minimally
invasive interventions due to a lack of a clear translatable preclinical pipeline for
research and development of novel therapeutics. The inability to distinguish between
the efficacy of neurorehabilitation strategies also stems from a disconnect between
the “active ingredients” and the “therapeutic targets” within the overall strategies
(Whyte et al. 2014). New frameworks like the Rehabilitation Treatment Specifica-
tion System (RTSS) seek to improve the design, reporting, replication, and synthesis
of rehabilitation research by providing guidance on forming specific hypotheses
based on clearly identified “ingredients” and “targets” being tested, enabling refine-
ment of the underlying theories that comprise neurorehabilitation strategies by
elucidating their mechanism of action (Van Stan et al. 2019). This precise and
rigorous approach to evaluating the efficacy of neurorehabilitation treatments will
be vital for measuring and comparing the efficacy of novel regenerative treatments
when integrated into neurorehabilitation, as will establishing a viable translational
pipeline for developing those novel regenerative treatments.

13.2.5 Exercise and Diet

Currently, various forms of exercise and diet constitute key “ingredients” of TBI
rehabilitation strategies. Exercise is generally believed to enhance the expression of
brain-derived neurotrophic factor (BDNF), reduce reactive oxygen species, and
improve hemodynamics leading to improved cognitive recovery in humans and
animals (Devine and Zafonte 2009; Lojovich 2010). Exercise-induced growth factor
cascades enhance synaptic plasticity by instructing a change in synaptic structure
and potentiation of synaptic strength (Cotman et al. 2007). Exercise has been shown
to increase neural stem cell proliferation (i.e., neurogenesis) in the injured brain
parenchyma, prevent neurodegeneration, and improve cognition following experi-
mental TBI (Itoh et al. 2011a, b). Additionally, exercise was found to augment
hippocampal neurogenesis and was associated with improved neurobehavioral
recovery in a preclinical model of TBI (Karelina et al. 2021). Exercise-induced
neurogenesis following TBI may therefore contribute to cognitive recovery by
enhancing plasticity and compensatory rewiring, increasing neurogenesis, and/or
by increasing resistance to insult via indirect improvements to learning and memory.
While we still have much to learn and refine, the benefits of exercise during recovery
from TBI are widely accepted and it is an active ingredient in most rehabilitation
therapies. Dietary factors have been found to improve recovery from TBI through
similar mechanisms, and have even been found to complement exercise during
rehabilitation (Gomez-Pinilla and Gomez 2011; Wu et al. 2013). Omega-3 fatty

418 J. C. O’Donnell et al.



acids—particularly the essential fatty acid and neural membrane component
docosahexaenoic acid (DHA)—have been shown to promote the restoration of
energy homeostasis, reduce reactive oxygen species, and increase BDNF after
brain injury (Wu et al. 2004; Gomez-Pinilla and Gomez 2011). Interestingly, unlike
the benefits for improving recovery after injury, neuroprotective effects were not
observed in rats administered a prophylactic diet rich in fish oil (high in omega-3s)
prior to FPI, while a diet high in saturated fatty acids and cholesterol—associated
with reduced plasticity and negative impact on recovery—was protective against
acute permeabilization of neuronal plasma membranes and reduced lesion size; thus
highlighting the importance of considering injury mechanism and phase when
developing therapeutic strategies (Keating et al. 2021). Dietary administration of
branched-chain amino acids (BCAAs) has enhanced cognitive recovery after TBI in
several rodent studies, due in part to correcting neurotransmitter synthesis deficien-
cies (Cole et al. 2010; Elliott et al. 2018; Paterno et al. 2018). Lateral FPI in mice led
to a significant reduction in brain BCAA concentrations that were corrected with
dietary BCAA administration, as were deficits in contextual fear conditioning (Cole
et al. 2010) and spatial memory (Paterno et al. 2018). Dietary BCAAs and physical
exercise share mechanisms of action, such as PGC1α-mediated increases in BDNF
expression (Blomstrand 2001; Samuelsson et al. 2016; Nasrallah et al. 2019). They
have also both been shown to improve the sleep and cognitive deficits associated
with damage to the ARAS after TBI (Devine and Zafonte 2009; Cole et al. 2010;
Lojovich 2010; Lim et al. 2013; Elliott et al. 2018; Paterno et al. 2018). Furthermore,
there is evidence that dietary BCAAs may reduce exercise-induced cognitive fatigue
by competitively inhibiting increased tryptophan transport into the brain that typi-
cally occurs in response to exercise (Blomstrand 2001). Due to the limitations of
small animal models, exercise and diet have not been thoroughly investigated in the
context of neuronal loss associated with their therapeutic targets in humans. How-
ever, there appears to be some potential for local plasticity changes (i.e., new or
strengthened local connections that can form and/or reinforce certain neural net-
works) and this plasticity may underlie improved recovery with contemporary
rehabilitation strategies.

Developing effective regenerative therapeutics to pair with traditional rehabilita-
tion approaches offers the greatest potential for improving outcomes. There are a
variety of pathological TBI endophenotypes that can impair recovery, as well as
secondary injury mechanisms that remain active during the rehabilitation/recovery
phase of TBI. Different treatments and therapies should be based on the goals of the
patient and adequately address underlying issues at the time via (1) neuroprotection:
reduce ongoing sequelae to prevent ongoing cell death and axon loss, (2) plasticity:
new or strengthened local connections/synapses that can form and/or reinforce
neural networks involved in certain behaviors, and/or (3) regeneration: new neural
cells and/or new long-distance connections. Traditional rehabilitation techniques
and emerging regenerative rehabilitative techniques could be targeted to address
one or more of these areas. In the following sections, we will discuss some of these
pathological endophenotypes and how to target them, demonstrating the variety of
potential strategies for providing regenerative rehabilitation following TBI, as well
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as the urgent need for developing therapeutic approaches to target these
mechanisms.

13.3 Removing Anti-regenerative Barriers

The brain’s inherent lack of regenerative capacity along with dysfunction and
ongoing pathology after TBI create an anti-regenerative environment. Therefore,
any treatment that removes these barriers after injury is pro-regenerative, and
mitigating dysfunction and secondary pathology following TBI is necessary to
facilitate strategies intended to directly enhance underlying regenerative capacity.
Beyond the broad categories of neuronal loss and inflammation (discussed in more
detail in later sections), there are other endophenotypes present during the chronic
phase of TBI that could present attractive targets for regenerative rehabilitation.

13.3.1 Post-Traumatic Epilepsy (PTE)

PTE has been reviewed elsewhere in much greater detail than what would fit within
the scope of this chapter (Diaz-Arrastia et al. 2009), but we will provide a general
summary of the etiology and need for regenerative treatments for this important
endophenotype of TBI. Functional brain signaling is a product of coordinated and
balanced excitatory and inhibitory signaling, but damage to brain circuitry due to the
mechanical insult and secondary pathologies of TBI can result in disruption of
excitatory/inhibitory coordination (Cohen et al. 2007; Wolf and Koch 2016; Wolf
et al. 2017; Ulyanova et al. 2018, 2019; Koch et al. 2020). Ongoing secondary injury
cascades along with aberrant neuroregeneration and reorganization can produce a
discordant signaling imbalance that can in turn result in seizures that cause additional
excitotoxic cell death and further exacerbate inflammation, metabolic distress, and
other mechanisms of secondary pathology following TBI. Beyond secondary pathol-
ogy, there also appears to be a connection to chronic neurodegenerative disease, as
an association between seizure activity and tauopathy has been suggested by the
increased prevalence of seizures in Alzheimer’s disease patients and animal models
(Yan et al. 2012; Sánchez et al. 2018). A recent study utilizing a model of blast TBI
in tauopathy reporter zebrafish found that seizure-like activity was associated with
increased accumulation of human tau in the brain, and blocking seizure activity after
injury prevented that accumulation (Alyenbaawi et al. 2021). Inflammation-focused
therapeutic approaches could be effective at mitigating PTE, as inflammation has
been implicated in several studies investigating the mechanistic underpinnings of
PTE (Webster et al. 2017; Sharma et al. 2019; Therajaran et al. 2020). Although
surgical interventions can be effective (Hitti et al. 2020), many common anticon-
vulsants are ineffective against trauma-induced epilepsy, indicating a need to
improve our mechanistic understanding of this unique condition via translational
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modeling and data collection modalities (Diaz-Arrastia et al. 2009). PTE can signif-
icantly impair patients’ ability to engage in exercise and cognitive rehabilitation
activities. Therefore, it is imperative to develop regenerative rehabilitation strategies
focused on managing post-traumatic epilepsy to maximize the effect of rehabilitation
on recovery.

