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Abstract

Although concussion is now recognized as a major health issue, its non-lethal nature has limited 

characterization of the underlying pathophysiology. In particular, potential neuropathological 

changes have typically been inferred from non-invasive techniques or post-mortem examinations 

of severe traumatic brain injury (TBI). Here, we used a swine model of head rotational 

acceleration based on human concussion to examine blood–brain barrier (BBB) integrity after 

injury in association with diffuse axonal injury and glial responses. We then determined the 

potential clinical relevance of the swine concussion findings through comparisons with 

pathological changes in human severe TBI, where post-mortem examinations are possible. At 6–

72 h post-injury in swine, we observed multifocal disruption of the BBB, demonstrated by 

extravasation of serum proteins, fibrinogen and immunoglobulin-G, in the absence of hemorrhage 

or other focal pathology. BBB disruption was observed in a stereotyped distribution consistent 

with biomechanical insult. Specifically, extravasated serum proteins were frequently observed at 

interfaces between regions of tissue with differing material properties, including the gray–white 

boundary, periventricular and subpial regions. In addition, there was substantial overlap of BBB 

disruption with regions of axonal pathology in the white matter. Acute perivascular cellular uptake 

of blood-borne proteins was observed to be prominent in astrocytes (GFAP-positive) and neurons 
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(MAP-2-positive), but not microglia (IBA1-positive). Parallel examination of human severe TBI 

revealed similar patterns of serum extravasation and glial uptake of serum proteins, but to a much 

greater extent than in the swine model, attributed to the higher injury severity. These data suggest 

that BBB disruption represents a new and important pathological feature of concussion.
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Introduction

Concussion is now recognized as a major health issue, with many millions of cases reported 

worldwide each year [11, 18, 61]. Indeed, although alternatively referred to as mild 

traumatic brain injury (mTBI), for many there is nothing ‘mild’ about concussion, with 

approximately 15% of patients suffering persisting neurocognitive dysfunction [68, 70]. 

Moreover, an increasing number of reports link exposure to repetitive concussions with 

progressive neurodegeneration, including ‘chronic traumatic encephalopathy’ (CTE) [33, 57, 

83].

Despite growing public alarm regarding the aftermath of concussion, there remains no 

consensus on the underlying pathophysiology of the injury. In part, this is due to the limited 

availability of human post-mortem brain tissue for examination from this typically non-

lethal injury. As such, concussion remains in part defined by an absence of the overt brain 

pathologies characteristic of higher levels of TBI, including, hematoma, contusion or 

marked brain swelling [51]. However, emerging experimental and clinical data indicates that 

concussion may share one of the most consistently observed pathologies of moderate and 

severe TBI, diffuse axonal injury (DAI).

Across all injury severities, DAI is thought to stem from the viscoelastic nature of the brain 

under dynamic mechanical loading during head rotational acceleration [3, 26, 36, 37, 43, 58, 

84, 86, 87]. Potentially due to their highly structured organization in tracts and unique 

anatomic architecture, axons appear especially vulnerable to rapid brain tissue deformation 

during TBI. This has been demonstrated in a swine model of concussion that employs head 

rotational acceleration parameters scaled to human concussion [17, 44]. Neuropathological 

analysis of the injured swine brains identified selective, multifocal regions of axonal 

pathology throughout the white matter very similar in appearance to characteristic DAI 

observed at autopsy after severe TBI in humans [44]. In addition, a growing number of 

reports using advanced neuroimaging and fluid biomarker analyses lend further support for 

DAI as a key pathological substrate of concussion in both humans and animal models [12, 

55, 59, 76, 81, 94, 95].

Intriguingly, emerging evidence suggests that other brain structures also suffer mechanical 

injury during concussion, which like DAI typically are invisible to conventional, noninvasive 

examination. In particular, while by definition there is no focal hemorrhage in concussion, 

techniques such as dynamic contrast enhanced (DCE) MRI have demonstrated contrast 

accumulation in the brains of football players [93], suggesting there is subtle disruption of 
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the cerebral vasculature affecting the integrity of the blood–brain barrier (BBB). In addition, 

in previous preclinical studies, BBB dysfunction has been observed in the absence of other 

significant neuropathologies following an open-skull, direct impact model of TBI in cats 

[66, 67]. In these studies, BBB permeability was demonstrated to occur via multiple routes 

including increased transcytosis as well as hypertension-induced endothelial breakdown. 

Furthermore, autopsy studies in humans have demonstrated acute and long-lasting disruption 

of BBB integrity as a common neuropathological finding after just a single moderate or 

severe TBI [34]. However, the specific contribution of isolated mechanical forces on the 

BBB, including rotational forces common to concussion, has yet to be explored directly.

Here, we evaluated potential BBB disruption following injury in the swine head rotational 

acceleration model of concussion. We found acute and marked BBB leakage at levels of 

injury insufficient to cause hemorrhage. Detailed neuropathological examination revealed 

that BBB permeability occurred in a pattern and distribution consistent with a 

biomechanically induced pathology and was associated with an acute astroglial response. 

Parallel studies of human cases of moderate and severe TBI confirmed neuropathological 

features similar to those found in the swine concussion model, though with evidence of more 

extensive BBB disruption, consistent with previous observations. Together, these data 

indicate that, in addition to DAI, BBB dysfunction may also be an important pathology of 

concussion.