13.3.2 Vascular Injury

A recent study found that chronic BBB dysfunction and inflammation after TBI in
rats and humans is associated with increased seizure susceptibility, suggesting that
targeting these chronic endophenotypes may be effective for treating PTE (van Vliet
et al. 2020). BBB disruption from mechanical and secondary injury is a persistent
endophenotype of TBI that contributes to neuroinflammation and limits rehabilita-
tion and recovery (Hay et al. 2015). In addition to BBB disruption, TBI also results
in diffuse damage to microvasculature throughout the brain and in focal contusions.
Beyond the direct consequences of disrupted circulation (e.g., ischemia), microvas-
cular injury is also associated with inflammation and thrombosis via mechanisms
that warrant further study (Hubbard et al. 2021). Microvascular injury, particularly in
areas like the dorsal pons, can be predictive of long-term outcome (Izzy et al. 2017;
Griffin et al. 2019). A recent review from Sandsmark and colleagues presents an
in-depth discussion of the mechanisms and consequences of TBI-induced microvas-
cular injury as well as the potential for therapeutic intervention (Sandsmark et al.
2019). Among treatments under investigation for addressing neurovascular dysfunc-
tion, there are several focused on the chronic phase of TBI that could be relevant for
enhancing the impact of rehabilitation. For example, a study in mice 1 year after TBI
found that administering the aminopropyl carbazole P7C3-A20 for 30 days restored
BBB integrity, arrested axonal degeneration, and improved cognitive recovery
(Vázquez-Rosa et al. 2020). Cerebrovascular reactivity—the change in cerebral
blood flow in response to a stimulus—is commonly used as a measure of microvas-
cular health, and a recent clinical study utilizing the phosphodiesterase-5 inhibitor
sildenafil restored cerebrovascular reactivity in patients in the chronic phase of TBI
(Kenney et al. 2018). As BBB and microvascular dysfunction are intricately linked
to other endophenotypes of chronic TBI, these results suggesting that they are viable
targets for therapy bode well for future research into regenerative rehabilitation.

13.3.3 Mitochondrial Dysfunction

Dysregulated metabolism and energy deficits are prominent characteristics of TBI
and a critical component of the secondary injury cascade. Mitochondria are funda-
mental to cellular bioenergetics, and in addition to providing energy substrates,
mitochondria also buffer Ca2+ and provide antioxidant support. Axons and astrocytic
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processes are full of mitochondria moving to and from the soma, pausing at nodes of
Ranvier or glutamate transporters servicing synapses, and engaging in constant
dynamic fission and fusion to maintain mitochondrial health (Ohno et al. 2011;
Genda et al. 2011; Youle and Bliek 2012; Schwarz 2013; Jackson et al. 2014).
Axons and astrocytic processes are highly vulnerable to the diffuse shearing forces
of TBI, producing cytoskeletal damage that disrupts or eliminates mitochondrial
dynamics, and also leading to increased cytosolic Ca2+ that can exceed mitochon-
drial buffering capacities (Wang et al. 2021; Nguyen et al. 2021). The resultant
mitochondrial dysfunction and energy failure lead to a collapse of ion gradients
causing exacerbation of excitotoxicity due to reduced Ca2+ buffering capacity, a
switch from providing protective antioxidants to producing damaging reactive
oxygen species and, potentially, culmination in mitochondrial permeability transi-
tion that triggers programmed cell death. Cells that survive are often left with
dysfunctional mitochondria, resulting in prolonged foundational impairments to
energy production, neurotransmitter synthesis, Ca2+ signaling/buffering, and oxida-
tive stress that negatively affect all downstream aspects of cell function and exacer-
bate the inflammatory extracellular environment. In addition to the central role of
mitochondria during secondary injury after TBI leading to an anti-regenerative
environment, they are also essential for cellular regeneration, making them a very
attractive target for developing new neurotherapeutics (Wang et al. 2021).

There are numerous pharmacological approaches under investigation to mitigate
mitochondrial dysfunction after TBI. A recent study utilizing focal TBI in swine
found that a new lipid emulsion formulation of cyclosporine—a drug that functions
in part via inhibiting the formation of the mitochondrial permeability transition pore
and has significant preclinical evidence for mitigating TBI pathology—preserved
fractional anisotropy as measured by diffusion tensor imaging (DTI) and reduced
concentrations of neurofilament light (NF-L) in cerebrospinal fluid (Karlsson et al.
2020). These results are significant not only for providing evidence that this cyclo-
sporine formulation reduces white matter pathology from TBI in a large animal
model but also for validating DTI and NF-L as translational endpoints for future
neurotherapeutic studies. A more unconventional and early-stage regenerative strat-
egy involves the transfer of healthy mitochondria into cells with damaged mito-
chondria (McCully et al. 2016; Chang et al. 2019; Chen et al. 2020). Preliminary
clinical studies in cardiac arrest have yielded encouraging results (Emani and
McCully 2018). While models of ischemia/reperfusion injury have produced mito-
chondrial damage and autophagic degradation in astrocytes, other brain injury
models have demonstrated that astrocytes transfer healthy mitochondria to neurons
in distress (O’Donnell et al. 2016; Hayakawa et al. 2016; Quintana et al. 2019;
English et al. 2020). Seeking to emulate this endogenous phenomenon on a larger
scale, therapeutic vehicles for mitochondrial transfer currently under investigation
include synaptosomes and mesenchymal stem cell-derived exosomes (Zhang et al.
2020; Lu et al. 2020; Picone et al. 2021). Mitochondria are both essential for cellular
function and central to mechanisms of cell death, making them an ideal therapeutic
target for reducing secondary injury after TBI and for facilitating plasticity and
regeneration to maximize the effect of rehabilitation on recovery.
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13.3.4 Astrocytic Dysfunction

Astrocytes are the most abundant cell type in the brain, where they are responsible
for ion gradient homeostasis, facilitating anabolic and catabolic metabolism, pro-
viding antioxidant protection, fixing NH4, incorporating nitrogen into biological
molecules, preventing edema, removing glutamate from the extracellular space,
coupling neuronal activity to changes in blood flow and glucose uptake, regulating
breathing in response to changes in brain oxygenation, directly participating in
signaling and plasticity, and many other vital functions. Not surprisingly, disruptions
of each of these functions, often in combination, have been implicated in acute
trauma and neurodegenerative disease (for reviews, see (Chen and Swanson 2003;
Rossi et al. 2007; Sheldon and Robinson 2007; Barreto et al. 2011; Lange et al.
2012; Brambilla et al. 2013; Stary and Giffard 2015; Nguyen et al. 2021)). Histor-
ically, the vast heterogeneity of astrocytes and their wide variety of responses to
pathological conditions have been inappropriately classified into a single “reactive”
phenotype, and a recent consensus statement drawing attention to this oversimplifi-
cation emphasized the need to move away from a cursory quantification of
“astrogliosis” to study pathological responses of astrocytes in vivo in the context
of multiple molecular and functional endpoints (Escartin et al. 2021).

Astrocytes are vital for brain metabolism, a myriad of essential homeostatic
functions, stemming the perpetual threat of excitotoxicity, and communicating
between brain and body. As such, they provide an excellent therapeutic target for
rescuing distressed neurons and directly facilitating regeneration. One particular
endophenotype following TBI—elevated intracranial pressure—has been mechanis-
tically linked to the disrupted homeostatic function of astrocytes leading to cerebral
edema, and as a result, the astrocytic water channel aquaporin 4 has emerged as a
potential therapeutic target, at least in the acute/subacute phase of injury and
recovery (Shields et al. 2011). Indeed, loss of aquaporin 4 and other astrocytic
responses to TBI such as clasmatodendrosis were recently described in an in-depth
histological and transcriptomic analysis in mice and were also found to be exacer-
bated with age (Early et al. 2020). Although astrocytes possess significant glycolytic
capacity that contributes to their ability to survive pathological conditions, their
mitochondria are involved in nearly all of the essential functions that astrocytes
provide to the rest of the brain. As described in the previous section, these astrocytic
compartments and the mitochondria therein appear to be uniquely susceptible to
pathological conditions. Studies examining astrocytic mitochondria in primary cul-
ture have revealed depolarization and dysfunction in response to various patholog-
ical conditions as well as a few techniques to prevent that dysfunction (Stary and
Giffard 2015). Heat shock proteins involved in mitochondrial Ca2+ handling have
been implicated in mitochondrial dysfunction in primary astrocytes, and pharmaco-
logical or genetic induction is neuroprotective in in vitro and in vivo models of
ischemia (Ouyang et al. 2005, 2006; Sun et al. 2006; Xu et al. 2010; Li et al. 2021).
Astrocyte-targeted reduction of microRNAs that have been implicated in mitochon-
drial homeostatic mechanisms is neuroprotective in in vivo models of ischemic
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stroke (Ouyang et al. 2011, 2012a, b, 2013; Xu et al. 2015b). Purinergic signaling
plays a prominent role in astrocytic communication during health and disease
(Franke et al. 2012). Calcium-mediated stimulation of mitochondrial metabolism
in astrocytes via activation of purinergic P2Y1 receptors provides neuroprotection
against oxidative stress in primary co-cultures (Wu et al. 2007) and reduces edema
and infarct size in an in vivo photothrombotic stroke model in mice (Zheng et al.
2010, 2013). Compared to the often-fatal consequences in neurons, mitochondrial
dysfunction and other secondary injury mechanisms are far less severe and very
rarely fatal for astrocytes. During the chronic phase of TBI, astrocytes are intimately
involved in angiogenesis and BBB repair, as well as neurogenesis, synaptogenesis,
and synaptic remodeling (plasticity), and they simultaneously perform pro- and anti-
regenerative functions that should be specifically targeted to improve recovery
(Zhou et al. 2020). Since astrocytes are capable of rescuing neurons from a multitude
of pathways simultaneously, a therapeutic approach that targets the less-severe
dysfunction in astrocytes may offer greater chances of success compared to therapies
focused on a single neuronal target. Astrocytes are also entangled in the processes of
neuroinflammation, and anti-inflammatory strategies are therefore also likely to
affect astrocytic dysfunction, providing additional benefits for enhancing regenera-
tion during rehabilitation.

13.4 Current and Future Approaches to Mitigate
Inflammation

Neuroinflammation encompasses myriad mechanisms by which the immune system
responds to events in the central nervous system (CNS). These complex mechanisms
involve central and peripheral cellular activity such as resident microglial activation
and peripheral recruitment of neutrophils, lymphocytes, and monocyte-derived
macrophages, as well as molecular components such as cytokine and chemokine
signaling. Under normal conditions, neuroinflammation provides vital physiological
functions, but in the case of TBI, this response is often pushed beyond homeostatic
parameters to become pathological and can contribute to a lifetime of disability and
neurodegenerative disease. This critical need for inflammation is exemplified by the
numerous failed anti-inflammatory therapy clinical trials. Therefore, a new frame-
work has been proposed to optimize targeted interventions and the immune response
to TBI: acute proinflammatory response should be limited to levels needed for debris
clearance and danger signaling; anti-inflammatory and pro-regenerative immune cell
phenotypes should be promoted; and the development of chronic neuroinflammation
should be prevented (Simon et al. 2017). This framework addresses the critical role
inflammation plays in neuroprotection, fostering plasticity (synaptic remodeling),
and facilitating regeneration. In the sections below, we will outline current and future
therapeutic approaches that can be utilized within these framework guidelines to
modify the neuroinflammatory response to TBI.
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13.4.1 Complement Activation

The complement system is a vital part of the innate immunological response and
plays a key role in various functions of the immune system. Classically described as
having three distinct activation patterns—the classical, alternative, and lectin path-
ways—all leading to a cascade-like enzymatic process that converges on common
end products as depicted in the schematic in Fig. 13.3 from a recent review by
Dalakas, Alexopoulos, and Spaeth (Dalakas et al. 2020). Unlike the regulated
complement activation that occurs in response to infection and autoimmune pro-
cesses, an exaggerated complement response follows a traumatic injury. The cleav-
age of complement components initiates the subsequent steps and produces activated
complement cleavage products that act as anaphylatoxins both locally and system-
ically. As a result, complement components comprise a large proportion of circulat-
ing blood proteins and play an important role in a multitude of processes.

While the CNS is generally considered to be immune-privileged due to the BBB,
emerging evidence has demonstrated that the innate immune system functions

Fig. 13.3 Complement activation pathways and emerging therapeutic targets. Schematic reprinted
with permission from Springer Nature (Dalakas et al. 2020)
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within CNS. Cells of the brain can indeed produce complement components.
Likewise, neurons, astrocytes, oligodendrocytes, and especially microglia express
complement receptors (Orsini et al. 2014). Complement plays an important function
in homeostasis, helping to clear protein debris and damaged cells as well as neuronal
pruning during development (Veerhuis et al. 2011). Consequently, complement has
been implicated in neurodegenerative diseases such as Alzheimer’s and autoimmune
diseases like Multiple Sclerosis. Indeed, increased complement component deposi-
tion has been found in hippocampi of aged mice, an indicator of the function of
complement in senescence (Krukowski et al. 2018).

In addition to its role in homeostasis, complement is activated in times of injury
and cerebral distress. TBI is often devastating due to the multifactorial nature of
injury mechanisms leading to acute and long-lasting damage. While several pro-
cesses contribute to the clinical manifestations of TBI, neuroinflammation and
complement activation specifically play a critical role. Following TBI, the immune
reaction is vast, with both systemic and localized activation, changes in epigenetic
transcription, and enzymatic expression (Orsini et al. 2014). Activated complement
components act as anaphylatoxins and lead to immune cell activation and recruit-
ment in the injured brain, endothelial damage, and BBB breakdown. In addition to
exogenous cell recruitment, an important function of complement anaphylatoxins is
the activation of glial cells and recruitment of microglia specifically to the site of
injury. This in turn can lead to localized cytokine release with pathologic conse-
quences. Breakdown of the BBB results in a further influx of systemic complement
components in addition to locally produced proteins. The complement cascade has
been shown to contribute to both acute and subacute secondary injury following TBI
through anaphylatoxin release, immune cell recruitment and activation, and directly
causing neuronal death. Both the classical and the lectin pathways have been
implicated in TBI-related secondary injury (Ciechanowska et al. 2020). In addition,
the interplay between neuroinflammation and platelet activation has pointed to the
role of complement in post-TBI hypercoagulability and microthrmobosis (Fletcher-
Sandersjöö et al. 2020). Complement has likewise been linked with long-term
disability and cognitive decline following TBI (Alawieh et al. 2021).

The vast majority of research into the role of complement in TBI has been
performed in rodent models using gene knockout techniques and small molecule
complement inhibitors. Not surprisingly, complement blockade has emerged as an
attractive target for TBI therapy in preclinical rodent models with studies investi-
gating the efficacy of complement inhibition as a therapeutic strategy following TBI
(Leinhase et al. 2007; Rostami et al. 2013; Fluiter et al. 2014; Ruseva et al. 2015;
Bambakidis et al. 2016; Alawieh et al. 2018; Rowe et al. 2018; De Blasio et al. 2019;
Weiss et al. 2020). C1 inhibition has shown improved motor function at 4 weeks
following TBI, as well as significant behavioral improvement and decreases in injury
volume (Longhi et al. 2009). C3 knockout mice demonstrated decreased edema and
microglial activation after TBI. Likewise, neutrophil recruitment was significantly
reduced following TBI in the knockout animals (You et al. 2007). In addition, C3
knockout animals show decreased proinflammatory gene expression, lesion size, and
vascular damage (Sewell et al. 2004). Studies show that inhibiting C3 cleavage
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reduces post-injury activation of microglia and astrocytes, C3 deposition, and
neuronal cell death, leading to improvements in cognitive and functional recovery
(Rich et al. 2016; Alawieh et al. 2018). Likewise, evidence points to C3 convertase
inhibition as a potent inhibitor of blood–brain barrier breakdown and neutrophil
recruitment to the CNS, mirroring evidence in knockout experiments (Kaczorowski
et al. 1995). Furthermore, overexpression of C3 convertase inhibitor demonstrated
improvements in behavioral outcomes following TBI, both acutely at 4 and 24 hours
after injury, as well histopathological evidence of less neuronal loss in key anatomic
areas (Rancan et al. 2003). In longer-term studies, C3 activation promotes a
sustained degenerative state through microglial and astrocyte activation for several
weeks following injury, resulting in long-term effects (Alawieh et al. 2018). The
resultant neuroinflammation is longer lasting and seems to be a key driver of
negative outcomes. Mice deficient in C4 also demonstrated attenuated damage and
improved recovery following TBI (You et al. 2007).