Materials and methods

Experimental design

We hypothesized that dynamic forces caused by rapid head rotational acceleration–

deceleration in adult swine will induce acute extravasation of blood-borne proteins into the 

brain parenchyma that are detectable via immunohistochemistry (IHC). In a controlled 

laboratory experiment, 6-month-old (adult) Hanford miniature swine underwent the 

rotational acceleration model of TBI under general anesthesia and survived for 6 h (n = 3), 

48 h (n = 2) and 72 h (n = 4), and were compared with shams (n = 3). Based on previous 

data [44] the proposed number of animals was expected to provide significant power, 

specifically where the neuropathological outcome was anticipated to be absent in sham 

animals. All histological experiments, analyses and quantification were performed blind to 

the injury status of the animal.

Rotational acceleration model of concussion

All animal experiments were conducted in accordance with protocols approved by The 

University of Pennsylvania Institutional Animal Care and Use Committee and in accordance 

with the NIH Guide for the Care and Use of Laboratory Animals.

Six-month-old female Hanford miniature swine were subjected to an established concussion 

model that induces injury via forces caused by rotational acceleration/deceleration due to 

pure impulsive centroidal head rotation [17, 44, 58, 71, 82, 85]. For TBI in humans, the size 

of the brain is critical as significant mass effects between regions of tissue can create high 

strains during dynamic brain deformation during rapid accelerations [36, 37, 54]. 
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Accordingly, injury parameters were scaled up relative to brain mass to create the 

mechanical loading of brain tissue relevant to that which occurs in human TBI [36, 37, 54, 

58, 89]. Notably, in this model, there is an absence of any head impact or forces arising from 

linear acceleration/deceleration.

Following the induction of anesthesia using 0.4 mg/kg midazolam IM and 5% inhaled 

isoflurane, animals were intubated and anesthesia maintained via 2.5% inhaled isoflurane. 

The HYGE pneumatic actuator device was used to induce rapid head rotation. Specifically, 

the HYGE actuator generates linear motion via the triggered release of pressurized nitrogen. 

This linear motion is then converted to angular motion via custom-designed linkage 

assemblies to induce rotation over 20 ms. Rotational kinematics were recorded using angular 

velocity transducers (Applied Technology Associates) mounted to the linkage sidearm 

coupled to a National Instruments data acquisition system running custom LabView 

software (10 kHz sampling rate). In this fashion, we produced pure impulsive centroidal 

head rotation of up to 110° in the coronal plane with peak angular velocity of 225–250 rad/s. 

Animals were recovered from anesthesia and returned to the housing facility. While the 

procedure is non-surgical, preemptive analgesia was provided post-injury in the form of 0.1–

3 mg of Buprenex (slow release preparation) SQ and acetaminophen 50 mg/kg PR. Sham 

animals were also euthanized 72 h after being subjected to identical procedures absent head 

rotation.

At the study endpoint, all animals were deeply anesthetized and transcardially perfused 

using chilled heparinized saline (2 L) followed by 10% neutral buffered formalin (NBF) (8 

L). Perfusions were performed at standardized pressures calibrated for the provision of 

adequate fixation and the absence of any structural damage to the vasculature that would 

permit artefactual extravasation of serum proteins. This was verified histologically 

(described below) and fixation was sufficient to permit quality tissue morphology and 

immunoreactivity. Brains were subsequently postfixed for 7 days in 10% NBF, sectioned 

into 5 mm blocks in the coronal plane and processed to paraffin using standard techniques.

Human post-mortem acute severe TBI cohort: demographic and clinical data

Since uncomplicated concussion is typically non-lethal, scarce cases come to autopsy 

examination. Therefore, postmortem brain tissue from patients who died following single 

severe TBI was examined to determine if there were shared features in the distribution of 

serum protein extravasation and the cellular response to BBB breakdown between human 

autopsy material and our swine injury model across injury severities. All tissue was obtained 

from the Glasgow TBI Archive, Department of Neuropathology, Queen Elizabeth University 

Hospital, Glasgow, UK. Tissue was acquired at routine diagnostic autopsy and approval for 

use was granted by the NHS Greater Glasgow and Clyde Bio-repository Governance 

Committee.

TBI cases were selected to include patients with survival times ranging from 6 to 72 h 

following acute severe TBI (n = 12). Detailed reports from the diagnostic autopsy and/ or 

forensic reports were available for all cases and indicated a history of a single severe TBI, 

supported by autopsy findings. TBI cases were compared to material from age/sex-matched 

controls (n = 7) acquired at routine diagnostic post-mortem at the same institution. Controls 
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had no documented history of TBI. Full clinical and demographic information, including 

age, sex and cause of death, is provided for all groups in Table 1.

Human brain tissue preparation

For all examinations, the intact brain was immersed in 10% formol saline at autopsy and 

fixed for at least 3-weeks prior to dissection. Sampling using a standardized protocol and 

paraffin embedding was performed as described previously [31]. Analyses were performed 

using hemi-coronal sections of the parasagittal cortex at the level of the mid-thalamus to 

include the cingulate gyrus, corpus callosum and superior frontal gyrus. This region was 

selected given its midline location and known susceptibility to injury [1, 2, 42, 43, 49].