Further down the complement cascade, C5 has also emerged as a potential target
for intervention, although less potent due to the downstream position in the activa-
tion sequence (Sewell et al. 2004). The administration of a C5-binding protein
inhibitor was shown to reduce neurologic deficits after TBI (Fluiter et al. 2014).
Direct C5a blockade has also been shown to improve outcomes in mice (Sewell et al.
2004; Yang et al. 2006). Inhibiting the formation of the membrane attack complex
(MAC, a.k.a. C5b-9), the end product of the complement cascade and downstream of
C5 cleavage, has likewise been studied as a potential intervention strategy with
results suggesting a reduction in the accumulation of microglia and macrophages as
well as reduced neuronal death and axonal pathology (Fluiter et al. 2014).
Downregulation of CD59 in knockout animals resulted in increased neurologic
deficits and neuronal damage, further evidence that the role CD59 plays in MAC
inhibition is potentially impactful for attenuating traumatic injury (Stahel et al.
2009). C3a and C5a receptor antagonists (C3aRA and C5aRA respectively) have
been investigated in rodent models of TBI and stroke and found to be effective in
suppressing the complement response, decreasing the expression of complement
receptor, and decreasing secondary brain injury (Fattouch et al. 2007; Ducruet et al.
2008; Kim et al. 2008; Rynkowski et al. 2009; Széplaki et al. 2009; Garrett et al.
2009; Banz and Rieben 2012).

While the majority of evidence supporting the critical role of complement in TBI
is from rodent studies, a significant body of work has shown complement
up-regulation in humans following TBI. Studies examining the CSF of TBI patients
identified a significant increase of activated C3 (Kossmann et al. 1997; Morganti-
Kossmann et al. 2001a). Brain injured patients have increased levels of complement
activation products in CSF (Lindsberg et al. 1996; Mocco et al. 2006; Széplaki et al.
2009; Elvington et al. 2012; Manek et al. 2018; Si et al. 2019). Pathologic studies
have also demonstrated expression of complement receptor and deposition of com-
plement components on injured brain tissue including the MAC, the convergent
end-product of all three complement pathways, and an effector of direct cellular
damage (Rostami et al. 2013). Likewise, pathological studies demonstrated
increased deposition of complement in perilesional and peri-vascular regions. This
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is supported with rodent evidence of increased mannose-binding lectin (MBL)
deposition in perivascular and perilesional space in injured mice resulting in activa-
tion of the lectin pathway (Longhi et al. 2014). In longer-term studies, increased
expression of complement protein has been described up to 6 months post-injury
with implications for amyloid homeostasis and chronic sequela (Bao et al. 2018).

With significant animal model evidence indicating therapeutic efficacy, attention
is turning to complement inhibition as a therapy in human neurological diseases
including TBI. Unfortunately, the TBI field has failed to translate any therapies
strongly supported by rodent preclinical data despite over 30 clinical trials (Loane
and Faden 2010; Xiong et al. 2013; Kabadi and Faden 2014; Vink 2018). To address
the weaknesses in the translational pipeline and bridge the gap between rodents and
humans, swine appears to be a viable preclinical model for complement research.
Swine studies of severe TBI resuscitation with valproic acid led to a down-regulation
of complement activation, and a resultant decrease in injury severity (Dekker et al.
2014; Bambakidis et al. 2016). Complement-directed therapeutics such as
eculizumab (Soliris, Alexion, USA) have gained significant traction with a well-
established safety profile and have been proposed as a potential therapy in TBI
(Roselli et al. 2018). Likewise, small molecule complement receptor antagonists,
specifically for C3a and C5a, are entering human trials and will likely move on to
TBI as a disease target (Ducruet et al. 2009; Garrett et al. 2009). The complement
system appears to be integral to the acute and chronic inflammatory response
following TBI, offering promising therapeutic targets for neuroprotection, improved
plasticity, and increased regenerative potential to enhance rehabilitation and improve
outcomes.

13.4.2 Microglial Activation

One of the earliest inflammatory cellular responses after TBI is the activation of
microglia, the primary immune cells of the CNS. Microglia in the healthy adult brain
survey the local environment and monitor synapses, while microglia after TBI (and
in other disease pathogenesis) engulf cellular debris and promote both regeneration
and inflammatory cytokine release (Salter and Stevens 2017; Wofford et al. 2017).
This activity may have both beneficial and detrimental effects, as prolonged or
uncontrolled activation may contribute to more serve cognitive impairments and
neurodegenerative disorders (Simon et al. 2017). Indeed, microglial activation can
persist for weeks, years, or decades after injury as demonstrated in human TBI and
preclinical animal models of injury (Gentleman et al. 2004; Johnson et al. 2013a;
Loane et al. 2014; Lafrenaye et al. 2015; Grovola et al. 2020, 2021).

Recent therapeutic advances have attempted to target the mechanisms responsible
for neuroimmune dysregulation using a variety of approaches. Unfortunately, many
clinical trials targeting inflammation TBI have failed to demonstrate beneficial
effects on neurological outcomes. These failed trials include corticosteroids, such
as hydrocortisone and methylprednisolone, hypothermia therapy, and hypertonic
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saline infusion (Roberts et al. 2004; Hutchison et al. 2008; Bulger et al. 2010;
Asehnoune et al. 2014). Other anti-inflammatory drugs, such as minocycline, have
had mixed results; in a clinical trial of 15 patients, minocycline administered for
12 weeks reduced chronic microglial activation after TBI but increased
neurodegeneration (Scott et al. 2018). These minocycline trial results suggest that
microglia play a reparative role in the chronic phase of TBI and drug treatment may
need to be employed at specific time points post-injury.

One promising method that allows finer control over microglia involves
inhibiting the microglia colony-stimulating factor 1 receptor (CSF1R). CSF1R is
expressed by microglia, macrophages, and osteoclasts, and knocking out the CSF1R
gene eliminates the brain’s microglia population (Patel and Player 2009; Erblich
et al. 2011). To determine the role of CSF1R signaling in microglial homeostasis,
Elmore et al. (2014) tested the effectiveness of CSF1R inhibitors in adult mice. After
initial compound selection experiments, PLX3397 displayed the greatest decrease in
brain microglia by demonstrating a 50% reduction after just three days of adminis-
tration in standard rodent chow and greater than 90% reduction after 7 days of
administration. Furthermore, remaining microglia stained for active caspase-3, a
marker for apoptosis, indicating that CSF1R inhibition initiates microglial cell
death. Researchers then withdrew drug administration and made two remarkable
discoveries. First, microglia began to repopulate the brain within 3 days, though
these microglia were hypertrophied with short stubby processes compared to sham.
Second, microglia density and morphology mirrored sham specimens 14 days after
drug withdrawal. Therefore, microglia repopulation occurs through rapid increase in
cell number followed by stabilization of their morphology. Finally, profiling of
86 immune-related genes lead to a reduction of these genes after microglial depletion
(Elmore et al. 2014). Overall, CSF1R inhibitors allow for highly-selective microglial
depletion through non-invasive administration and lacks a cytokine inflammatory
response.

Recently, Spangenberg et al. (2019) developed the next generation of CSF1R
inhibitors for microglial elimination (Spangenberg et al. 2019). These researchers
sought to create a CSF1R inhibitor that is orally bioavailable, brain-penetrant, and
depletes microglia for an extended time period. After several key changes to the
chemical structure of PLX3397, PLX5622 was synthesized. Thorough pharmacoki-
netic investigation in mice, rats, dogs, and monkeys revealed a 20% brain penetrance
for PLX5622 compared to 5% for PLX3397. This improved penetrance can be
attributed to PLX5622’s lower molecular weight, higher lipophilicity, and better
cell permeability, thus allowing PLX5622 to cross the BBB more easily. Addition-
ally, PLX5622 caused a 90% reduction in microglia within 5 days of administration
in standard rodent chow at doses as low as 1200 ppm. Importantly, withdrawal of
PLX5622 also allows for microglial repopulation, potentially offering a means to
reset a predominantly pathological microglial phenotype after injury.

While Spangenberg et al. initially applied PLX5622 to plaque formation in
preclinical models of Alzheimer’s disease, Henry et al. (2020) investigated the
elimination of microglia utilizing a controlled cortical impact injury in rodents
(Henry et al. 2020). At 28 days after injury, Henry et al. administered PLX5622 to
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mice for 1 week to potentially mitigate posttraumatic neurodegeneration and neuro-
logical dysfunction. This delayed depletion of microglia improved motor function
recovery in beam walk and rotarod tests, as well as improved cognitive function
recovery in Y-maze and Morris Water maze tasks. Additionally, PLX5622 treated
mice had decreased lesion volume and attenuated cortical and dentate gyrus neuron
loss. Histological examination of microglia in PLX5622 treated animals showed an
increase in resting, ramified microglia in the injured cortex compared to TBI +
vehicle-treated animals. Finally, PLX5622 altered cortical transcription patterns of
oxidative stress, neuroinflammation, neuroplasticity, and apoptosis (Henry et al.
2020). These findings suggest that functional recovery after TBI may occur at
chronic time points, thus expanding the therapeutic window for post-TBI interven-
tions. Furthermore, CSF1R inhibitors did not cause cognitive or motor impairments
despite the critical role of microglia in brain surveillance and synapse monitoring
(Salter and Stevens 2017).

While CSF1R inhibitors are showing increasing potential as a therapy for TBI
and a range of other neurological disorders, it should be noted that CSF1R inhibition
by PLX5622 also affects peripheral immune cells. Lei et al. (2020) administered
PLX5622 to adult mice for 3 weeks, then ceased treatment for 3 weeks before
assessing bone marrow, spleen, and blood for immunological changes (Lei et al.
2020). PLX5622 administration resulted in the suppression of select monocyte
progenitor cells, bone marrow-derived macrophages, hematopoietic stem cells, and
hematopoietic progenitor cells. Importantly, these cell populations did not recover
by this 3-week post-treatment experimental timepoint (Lei et al. 2020). Therefore,
research focusing on peripheral and circulating macrophages in addition to microglia
is necessary to understand the consequences—positive and/or negative—of admin-
istering PLX5622 following TBI.

Despite the need for further investigation into the impact of depleting peripheral
immune cells, PLX5622 remains the best available tool to deplete microglia
in vivo—both to investigate their functions in TBI and a myriad of other conditions,
and also for proof-of-concept TBI therapeutics studies. Thorough characterization of
all immune cell types at extended time points should be monitored across various
factors, such as subject age, sex, mechanism and degree of injury, and secondary
insults to determine the full effectiveness of CSF1R inhibitors as a potential therapy
for TBI. Targeted modulation of microglia continues to garner significant research
interest due to their potential to mitigate specific drivers of neurodegeneration and
dysfunction following TBI, and though it may seem extreme to some, short-term
depletion of microglia may yet prove to be a powerful non-invasive therapy to
mitigate neurodegeneration and dysfunction following TBI, providing a more regen-
erative environment for rehabilitation. Future studies will need to discern if tempo-
rary microglia removal/repopulation or a more sustained and targeted modulation of
detrimental microglia behavior will yield superior therapeutic benefits.
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13.4.3 Macrophage Infiltration

In addition to resident cells of the CNS, the peripheral immune system can also have
profound effects on the extent of regeneration and recovery following TBI. In
healthy conditions the BBB limits interactions between the CNS and the peripheral
immune system. However, following trauma, the BBB can become mechanically
and chemically altered, thereby reducing the impedance between the peripheral
whole blood and the CNS. Of course, penetrating TBIs and focal TBIs result in
mechanical trauma to cerebral vasculature, affecting the neurovascular unit integrity.
Furthermore, changes in signaling molecules can affect the stability of astrocytic
endfeet, endothelial cell tight junctions, and pericyte support (Cash and Theus 2020),
all of which can affect vasculature integrity after trauma. These changes to BBB
integrity have been described in focal, diffuse, and closed-head TBI and have been
noted in clinical TBI cases (Hay et al. 2015; Li et al. 2016; Johnson et al. 2018; van
Vliet et al. 2020).

It is therefore unsurprising that peripheral immune cells, which are primed to
identify tissue damage, can infiltrate into the brain when the BBB becomes leaky.
Within hours of the injury, neutrophils, the first responders of the peripheral immune
system, infiltrate into the brain tissue (Liu et al. 2018). Once inside the brain, they
can contribute to pathological progression by secreting neutrophil extracellular traps
(NETs) and altering the cerebral blood flow rate (Vaibhav et al. 2020). Following the
neutrophils, monocyte-derived macrophage numbers in the brain begin to signifi-
cantly increase approximately three days after trauma (Alam et al. 2020; Hazy et al.
2020). Lastly, adaptive immune cells, including B cells and T cells have been
reported to infiltrate brain tissue several days after TBI (Morganti-Kossmann et al.
2001b; Ling et al. 2006; Alam et al. 2020).

Research efforts aimed at mitigating pathology and behavioral deficits after TBI
have turned to controlling monocyte-derived macrophages because of the conve-
nient timing, magnitude of infiltration, and association of monocyte-derived macro-
phage infiltration into the brain with neurotoxicity and neurological deficits in
animal models (Hsieh et al. 2014; Gyoneva et al. 2015; Morganti et al. 2015).
Over the last couple decades, much attention has been garnered to attempt to
understand, remove, or reprogram monocyte-derived macrophages in the CNS
after trauma (Lee et al. 2016; Chan and Viswanathan 2019). Here, we will briefly
review the contributions of monocyte-derived macrophages to TBI and some ther-
apeutic approaches that employ these cells to provide a more regenerative environ-
ment for rehabilitation.

Monocyte-derived macrophages are unique because they can exhibit a wide range
of behavioral phenotypes that can amplify inflammation, promote angiogenesis,
remodel extracellular matrices, or stimulate phagocytosis (Mosser and Edwards
2008; Wynn et al. 2013; Brown et al. 2014; De Paoli et al. 2014; Graney et al.
2020). As a result of the environmental cues in the injured brain, infiltrating
monocyte-derived macrophages generally promote a chronic inflammatory pheno-
type and exacerbate neuroinflammation (Wofford et al. 2019b; Hazy et al. 2020).
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This preserved inflammatory phenotype is distinct from the phenotype progression
that monocyte-derived macrophages typically present in other models of healthy
tissue regeneration (Kim et al. 2016). Typically, monocyte-derived macrophages
will exhibit a transient inflammatory phenotype followed by a tissue remodeling
phenotype (Snyder et al. 2016; Spiller and Koh 2017). It is theorized that this
temporal sequence encourages clearance of necrotic and infectious material,
wound closure, and tissue remodeling. To avoid or overcome the chronic inflam-
matory processes in the brain after TBI, several strategies have emerged to control
monocyte-derived macrophages that broadly fall into three categories: (1) keeping
monocytes and macrophages out of the CNS, (2) employing monocyte-derived
macrophages to deliver therapeutics to the CNS, or (3) controlling monocyte-derived
macrophage phenotype in the CNS.

Preventing infiltration of monocyte-derived macrophages in animal models of
TBI lessened neuropathology and behavioral deficits (Hsieh et al. 2014; Makinde
et al. 2017). These studies suggest that preventing monocyte-derived macrophage
infiltration into the injured brain may be a logical treatment strategy. In line with this
premise, researchers developed a drug-free microparticle-based treatment strategy
that directs monocyte homing toward the spleen instead of sites of damage or disease
(Getts et al. 2014). This team found that intravenous infusion of negatively charged
microparticles would be rapidly phagocytosed by circulating monocytes. Thereafter,
the particle-loaded cells would preferentially home to the spleen, where they subse-
quently undergo apoptosis, rather than traffic to the sites of inflammation (the brain,
peritoneum, bowel, or heart in several models of disease or damage). Building on
this work, researchers have administered similar negatively charged particles intra-
venously to mice following a closed head or a focal TBI (Sharma et al. 2020).
Particles were administered 2–3 h, 24 h, and 48 h after a TBI and resulted in reduced
myeloid cell infiltration, decreased lesion volume, decreased GFAP intensity, atten-
uated edema, and preserved long-term motor behavior (Sharma et al. 2020). These
studies utilized FDA-approved materials and a reasonable treatment timeline that is
promising for the field of neurotrauma. This strategy is a novel way to selectively
suppress detrimental immune functions and suggests that the depletion of peripheral
macrophages along with microglia via CSF1R inhibition may provide additive
therapeutic benefits. Indeed, other attempts to broadly suppress the peripheral
immune system have resulted in poor long-term neurological outcomes and also
increase the risk of secondary infections (Lim and Smith 2007; Hazeldine et al.
2015). Targeting circulating monocytes without broadly suppressing immune func-
tion could have utility as a TBI treatment, although this needs to be tested in other
species and in clinical situations.