Single immunohistochemical labeling

Human and swine tissue was examined for extravasation of the serum protein fibrinogen 

(FBG) and axonal pathology using IHC. Following deparaffinization and rehydration, 

human and swine tissue sections were immersed in aqueous hydrogen peroxide (15 min) to 

quench endogenous peroxidase activity. Antigen retrieval was performed in a microwave 

pressure-cooker with immersion in preheated Tris EDTA buffer. Subsequent blocking was 

achieved using 1% normal horse serum (Vector Labs, Burlingame, CA) in Optimax buffer 

(BioGenex, San Ramon, CA) for 30 min. Incubation with the primary antibodies was 

performed overnight at 4°C. Specifically, to identify axonal pathology in human and swine 

tissue, sections were labeled with an antibody reactive for the N-terminal amino acids 66–81 

of the amyloid precursor protein (APP) (Millipore, Billerica, MA) at 1:80 k permitting 

visualization of APP accumulating within transport-interrupted axonal bulbs or swollen and 

tortuous varicosities along the length of damaged axons. In addition, adjacent sections were 

incubated with antibodies specific for the serum protein FBG including rabbit polyclonal 

antibodies targeting the full-length swine FBG at 1:5 k (Abcam, Cambridge, MA) and 

human FBG at 1:17.5 K (Dako, Carpinteria, CA). FBG does not normally accumulate in the 

brain parenchyma under physiologic conditions. After rinsing, sections were incubated with 

the appropriate biotinylated secondary antibody for 30 min (Vector Labs, Burlingame, CA), 

followed by avidin–biotin complex (Vectastain Universal Elite kit, Vector Labs, Burlingame, 

CA). Finally, visualization was achieved using 3,3′-diaminobenzidine (DAB) (Vector Labs, 

Burlingame, CA) and counter-staining with haematoxylin performed.

Positive control tissue for APP IHC included sections of swine tissue with previously 

established DAI. Positive control tissue for FBG IHC included a section of swine brain 

tissue with contusional injury, and thus overt BBB disruption. Omission of primary 

antibodies was performed on the same material to control for non-specific binding.

Multiple antigen labeling

Immunoenzymatic double labeling—Sections were examined to directly compare the 

pattern and distribution of FBG extravasation with that of axonal pathology in swine. 

Specifically, APP staining was first performed using DAB visualization as above. The same 

sections were subsequently incubated with rabbit anti-FBG antibody (1:3.5 K) for 20 h at 

4°C. Detection was achieved via the ImmPRESS™-AP anti-rabbit IgG (alkaline 

phosphatase) polymer detection kit (Vector Labs, Burlingame, CA) followed by the Vector 
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blue alkaline phosphatase substrate kit (Vector Labs, Burlingame, CA). After rinsing, slides 

were coverslipped using aqueous mounting medium (Dako, Carpinteria, CA).

Immunofluorescent (IF) labeling—Double and triple IF labeling was performed in 

swine tissue to (1) compare the extravasation of FBG with that of another blood-borne 

protein IgG in a section of tissue at the level of the basal ganglia at the level of the head of 

caudate nucleus in all cases and; (2) determine the cell types associated with the uptake of 

FBG/IgG in all sections where observed on single labeling IHC.

Following deparaffinization and rehydration, antigen retrieval and blocking was performed 

as above. Primary antibodies were applied serially for 20 h (4°C) and were specific for FBG 

(Abcam, Cambridge, MA, 1:3 K), glial fibrillary acidic protein (GFAP) (Millipore, Billerica, 

MA; 1:8 K), ionized calcium-binding adaptor molecule 1 (IBA-1), and microtubule-

associated protein 2 (MAP2) (Abcam, Cambridge, MA; 1:2 K). After rising, the 

corresponding Alexa Fluor (Invitrogen, Carlsbad, CA) secondary antibody was applied at 

1:500 in a 2% species-specific blocking solution for 2 h at room temperature. For the 

identification of IgG, a goat anti-swine IgG conjugated with Alexa 488 (Jackson 

ImmunoResearch, PA; 1:20) was applied. Serial sections of positive control tissue (contused 

tissue) were subjected to the entire procedure with the omission of subsets of primary 

antibodies to control for non-specific immunofluorescence. Negative controls included 

individual omission of primary antibodies to control for non-specific binding. Following 

rinsing, all double fluorescent-immunolabeled sections were coverslipped using an aqueous 

mounting medium (Dako, Carpinteria, CA) and visualized using a Nikon A1RSi Laser 

Scanning Confocal (Nikon, Tokyo, Japan). High resolution confocal scanning was 

performed at 0.5 μm increments through the full depth of the tissue sections and image 

reconstruction achieved using Nikon Elements AR.

Analysis and quantification of immunohistochemical findings

All neuropathological assessment and quantification was performed blinded to the injury 

status of animals by 2 independent examiners and inter-rater reliability was determined. 

Routine H&E staining was performed on serial sections for all brain regions examined (see 

below).

Extent and distribution of FBG extravasation—All tissue examinations were 

performed on 8 μm wholebrain coronal paraffin sections at 5 brain levels including: (1) the 

frontal cortex at 5 mm from the frontal pole, including prefrontal cortex; (2) the basal 

ganglia at the level of the head of caudate nucleus; (3) the anterior hippocampus; (4) the 

posterior hippocampus at the level of the posterior commissure; and (5) the medulla. Levels 

were selected to incorporate a wide sampling spanning the rostrocaudal extent of the entire 

brain.

For each animal, FBG labelled whole-brain sections from each of these 5 levels (see Fig. 2a 

for examples of brain levels examined) were subjected to high resolution scanning at 20× 

magnification using the Aperio ScanScope and viewed using associated Aperio ImageScope 

software (Leica Biosystems, Wetzlar, Germany). These digital images were reviewed by 2 

independent observers (VJ and MW) each of whom manually outlined all regions of 
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extravasated FBG to generate detailed maps of BBB disruption (Fig. 2). This was achieved 

using the annotation tool on the Aperio ImageScope software. These subsequent outlines 

then permitted the quantification of the percentage area of FBG immunoreactivity for each 

hemisphere (across all 5 brain levels) per animal.

Quantifying regional overlap between FBG extravasation and axonal 
pathology in swine—The pattern and distribution of axonal pathology as identified by 

APP immunohistochemistry has previously been characterized in the non-impact rotational 

acceleration injury swine model of mild TBI used in this study [44].