In contrast to preventing monocyte homing to the injured brain, other researchers
are attempting to leverage the convenient homing behavior of monocytes to enhance
the delivery of therapeutics into the CNS. Indeed, delivery of therapeutics to the
injured brain is notoriously challenging. Employing monocytes to carry and deliver
therapeutics to injured brain could be a strategic way to locally increase the concen-
tration of beneficial therapeutics in the CNS after TBI. For example, reactive oxygen
species are especially detrimental to neuronal health and are a major driver of
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secondary injury progression after TBI. Indeed, because the brain’s baseline oxygen
consumption is much higher than other organs it is especially vulnerable to reactive
oxygen species and free radicals. Administration of antioxidants has emerged as a
potentially promising therapeutic strategy (Corps et al. 2015). However, these
treatment strategies typically require antioxidant administration prior to the injury,
within minutes of the injury, or direct injection into the CNS. A more translational
approach was employed by the Batrakova lab where they loaded the redox enzyme,
catalase, into phagocytosable nanoparticles (Klyachko et al. 2014). These
“nanozymes” were taken up by macrophages, were stable intracellularly, and pre-
served catalase activity. When nanozyme-loaded macrophages were administered
intravenously 48 hours after a CNS injury, they reduced neuroinflammation and
increased neuronal survival. Additionally, other groups have attempted to use mono-
cytes to deliver other types of therapeutics to the injured brain, including viral
vectors (Tong et al. 2016). Other researchers are working to enhance monocyte
delivery of therapeutics to peripheral tissues and organs. For example, recent studies
suggest that monocytes can carry hypoxia-activated pro-drugs to sites of hypoxia
(Evans et al. 2019). Additionally, others are working to develop monocyte “back-
packs” that adhere to the surface of homing cells (Anselmo and Mitragotri 2014;
Anselmo et al. 2015). These loaded monocytes can home to sites of inflammation
and reduce off-target delivery. While these results are promising, much work still
remains to determine if the homing potential of loaded monocytes is conserved and
the therapeutic efficacy can reduce secondary injury cascades following TBI.

Finally, new strategies are emerging that attempt to control macrophage pheno-
type as a therapeutic strategy for TBI treatment. As previously mentioned, when not
assuming an inflammatory phenotype macrophages can perform a variety of func-
tions that are required for tissue regeneration and stability including angiogenesis,
extracellular matrix remodeling, and clearing damaged tissue. Indeed, there are a
number of problems in TBI-induced secondary injury that monocyte-derived mac-
rophages are uniquely poised to remedy. Macrophages cultured with CNS slice
cultures subjected to oxygen-glucose deprivation rescued hypoxic neurons
(Desestret et al. 2013). Macrophages can secrete essential neuronal growth factors
including brain-derived neurotrophic factor (BDNF) (Kerschensteiner et al. 1999).
Additionally, macrophages may be more capable of clearing toxic components
including myelin debris and erythrocytes compared to other brain cells (Hikawa
and Takenaka 1996; Kroner et al. 2014; Nairz et al. 2017). Indeed, a number of
clinical trials have attempted to deliver monocytes or macrophages to the brain,
spinal cord, and other peripheral organs (Chan and Viswanathan 2019). However,
methods to control an ideal phenotype over time are necessary for these approaches
to reach their full potential.

To address this need, our group has co-developed a strategy to exogenously
reprogram monocytes with drug-loaded microparticles. Phagocytosed microparticles
degrade over time releasing immunomodulatory drugs into the cytosol of the
monocyte-derived macrophages, thus controlling their phenotype over time
(Wofford et al. 2019a, 2020). Intracellular microparticles were able to mitigate
gene expression and protein secretion related to inflammation when the cells were

13 Emerging Approaches for Regenerative Rehabilitation Following. . . 433



cultured in both regular and inflammatory environments. Experiments validating the
efficacy of this cell reprogramming strategy in vivo after a TBI are necessary to
determine if controlling monocyte-derived macrophage phenotype could have ther-
apeutic efficacy. Moreover, modulating inflammation to a constructive magnitude
and duration is likely the first step toward implementing these cells as a therapy.
Controlling the extent of homing, phagocytosis, and cytokine secretion will also be
imperative if they are to become a clinical treatment. This strategy along with other
macrophage-directed TBI therapies offers promising avenues to provide a
pro-regenerative environment that can improve the efficacy of rehabilitation and
maximize recovery.

13.5 Current and Future Approaches to Mitigate Neuronal
and Axonal Loss

Despite the heterogeneity of brain injury, all forms of TBI—whether mild or severe,
focal or diffuse—are thought to result in some form of neuronal and/or axonal loss
(Meaney et al. 2014; Dixon 2017; Kaur and Sharma 2018). While the location and
extent of neuronal or axonal loss depend on the specific injury mechanisms, the
presence of such degeneration appears to be ubiquitous. The initial event resulting in
TBI causes mechanical tissue deformation that may lead to relatively rapid necrotic
cell death (Kaur and Sharma 2018). In focal brain injuries such as hematomas,
hemorrhages, and contusions, a large proportion of the initial neuronal loss is
concentrated around the injury site (Kaur and Sharma 2018). In diffuse brain injury,
inertial impulse loading leads to widespread axonal damage throughout the brain
(DAI), as well as acute plasmalemma permeabilization affecting soma in the gray
matter (Singleton and Povlishock 2004; Cullen et al. 2011; Johnson et al. 2013b;
Meaney et al. 2014; Kaur and Sharma 2018; Keating et al. 2020). The disruption of
axonal integrity caused by DAI leads to structural, metabolic, and neurochemical
impairments that in turn initiate Wallerian degeneration of the axons, a series of
hallmark pathologies that begins with disrupted axonal transport and ultimately leads
to complete degeneration and self-destruction (Johnson et al. 2013b; Koliatsos and
Alexandris 2019). This pathology generally develops quickly but can persist chron-
ically following even a single injury event in the human brain (Povlishock and
Christman 1995; Johnson et al. 2013b). Additionally, across both focal and diffuse
TBI, the primary insult that results in initial neuronal death is followed by secondary
(or indirect) injury that is driven by events including neuroinflammation,
excitotoxicity, oxidative stress, and mitochondrial dysfunction (Wang and Jin
2015; Russo and McGavern 2016; Wofford et al. 2019b; Ladak et al. 2019). This
secondary injury further exacerbates the initial neuronal loss resulting from the
primary injury, causing a continual neuronal loss for weeks, months, and even
years after the initial injury. Thus, acute pathology can lead to widespread axonal
degeneration and programed neuronal loss that may greatly exceed any necrotic cell
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death that occurs at the time of the initial injury. In addition, the adult CNS has an
extremely limited capacity to regenerate following injury (Fry 2001; Illis 2012),
owing to an extremely limited capacity for neuronal replacement, an inability of
axons to regenerate on their own absent directed guidance, coupled with an
inflammation-induced inhibitory environment that further limits regenerative poten-
tial (Fry 2001; Kyritsis et al. 2014). The meager regenerative capacity of CNS
neurons limits the potential for recovery from TBI. This deficiency has inspired
research into the development of a variety of therapies specifically designed to
promote neuronal replacement and/or axon regeneration following brain injury.

As described in the previous section on current approaches to rehabilitation, diet
and exercise can enhance plasticity—and to some degree neurogenesis—in the
brain, facilitating compensatory rewiring to achieve functional recovery. In addition
to these contemporary approaches for enhancing plasticity, there are currently three
advanced regenerative strategies being explored to replace lost neuronal populations
following TBI (Grade and Götz 2017): (1) transplantation of exogenously-sourced
stem cells, or differentiated neurons derived from stem cells (Kassi et al. 2018;
Clervius et al. 2019; Liao et al. 2019), (2) direct reprogramming of existing cell
populations in the brain (Torper and Götz 2017; An et al. 2018; Wang and Zhang
2018), and (3) redirection of endogenous neural stem and/or progenitor cells
(NSPCs) into an injured brain region (Bellenchi et al. 2013; Rolfe and Sun 2015;
Hayashi et al. 2018; Purvis et al. 2020). The majority of neuronal replacement
techniques have been designed to repopulate areas afflicted by focal injury such as
cerebral ischemia or focal TBI. Indeed, the first thing that comes to mind for most
people when they hear “regenerative therapy” is stem cell transplantation. This
technique involves transplanting a bolus of stem cells either directly into or nearby
a region of brain injury. Transplanted stem cells have been shown to reduce
cognitive and motor deficits caused by experimental TBI (Haus et al. 2016; Spurlock
et al. 2017) and to offer neuroprotection in the penumbra by reducing inflammation,
mitigating chronic glial activation, and augmenting endogenous neurogenesis in
preclinical models of TBI (Kassi et al. 2018; Clervius et al. 2019). While exogenous
stem cells have the ability to survive, integrate, and fire action potentials following
transplantation into the brain (Tennstaedt et al. 2015; Falkner et al. 2016), differen-
tiation and functional integration to restore lost neural circuitry remains a challenge,
and benefits observed in preclinical studies are primarily attributed to release of
neurotrophic factors from the transplanted cells (Rolfe and Sun 2015; Yamashita
et al. 2017; Xiong et al. 2018). Furthermore, the efficacy of mesenchymal stem cell-
derived exosomes for improving functional recovery in a preclinical model of TBI
coupled with a lack of differentiation of transplanted cells shows that the benefits of
exogenous stem cell transplantation are independent of differentiation or neuronal
replacement (Zhang et al. 2020). In fact, one of the most difficult challenges in stem
cell transplantation is promoting and ensuring survival and functional integration of
the transplanted cells (Liu and Huang 2007; Uemura et al. 2010). Limited cell
survival indicates that the beneficial effects of transplanted cells (i.e., growth/
neurotrophic factors released from stem cells into the injury site) are likely short-
lasting, suggesting that multiple transplants would be required to promote enduring
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neuroprotection and regeneration over time. In addition to a lack of cell differenti-
ation and low neuronal survival rates, exogenous stem cell transplantation often
comes with the risk of immune rejection (Barker and Widner 2004) and retention of
epigenetic memory of the transplanted cells (Kim et al. 2010).

Current regenerative treatments are not limited to exogenous stem cells. Another
widely investigated neuronal replacement approach is direct in vivo reprogramming
of one somatic cell type (e.g., fibroblasts, astrocytes, NG2 glia, reactive glial cells,
early post-mitotic neurons) into another (i.e., a specific neuronal phenotype lost due
to injury) without intermediately generating induced pluripotent stem cells (Xu et al.
2015a; Torper and Götz 2017; An et al. 2018; Wang and Zhang 2018). A variety of
techniques have been used to induce reprogramming including lineage-specific
regulatory transcription factors (Guo et al. 2014; Heinrich et al. 2014) and
microRNAs (Ambasudhan et al. 2011; Yoo et al. 2011). Small molecules have
also been used for direct reprogramming, bypassing the need for invasive genetic
manipulation techniques (Hu et al. 2015; Li et al. 2015). While direct cell
reprogramming circumvents issues of immune rejection and tumor formation caused
by exogenous transplants, this approach has the potential to introduce dangerous
genetic mutations causing deleterious side effects and inherently relies on reducing
the quantity of other cell types presumably necessary to brain function. Additionally,
although conversion efficiencies have improved over time and have fairly high
efficacy (Guo et al. 2014; Gascón et al. 2016), current reprogramming techniques
still struggle to reliably generate sufficient numbers of functional, subtype-specific
neurons (Torper and Götz 2017; Wang and Zhang 2018).

A third class of neuronal replacement techniques has focused on endogenous
NSPCs as a source to replace neurons lost due to brain injury. There is a substantial
body of research detailing a variety of different experimental technologies that are
designed to redirect endogenous NSPCs in the brain from their site of origin into a
site of brain injury (recently reviewed by Purvis et al. 2020) (Purvis et al. 2020).
Endogenous neuroblasts are a particularly attractive cell source to replace lost
neuronal populations because there is no risk of immune rejection as occurs with
exogenous stem cell transplants and there is no requirement for invasive
reprogramming techniques for cells to acquire a neuronal phenotype (Bellenchi
et al. 2013). Most endogenous neuronal replacement techniques target NSPCs that
arise from the subventricular zone as these cells already possess the inherent ability
to depart from their site of origin and migrate toward regions of neuronal injury
(Ramaswamy et al. 2005; Thored et al. 2007; Lindvall and Kokaia 2015; Kaneko
et al. 2018), an observation that has also been reported in the human brain (Jin et al.
2006; Minger et al. 2007). However, the quantity of endogenous neuroblasts that
mature into functional neurons in injured regions is insufficient to improve func-
tional recovery without experimental intervention (Kojima et al. 2010; Kernie and
Parent 2010; Hayashi et al. 2018). Various pharmacological strategies, biomaterial
scaffolds, and emerging tissue-engineering techniques have been created to enhance
the migration of subventricular zone-derived NSPCs and promote survival and
integration following their arrival into regions of neuronal injury.
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Pharmacological strategies include utilization of neurotrophic factors such as
epidermal growth factor (Teramoto et al. 2003), stromal-derived factor 1 (Ohab
et al. 2006), or BDNF (Schäbitz et al. 2007) to augment NSPC production within the
subventricular zone and migration of these cells into injured regions. The majority of
pharmacological techniques have administered neurotrophic factors directly into the
lateral ventricles (Teramoto et al. 2003; Kolb et al. 2007; Schäbitz et al. 2007), but
subcutaneous (Ohab et al. 2006; Popa-Wagner et al. 2010) and intranasal (Ma et al.
2008) administration methods have also shown efficacy at augmenting NSPC
migration into regions of injury. The efficacy of neurotrophic factor administration
for promoting endogenous NSPC infiltration can be further augmented when the
factors are administered in biomaterial hydrogels (Wang et al. 2012). However, such
pharmacological interventions have overall shown limited efficacy for altering
endogenous NSPC arrival into regions of injury, and the transient effectiveness
indicates that repeated administration over time is likely needed to produce clinical
efficacy. There is also limited research demonstrating whether these pharmacolog-
ical techniques can lead to actual functional recovery following experimental TBI.
Additionally, while compounds such as growth and neurotrophic factors do provide
chemoattractive cues that guide NSPCs toward regions of injury, cells must migrate
through harsh, unfamiliar territory to reach distant locations in the brain. For
instance, NSPCs often migrate along blood vessels, with branching blood vessels
often leading NSPCs astray and preventing a majority of cells from reaching their
destination (Kojima et al. 2010; Grade et al. 2013; Hayashi et al. 2018).

This challenge has led to the development of a variety of acellular biomaterial
scaffolds designed to directly intercept the subventricular zone neurogenic niche and
span directly into an injured brain region, providing a pathway to guide endogenous
NSPC migration and circumventing the need for NSCPs to travel along inefficient,
indirect routes to reach injured destinations (Oliveira et al. 2018; Purvis et al. 2020).
One concern with using endogenous NSCPs to replace lost neurons is that these
precursors are multipotent, meaning that they have the potential to differentiate into
neurons or glial cells once they arrive at a site of injury (Lim and Alvarez-Buylla
2016). To circumvent this problem, biomaterial hydrogels are often engineered to
contain neurotrophic factors to encourage neuronal differentiation upon arrival at an
injury site (Fon et al. 2014a, b; Zhou et al. 2016; Clark et al. 2016). Some of the most
efficacious of these acellular scaffolds are constructed from laminin, mimicking the
material properties of blood vessels that traditionally support endogenous NSPC
migration toward regions of injury (Ajioka et al. 2015; Fujioka et al. 2017;
Gundelach and Koch 2018). These biomaterial scaffolds have effectively augmented
the delivery of new, mature neurons into neuron-deficient brain regions (Wang et al.
2012; Gundelach and Koch 2018; Jinnou et al. 2018; Motamed et al. 2019) and have
contributed to behavioral recovery following preclinical brain injury (Clark et al.
2016; Jinnou et al. 2018). These scaffolds are an attractive strategy for endogenous
NSPC redirection as they offer an enhanced level of spatial control for cell migration
and they can be engineered to mimic signaling mechanisms that typically support
endogenous NSPC migration.
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An alternative technology that seeks to further enhance NSPC migration from the
subventricular zone into injured brain regions is the tissue-engineered rostral migra-
tory stream (TE-RMS) (O’Donnell et al. 2018, 2021; Purvis et al. 2020). This “living
scaffold” contains living astrocytes encapsulated within a preformed three-
dimensional hydrogel column and is designed to emulate the structure and function
of the endogenous rostral migratory stream, thus providing an “implantable high-
way” that recapitulates the mechanisms with which subventricular zone-derived
NSPCs naturally migrate in the adult brain (Winter et al. 2016; O’Donnell et al.
2018, 2021; Katiyar et al. 2018). Similar to the acellular scaffolds discussed above,
the TE-RMS is intended for implantation to span from the subventricular zone
neurogenic niche toward a region of brain injury. It is predicted that this scaffold
will integrate into the brain following implantation, becoming enwrapped by blood
vessels that surround and support the scaffold. While further research is needed to
demonstrate the ability of this emerging technology to promote functional recovery
following injury, the TE-RMS is predicted to be particularly effective at NSPC
redirection and functional integration due to the ability of NSPCs to actively
communicate with cells contained within the scaffold, thus recapitulating both the
physical (e.g., glial tube structure (Gengatharan et al. 2016)) and chemical (e.g., Slit/
Robo signaling (Kaneko et al. 2017)) cues that traditionally guide subventricular-
zone derived NSPC migration (O’Donnell et al. 2018, 2021). Additionally, by
replicating the mechanisms with which NSPCs migrate endogenously, the
TE-RMS is designed to slowly introduce new neurons into regions of injury over
time (rather than introducing a large quantity of new cells all at once as occurs with
exogenous stem cell transplantation). It is hypothesized that providing slow,
sustained delivery of NSPCs over time will increase cell survival and augment the
ability of redirected cells to functionally integrate into existing circuitry as compared
to traditional cell transplantation or reprogramming techniques.