To determine the potential relationship between axonal pathology and BBB disruption, 

tissue dual-labelled for APP (axonal pathology) and FBG were examined. Animals with the 

survival of 48–72 h post-TBI were selected to encompass the maximal extent of axonal 

pathology, which is identifiable due to the abnormal accumulation of APP secondary to a 

failure of axonal transport.

Dual-labelled coronal sections for all cases at the level of the basal ganglia at the level of the 

head of caudate nucleus (Fig. 3a, b) were selected and, as above, underwent high resolution 

digital scanning at 20× magnification using the Aperio ScanScope and viewed using 

associated Aperio ImageScope software (Leica Biosystems, Wetzlar, Germany).

The entire region of white matter above the level of the corpus callosum for each animal/

section in both hemispheres was selected for examination and has previously been shown to 

be a region where axonal pathology is stereotypically observed [44]. Within this region, 

injured axons were identified and defined as those that were APP positive axonal profiles 

with an injured morphology including (1) terminal axonal swellings or axonal bulbs, 

formerly known as retraction balls, and (2) axons with a beaded or fusiform morphology 

representing multiple points of apparent transport interruption as has been historically 

described [27, 28, 42, 43, 77, 88]. Upon identification, injured axons were tagged using the 

annotation tool in the Aperio ImageScope software. To determine the percentage of axons 

regionally associated with BBB disruptions, all axons were reviewed and designated as 

either (1) existing in a region of white matter with associated FBG extravasation or (2) 

existing in a regions where FBG immunoreactivity was absent.

Human tissue neuropathological analyses—For human tissue studies, the extent of 

FBG extravasation was classified using standard semi-quantitative assessments and 

designated in a blinded fashion as: 0 = absent, 1 = minimal, 2 = moderate, or 3 = extensive 

pathology based on the frequency and intensity of immunoreactivity as previously described 

[34]. Score 3 (extensive) represents sections with > 50% of the section being FBG 

immunoreactive. Representative examples are shown in Supplementary Fig. 2. This scoring 

was representative of the entire hemi-coronal section of the parasagittal cortex at the level of 

the mid-thalamus to include the cingulate gyrus and corpus callosum. The presence or 

absence of axonal pathology was noted.
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Statistical analyses

Statistical analyses for IHC quantification were performed using GraphPad Prism statistical 

software (GraphPad Software Inc. La Jolla, CA). Differences in the mean of the percentage 

area of FBG immunoreactivity were assessed using the two-sample t test for all 

comparisons. Differences were considered significant if p < 0.05.

The Intraclass Correlation Coefficient (ICC) was used to determine inter-rater reliability of 

quantitative measurements of IHC findings using IBM SPSS Statistics (IBM Corporation, 

Armonk, NY).

Results

Isolated head rotational acceleration results in a clinical presentation consistent with 
concussion

Following the rotational acceleration model of concussion and subsequent withdrawal of 

isoflurane, all animals mobilized rapidly, were fully conscious and alert, mental status was 

unaltered and normal feeding and drinking behavior resumed within 1–2 h. Consistent with 

the clinical presentation of mild TBI, no animals displayed evidence of focal neurological 

deficit. In all animals, neurological examination was normal and animals displayed normal 

posture, tone, gait, power, sensation, proprioception and cranial nerve examination where 

possible to examine.

Neuropathological characterization of trauma-associated pathologies was performed 

following survival of 6 h (n = 3), 48 h (n = 2) and 72 h (n = 4) post-injury and compared 

with shams (n = 3). As previously reported [44], brains were normal on gross examination 

and indistinguishable from shams at all time points post-injury. Consistent with clinical 

concussion, there was no evidence of any focal pathology, including hemorrhage. The brain 

hemispheres were symmetrical with no evidence of swelling or raised intracranial pressure 

(ICP). H&E staining confirmed an absence of any focal hemorrhagic or ischemic foci in any 

animals.

IHC specific for APP revealed swollen and morphologically altered axons consistent with 

transport-interruption secondary to axonal cytoskeletal damage and indistinguishable from 

that observed in human DAI [1–3, 27, 28, 42, 77]. DAI was observed in injured animals in 

all brain levels examined in a stereotyped multifocal distribution consistent with 

biomechanical forces as previously described in detail [44] and discussed below.

Experimental concussion results in acute BBB disruption

Multifocal FBG extravasation into the brain parenchyma was observed at 6–72 h following a 

single, rapid rotation in swine as perivascular FBG immunoreactivity in both white and gray 

matter in injured animals, but was observed minimally in shams (Fig. 1a–i). Further, detailed 

mapping of FBG extravasation in multiple whole-brain coronal sections revealed BBB 

leakage in a stereotyped, multifocal distribution consistent with a biomechanical etiology. 

Specifically, structural interfaces within the brain were preferentially affected, with the 

evidence of BBB disruption typically observed at gray–white interfaces, in periventricular 
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regions (Figs. 1d–f, 2c, e) and at subpial zones within the cortex, often towards the dorsal 

surface anteriorly (Figs. 1h, 2c). Occasionally, inflection points in the brain architecture 

were also affected, including cortical sulci and the lateral aspect of the parahippocampal 

cortex where it meets the inferior temporal gyrus (Fig. 1f), further supporting a 

biomechanical etiology. In all cases, the hippocampus was affected bilaterally, with 

prominent FBG extravasation at the interface between the hilus/molecular layer and the 

dentate gyrus and the vessels of the hippocampal fissure (Fig. 1g). Finally, FBG 

extravasation was observed in the thalamus at all time points (Fig. 2d).