In addition to repopulating neuron-deficient brain regions with single neurons,
strategies are being explored to replace long-distance axonal tracts that have been
lost or damaged as a result of brain injury. Axons are generated early during
embryonic development when neuronal targets are close to one another (Tau and
Peterson 2010). As the brain develops, the length of axonal pathways increases
simultaneous with the growth of bone and connective tissue, leading to the estab-
lishment of long-distance “stretch-grown” axonal tracts throughout the brain. Fol-
lowing injury, the adult CNS is generally unable to re-grow long-projecting axons
due to a combination of an inhibitory environment, limited intrinsic neuronal growth
capacity, and insufficient directed axon guidance to appropriate distant targets
(Fawcett 2002; Curinga and Smith 2008; Fitch and Silver 2008; Huebner and
Strittmatter 2009). Due to this lack of axon regeneration, the effects of widespread
axonal loss in white matter following TBI can be devastating and permanent. Cell
transplantation and replacement strategies cannot sufficiently restore the anatomical
features of long, damaged axonal pathways. Strategies to encourage targeted and
long-distance axon re-growth encompass two broad techniques: reducing the inhib-
itory environment that prevents axon regrowth (Stichel et al. 1999; Bradbury et al.
2002; Mingorance et al. 2006) and increasing the intrinsic regeneration ability of
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axons (Jain et al. 2004; Yip et al. 2010; Liu et al. 2010). Various biomaterial-based
tubular conduits have been developed that promote axon regeneration following
spinal cord injury in vivo (Tsai et al. 2004; Moore et al. 2006; Silva et al. 2010).
While these strategies have demonstrated some success at eliciting axon regenera-
tion, achieving sufficient axonal growth rates and proper targeting in vivo remain
major challenges. Therefore, these strategies have had minimal success at function-
ally restoring lost axonal connections.

In addition to repopulating neuron-deficient brain regions with single neurons,
another emerging tissue engineering approach seeks to replace entire circuits that
have been lost due to brain injury. For example, micro-tissue engineered neural
networks (micro-TENNs) are implantable living scaffolds consisting of neurons and
preformed axonal tracts contained within a hydrogel structure that are designed to
re-establish long-distance neuronal connections in the brain (Struzyna et al.
2015a, b, 2017). This is the first technology created to simultaneously replace
multiple discrete neuronal populations and their long-distance axonal connections,
introducing the possibility of targeted neurosurgical reconstruction designed to
facilitate functional axonal replacement and/or regeneration following brain injury
(Struzyna et al. 2015a, b, 2017; Harris et al. 2016). Micro-TENNs have been created
with both unidirectional and bidirectional architectures (Struzyna et al. 2015a) to
recapitulate specific neuronal tracts including the nigrostriatal (Struzyna et al. 2018)
and corticothalamic (Struzyna et al. 2015b) pathways. Notably, micro-TENNs have
been shown to exhibit functional connectivity (Dhobale et al. 2018) and have been
successfully engineered from human embryonic stem cells (Struzyna et al. 2018).
Further advancements in this technology may introduce significant potential to
restore functional neuronal connectivity following TBI.

Patients that suffer a severe TBI may experience damage to connections between
the deep brain areas that constitute the ARAS—such as those between pons and
thalamus or pons and basal forebrain—resulting in prolonged Disorders of Con-
sciousness (DoC) (Edlow et al. 2012, 2013; Snider et al. 2019, 2020). The resultant
disruption of activation of higher-order brain circuitry and lack of awareness of self
or environment can render traditional cognitive and exercise rehabilitation
approaches unworkable. DoC patients require specialized rehabilitative approaches
focused on restoring awareness (Schnakers and Monti 2017; Provencio et al. 2020;
Edlow et al. 2021). In the future, it may be possible to replace lost connections
between select areas of the ARAS, and micro-TENNs for replacing ponto-thalamic
afferents offer a focused, promising target for initial testing, with thalamocortical
reconstruction as a secondary goal. While these new approaches are exciting, it
should be stressed that these technologies are many years away from clinical
application. Investigating tissue engineering approaches to regenerative rehabilita-
tion from traumatic DoC will require preclinical studies, and while a preclinical
model of traumatic DoC does not currently exist, efforts are underway to make these
studies possible (O’Donnell et al. 2019).

In general, there are several questions and challenges that remain to be addressed
regarding the ability of the abovementioned technologies to restore lost neuronal
populations to regions of brain injury (Aboody et al. 2011; Purvis et al. 2020). One
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of the biggest challenges for all neuronal replacement techniques is the ability to
generate a sufficient number mature, phenotype-specific neurons to effectively
restore function to an injured brain region. Across all neuronal replacement technol-
ogies, more research is needed to demonstrate that new neurons appropriately
mature, differentiate (i.e., express relevant synaptic structures and synaptic markers),
and functionally integrate with preexisting circuitry. There are also numerous
manufacturing, safety, and regulatory considerations as these technologies move
toward clinical utilization. While significant hurdles remain, these evolving technol-
ogies demonstrate considerable potential for neuronal and/or axon tract replacement
following TBI.

13.6 Conclusions and Future Directions

Current efforts to promote plasticity and regeneration during rehabilitation from TBI
are limited in their potency, specificity, and efficacy. Diet and exercise have been
found to provide some improvement to regenerative potential during rehabilitation,
but the ceiling is unfortunately low compared to other regenerative therapies under
preclinical investigation. Emerging strategies for regenerative rehabilitation, from
more traditional therapeutic approaches intended to mitigate anti-regenerative TBI
endophenotypes, to more innovative approaches like tissue engineering and
microglial depletion/replacement, offer significant potential for removing limits to
rehabilitation to maximize functional recovery. Of course, spurring neurogenesis is
only part of the challenge—new neurons need to end up where they are needed,
integrate within appropriate 3D architecture, mature into correct phenotypes, and
form functionally meaningful connections. Just as these nascent regenerative thera-
pies are intended to enhance traditional rehabilitative therapies, those traditional
rehabilitative therapies may help to improve the microenvironment of new neurons
and therefore indirectly aid in addressing these challenges. For example, exercise
and diet can reduce harmful inflammation, promote neurotrophic factor release, and
improve plasticity, creating a more favorable environment for the survival and
functional integration of implanted neural networks and/or re-routed endogenous
neurons. As such, next-generation pro-regenerative therapies should be integrated
with the existing—and effective—framework for cognitive rehabilitation after TBI.

Despite the lack of any approved treatment for mitigating neurodegenerative
cascades and/or improving recovery from TBI, there are many potential therapeutics
and even more potential therapeutic targets under preclinical investigation. For
example, device-based plasticity (e.g., transcranial direct current stimulation,
transcranial magnetic stimulation) may have a role as an adjunct to traditional
rehab but is beyond the scope of the current article. We only discussed a fraction
of these potential therapeutics and targets in this chapter, while illustrating the
chronic challenges limiting recovery from TBI and the various ways in which
regenerative rehabilitation strategies could be employed to maximize recovery.
Unfortunately, neurotrauma therapeutics have a history of translational failure, due
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in part to the heterogeneity of TBI, but also largely due to an overreliance on rodent
models that do not sufficiently recreate the mechanisms and manifestations of the
injury to provide reliable efficacy testing. Small animal models of TBI are essential
to study specific endophenotypes, identify potential therapeutic targets, and test
mechanisms of action for novel therapeutics. However, large animal models that
better represent the mechanisms of biomechanical injury, neurophysiological
sequelae, and neuropathological distribution of human TBI must be utilized to
bridge the gap between small animal models and clinical trials to establish a viable
translational pipeline for neurotrauma. By engaging in research addressing the
challenges of both plasticity and ongoing injury, targeting specific endophenotypes
based on the heterogeneity of TBI, and progressing through a carefully considered
translational pipeline from small animals to large gyrencephalic animals, emergent
strategies for regenerative rehabilitation can be brought to bear to maximize recovery
after TBI.
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