Quantification of the mean percentage area of FBG immunoreactivity in each hemisphere 

across 5 coronal sections was minimal in sham animals [left hemisphere: 0.18 ± 0.01%; 

right hemisphere: 0.29 ± 0.05%]. In comparison with sham, the mean percentage area of 

FBG immunoreactivity was increased in both hemispheres at 6 h [left hemisphere: 4.39 

± 2.30% (p = 0.03), right hemisphere 3.87 ± 1.88% (p = 0.03)], and at 48 h post-concussion 

[left hemisphere: 1.16 ± 0.46% (p = 0.02), right hemisphere 1.31 ± 0.05% (p = 0.0002)]. By 

72 h post-concussion, FBG immunoreactivity remained increased versus shams in the left 

hemisphere [2.30 ± 1.32% (p = 0.04)], with a trend to increased staining in the right 

hemisphere [2.50 ± 2.27% (p = 0.16)] (Fig. 1i). No difference in the extent of FBG 

immunoreactivity was observed between TBI groups at 6, 48 and 72 h survival (p > 0.05). 

Interrater reliability between observers was excellent with an ICC of 0.98.

Notably, while the extent of FBG immunoreactivity did not differ between hemispheres (p > 

0.05), a stereotyped hemispheric asymmetry was observed at all three time points and was 

highly consistent among animals. Specifically, in rostral brain regions (Fig. 2a, c), the left 

hemisphere (leading hemisphere during coronal rotation) displayed an increased density of 

extravasated FBG closer to the midline, including extensive leakage at the dorsolateral 

aspect of the lateral ventricle. This was in contrast to the right (non-leading) hemisphere, 

where more extensive extravasation was observed closer to the brain surface, including the 

digitate white matter and gray matter of the insular cortex and primary somatosensory cortex 

(Fig. 2c).

Immunoglobulin (IgG) IHC revealed perivascular extravasation consistent in both extent and 

distribution with that of FBG in swine (Fig. S1). Additional double immunofluorescent 

labeling in a subset of sections confirmed co-localization of FBG and IgG, consistent with 

evidence of BBB disruption leading to global leakage of large, blood-borne proteins, versus 

being a FBG specific phenomenon (Fig. S1).

Regional overlap of BBB disruption and axonal pathology following experimental 
concussion

The spatial relationship between axonal pathology and BBB disruption in swine was 

revealed by examining whole-brain sections at 48–72 h post-concussion at the level of the 

head of caudate nucleus (Level b; Fig. 3) labeled with both APP and FBG (multiple 

immunoenzymatic labeling) and compared to sham animals.

Distinct axonal profiles with an injured morphology, including terminal swellings, beading 

and intact fusiform profiles were present in a stereotypical, multifocal distribution affecting 
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the subcortical and periventricular white matter and midline structures of all injured animals, 

consistent with previous reports [44] (Fig. 3b). Notably, mapping of APP positive injured 

axons revealed overlap between regions of high-density axonal pathology and extensive 

FBG extravasation in white matter (Fig. 3a, b). However, although frequent, this overlap 

between APP positive axonal profiles and regions of FBG extravasation in white matter was 

not absolute (Fig. 3c, e–k). Specifically, though 62.8% (SD 1.8%) and 60.6% (SD 9.3%) of 

APP positive axons at 48 and 72 h, respectively, fell within a region of co-incident FBG 

extravasation, the remaining axons did not (Fig. 3c). There was no difference between time 

points (p = 0.8). FBG extravasation was also frequently observed in the absence of any 

axonal pathology in both white and gray matter (Fig. 3g, k).

Cellular uptake of FBG occurs acutely following experimental concussion

Single labeling IHC revealed that, following concussion in swine, in addition to 

parenchymal FBG immunoreactivity, staining was also present in cellular structures within 

regions of high extravasation (Fig. 4). Morphologically, these cells appeared consistent with 

astrocytes and neurons, confirmed in subsequent double and triple immunohistochemical 

labeling with GFAP (Fig. 4f–i) and MAP2 (Fig. 4j, k). In contrast, only very occasional 

microglia (IBA-1 positive) were observed co-labeled with FBG, typically closely adjacent to 

the vessel (Fig. 4h, i). High resolution confocal microscopy demonstrated this FBG 

immunoreactivity was within neurons and astrocytes, rather than confined to the cell surface, 

indicating internalization of the protein. All studies were repeated with IgG, which showed a 

similar pattern of neuronal and astrocytic uptake (Fig. S1).

APP and FBG IHC following human severe TBI: comparisons with experimental 
concussion

Following severe human TBI, APP IHC revealed axonal pathology in all TBI cases in a 

pattern and distribution consistent with DAI, with axonal profiles observed individually 

scattered or in small clusters, indistinguishable to that observed following concussion in 

swine [42, 43]. However, in contrast with the concussion model, other cases displayed 

additional superimposed, widespread waves of axonal APP immunoreactivity in keeping 

with axonal pathology as a result of the vascular complications of raised intracranial 

pressure [23, 25, 32, 35, 42, 69]. This compared to human controls where just 1 of 7 cases 

displayed axonal pathology in a pattern and distribution in keeping with hypoxic/ ischemic 

injury, likely indicative of an agonal event near the time of death [23, 25, 32, 35, 42, 69].

Moderate or extensive FBG immunostaining was observed in all but one TBI case, 

consistent with previous reports (Fig. 5) [34, 52]. This compared to controls in which there 

was less extensive FBG immunoreactivity, with just 1 case showing extensive, 1 moderate 

and 5 minimal extravasation (Fig. 5a), again in keeping with previous descriptions [34, 52]. 

Despite the more widespread and extensive FBG immunoreactivity in human severe TBI, 

consistent with observations in swine studies, there was increased FBG immunoreactivity 

adjacent to subpial vessels in the superficial layers of the cortex (Fig. 5c, d), as well as at the 

interface between cortical gray and underlying white matter (Fig. 5e).
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Furthermore, both neuronal and glial uptake of FBG was also observed in TBI and control 

cases (Fig. 5e–g), typically in regions with high parenchymal FBG extravasation. The extent 

of this cellular uptake was frequently extensive and widespread in human TBI cases, with 

immunoreactive astrocytes often present at the cortical surface (Fig. 5g).

Discussion

Using a swine model of concussion delivering pure head rotational acceleration and based 

on the kinematics of human concussion, we found evidence of multifocal BBB disruption 

shortly after injury. Extravasation of serum proteins was identified in a distribution that 

coincided with brain regions previously predicted to undergo greatest tissue deformation 

during injury. While this included overlap with areas of axonal pathology in the white 

matter, BBB disruption was also found independent of axonal injury throughout the gray 

matter. Notably, extravasated serum proteins were observed within astrocytes and neurons in 

proximity to regions of BBB disruption shortly after injury, suggesting rapid uptake by these 

cells. These data indicate that acute dysfunction of the neurovascular unit may be a common 

pathological feature of concussion.

While a wide range of pathologies have been characterized in human tissue studies from 

patients exposed to moderate or severe TBI [30], the rarity of post-mortem examination 

following concussion has meant that current understanding of the pathophysiology of the 

injury is based largely on indirect and non-invasive studies in vivo. Moreover, although there 

are multiple rodent models of ‘mild’ TBI, there is debate regarding their fidelity to replicate 

the biomechanics and pathophysiology of human concussion. In particular, the relatively 

large and gyrencephalic human brain endures substantial mass effects during head rotation 

associated with concussion, reflected in high strains as it is dynamically deformed. 

Therefore, through extensive characterization, we established a scaling approach to create 

similar mechanical loading of brain tissue between human TBI and the swine model. The 

parameters are based on Holbourn’s Scaling Equation [63], where the interaction of brain 

mass with the level of head rotational acceleration is taken into account [19, 39]. 

Specifically, for a swine brain of 90–100 g, the rotational acceleration forces must be 

increased eightfold or more to create the same tissue deformation that a human brain 

undergoes during concussion [41, 43]. This model recapitulates many aspects of the acute 

clinical presentation of mTBI, including loss of consciousness dependent on the angle of 

head rotation, as well as DAI in the absence of overt neuropathologies. However, there are 

anatomic differences between humans and swine, including skull architecture, that may 

affect the distribution of subtle neuropathologies and potentially outcome. In addition, the 

strain of swine used does not have nearly as prominent a falx cerebri as do humans. Since 

this structure may serve as a physical barrier during brain deformation, axonal pathology is 

much more prominent in midline structures in human TBI compared with the swine model.

Consistent with previous studies [44], here we identified DAI following a single rotational 

event in swine in a pattern and distribution consistent with mechanical deformation, and in 

the absence of any hemorrhage, brain swelling or ischemia. These findings support emerging 

clinical, neuroimaging and blood biomarker data indicating that DAI is a key pathological 

substrate of concussion in humans due to mechanical vulnerability of white matter axons 
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[12–14, 21, 43, 55, 59, 62, 80, 94, 95]. Nonetheless, these findings do not preclude the 

possibility that other brain structures also suffer mechanical damage within and beyond 

white matter.

Using this swine model, our current data also demonstrate that the brain vasculature is 

vulnerable to damage as a consequence of the mechanical forces of concussion. While the 

specific ultrastructural nature of this mechanical damage to vessels remains to be 

determined, the resulting abrupt disruption of BBB integrity is clearly evidenced by 

multifocal pathological extravasation of large serum proteins, FBG and IgG. Of note, FBG 

immunoreactivity was observed at all time points post-injury and was most marked with a 

survival duration of 6 h. Interestingly, a biphasic course of BBB dysfunction has previously 

been described in the acute phase following models of severe TBI in rodents [9, 10]. While 

our data trends towards a relative decrease in FBG immunoreactivity at 48 versus 72 h, a 

greater number of animals would be required to determine the time course of acute BBB 

opening. In addition, as the presence of serum proteins in brain parenchyma is determined 

both by their rate of extravasation and clearance, this is unlikely to be a precise measure of 

BBB opening at any given time-point. Future studies utilizing the terminal intravascular 

administration of exogenous labels, e.g. Evans blue, will be important to accurately 

determine the acute temporal time course of BBB leakage in this model.

The duration of BBB permeability in the swine model beyond the acute phase will also be 

important to explore. Indeed, considering that FBG extravasation has been observed in post-

mortem human brain months and even years after a single moderate-severe TBI [34], a 

milder form of persisting BBB may also occur in some cases of concussion. While the 

resulting downstream pathological effects of BBB dysfunction remain to be determined in 

single concussion, BBB permeability along with perivascular neuropathologies including 

neurofibrillary and glial tauopathy have been reported in individuals with CTE following 

exposure to repetitive concussion [24, 56, 83].

In the present study, FBG and IgG immunoreactivity was observed in a stereotypical, 

multifocal distribution, typically surrounding vessels of variable size. Extravasated serum 

proteins were frequently present surrounding vessels at anatomical boundaries with 

juxtaposing material properties, including the gray–white interface, subpial cortex, and 

adjacent to the dentate gyrus and lateral ventricles. Moreover, while there was no difference 

in the overall extent of BBB leakage between hemispheres, stereotyped hemispheric 

differences in the distribution of extravasated serum proteins suggests BBB disruption 

occurs in a distribution consistent with a mechanical etiology.

To determine the clinical relevance of the findings in the swine concussion model, parallel 

examinations were performed on post-mortem tissue following human severe TBI. As 

expected, due to the differences in injury severity, far more extensive and widespread FBG 

extravasation was found in the human TBI cases than was observed in swine concussion. 

Nonetheless, there were notably similarities in the pattern of BBB disruption between the 

two species. As found in swine concussion, a multifocal distribution of FBG extravasation 

was apparent, with subpial vessels frequently affected and occasional focal disruptions at the 

gray–white boundary were also observed in the human cases. As with the findings in swine, 
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the location of these disruptions suggests a mechanical origin with a predominance at 

anatomic boundaries. Unlike the swine concussion model, however, there were additional 

changes typical of severe TBI in humans, including evolving hemorrhagic lesions, ischemic 

change and brain swelling. Moreover, human control brains also displayed some degree of 

serum protein extravasation, likely induced by protracted agonal or prolonged ischemic 

events around the time of death.

Following concussion in swine, within the white matter, there was considerable gross 

regional overlap of abnormal FBG immunoreactivity and axonal profiles accumulating APP. 

Specifically, approximately 60% of axons with an injured morphology were observed in 

regions with coincident FBG extravasation. This suggests that the overlapping pattern of 

both pathologies in white matter might reflect regions of higher mechanical injury during 

rotational acceleration. Since physical and computational models of swine TBI have shown 

both gray and white matter undergo a heterogeneous pattern of high stresses and strains, 

future studies could examine whether BBB disruption following in vivo injury could be used 

as a pathological marker for loading distribution throughout the entire brain.

The overlap of different neuropathologies agrees with biomechanics literature showing the 

mechanical threshold for compromise of the BBB overlaps with thresholds for axonal injury 

[8, 79]. In general, the direction of impact, acceleration profile, and relative size and shape 

of the brain all contribute to areas of maximum deformation within the brain during ‘real 

world’ impacts that cause concussion [22]. Thus, identification of BBB disruption may serve 

as a type of “injury strain gauge”, showing regions that endured the highest deformations in 

both the gray and white matter.

With regards to white matter, at the local scale, tissue deformations can parallel the 

trajectory of axons within a region, maximally stretching these axons. In this scenario, 

axonal injury may appear in the absence of BBB compromise. In comparison, if tissue 

stretch appears perpendicular to primary axonal pathways, axons are not stretched 

significantly and BBB compromise can occur prior to any evidence of axonal damage. 

Finally, when the local tissue deformation is enough to exceed both the local tolerance of the 

microvasculature and the tolerance of axons aligned with the deformation field, one would 

see the co-localization of BBB and axonal injury. We observed each of these three injury 

phenotypes in our swine concussion model. The process of accounting for the microanatomy 

of the brain in predicting injury risk is now appearing in computational models of the brain 

to predict concussion injury risk [29, 40, 64], and our observations reinforce the need to 

accurately align the biomechanical features of injury with the anatomy. In the future, we 

expect these computational efforts will evolve to include estimates of damage to the brain 

network structure [47], which would significantly enhance our ability to connect the initial 

injury to the consequences of the injury over time.

Intriguingly, in addition to leaking into the brain parenchyma, serum proteins were also 

found to be taken up by local cells. Perivascular clusters of both neurons and astrocytes 

immunoreactive for FBG and IgG were observed following both concussion in swine and 

severe TBI in humans. Similar cellular uptake of serum proteins, including FBG, has been 

described in other disorders where BBB dysfunction features, including cerebrovascular 
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disease [15, 90], epilepsy [53], multiple sclerosis [7, 45, 48], cerebral malaria [16], acquired 

immunodeficiency syndrome [65], HIV encephalitis [20] and Alzheimer’s disease [72, 90, 

92]. Surprisingly, there was minimal uptake of serum proteins by microglia when compared 

with astrocytes and neurons, which may reflect cell-specific uptake for the clearance of 

serum proteins after TBI. Notably, astrocytes have previously been demonstrated to 

selectively clear FBG in vitro [38]. Since neurons staining for FBG following concussion 

appeared morphologically normal at the time points examined in the present study, further 

temporal studies would be required to examine if this uptake has pathological consequences.

The specific mechanisms by which the extravasation of serum proteins in TBI are potentially 

neurotoxic remain to be explored. However, in addition to its role in hemostasis, FBG is 

increasingly recognized for its additional and diverse contribution to CNS pathology via 

mediation of inflammatory processes [4, 5], astrocyte activation [75] autoimmunity and 

demyelination [6, 73]. Moreover, FBG has been demonstrated to inhibit CNS neurite 

outgrowth in vitro and in vivo [74], and thus may be a potential barrier to axonal recovery in 

concussion, where white matter injury is a primary pathology [12–14, 21, 55, 59, 62, 80, 94, 

95]. Interestingly, exposure of the brain to serum proteins has been speculated as a potential 

mechanism driving age-related tau astrogliopathy (ARTAG), a pathological accumulation of 

abnormally phosphorylated tau in astrocytes that occurs in a subpial, subependymal and 

perivascular distribution [46]. However, the presence of ARTAG following TBI has yet to be 

characterized.

In addition to the exploration of potential downstream neuropathological consequences of 

serum protein extravasation, it will be critical to examine the pathophysiological 

mechanisms that drive BBB dysfunction in concussion. This may include the immediate 

mechanical failure of the barrier, potentially caused by direct disruption of endothelial tight-

junctions. In contrast, downstream pathophysiological alterations to the BBB, including 

altered transcellular transport, will also be important to examine since it has been 

demonstrated following an impact model of TBI in cats [67]. Interestingly, the matrix 

metalloproteases (MMPs), including MMP-9 in particular, are increasingly recognized as 

mediators of BBB permeability following TBI and their role in concussion should also be 

determined [50, 60, 78, 96].

Overall, we demonstrate that acute BBB disruption is a primary consequence of head 

rotational acceleration in a swine model of concussion. This observation could help direct 

non-invasive diagnosis of concussion, such as advanced neuroimaging techniques to identify 

the extent and distribution of BBB leakage [91]. In addition, characterizing the nature and 

time course of BBB permeability may have direct relevance for the development of serum 

biomarkers for concussion [44, 81], and for the timing of delivery of potential 

pharmacological interventions.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Experimental concussion induces multifocal BBB leakage. a An absence of FBG 

immunoreactivity in the subcortical white matter in a sham animal. Immunoreactivity 

specific for FBG; b surrounding a vessel in the parenchyma of the thalamus 6 h following a 

single experimental concussion; c in the subcortical white matter at the level of the head of 

the caudate nucleus 48 h following experimental concussion; d at the tip of the lateral 

ventricle preferentially in left hemisphere (leading hemisphere in rotation) 6 h following 

experimental concussion; e at the ventricular interface of the corpus callosum 72 h following 

experimental concussion; f in the periventricular white matter and depth of the sulci at the 

lateral aspect of the parahippocampal cortex where it meets the inferior temporal gyrus, 6 h 

post-experimental concussion; g adjacent to the dentate gyrus and vessels of the 
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hippocampal fissure 6 h following experimental concussion; and h at the cortical surface in 

the frontal lobe 72 h post-experimental concussion. i Graph showing the percentage area of 

FBG immunoreactivity for the whole coronal brain hemispheres for each animal in all 5 

levels combined. Scale bars a, c 200 μm, b, e 300 μm, d 3 mm, f 2 mm, g 400 μm, h 500 μm
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Fig. 2. 
BBB leakage occurs in a biomechanical distribution after experimental concussion. a MRI 

image with vertical dotted lines indicating the levels of brain examined in the coronal plane. 

b–f Whole brain coronal maps showing FBG extravasation annotated manually following 

high resolution digital scanning in each of the 5 levels denoted in a. Scale bars 5 mm
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Fig. 3. 
BBB leakage has limited regional overlap with axonal pathology after experimental 

concussion. a Whole section map of annotated FBG immunoreactivity at 48 h post-

experimental concussion. b Adjacent section to a showing APP positive axonal pathology in 

a distribution that overlaps with FBG leakage in the white matter. c Graph showing the 

percentage of APP positive profiles identified in regions where coincident FBG 

extravasation is observed via multiple chromagen staining at 48 and 72 h post-experimental 

concussion. d FBG (blue) confined to the vascular compartment in a sham with no 

extravasation into the brain parenchyma. No axonal pathology is observed (brown). e, f, h 
Regions of extensive FBG extravasation (blue) and axonal pathology (brown) in the e deep 

cortical white matter 48 h following experimental concussion, f gray–white interface of the 
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frontal cortex at 72 h post-experimental concussion and h the periventricular region of the 

leading hemisphere at 48 h post-experimental concussion. i Scattered axonal pathology both 

within and beyond regions of extravasated FBG in the white matter at 48 h postexperimental 

concussion. j APP immunoreactive axonal pathology in the perivascular region without FBG 

extravasation. g, k Overt FBG extravasation without axonal pathology in the gray–white 

interface (g) and deep white matter (k) at 48 h post-experimental concussion. Scale bars a, b 
6 mm, d–k 100 μm
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Fig. 4. 
Astrocytes and neurons internalize blood-borne proteins after experimental concussion. a 
FBG immunoreactive cells with a glial morphology at the depth of the sulcus within the 

inferior temporal gyrus 48 h post-experimental concussion. b Higher magnification of box in 

a. c Cells with neuronal morphology and immunoreactive for FBG in the caudate nucleus 72 

h post-experimental concussion. d Normal vessels without FBG (red) extravasation. FBG is 

confined to the vessel lumen without co-localization with astrocytes (GFAP; green) or 

microglia (IBA-1; purple). e Higher magnification of box in d. f Vessels in premotor cortex 

showing marked FBG (red) extravasation 72 h post-experimental concussion. Co-

localization with astrocytes (GFAP; green) is observed. Only minimal co-localization with 

microglia (IBA-1; purple) was observed in cells immediately adjacent to the vessel. g Higher 

magnification of region in f. h Penetrating surface vessels of parietal cortex showing marked 

FBG (red) extravasation 72 h post-experimental concussion with co-localization with 

astrocytes (GFAP; green). i Higher magnification of box in h. j Cells in the frontal cortex 

with neuronal morphology that are negative for IBA-1 (purple) and GFAP (green), yet co-

localize with FBG (red). k Neuronal cell-type was confirmed with evidence of co-

localization of MAP-2 (green) cells and FBG (red). Scale bars a, c 100 μm, b, e 25 μm, d, f–
k 50 μm
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Fig. 5. 
FBG extravasation after acute severe TBI in humans. a An absence of FBG 

immunoreactivity out with the vascular compartment in a 20-year-old male control that died 

following a sudden cardiac event secondary to hypertrophic cardiomyopathy. b Marked FBG 

extravasation in a perivascular distribution at the gray–white interface in the superior frontal 

gyri in a 20-year-old male 48 h following TBI caused by assault. c FBG extravasation and 

associated glial uptake at the depth of sulci in a 58-year-old male that died 6 h following TBI 

caused by assault. d A penetrating vessel at the cortical surface of the cingulate gyrus 

surrounded by extravasated FBG (same case as b). e Extensive neuronal uptake of FBG in 

the superior frontal gyrus in a 58-year-old male 6 h after TBI caused by a fall. f High 

magnification of a neuron immunoreactive for FBG in an 18-year-old male 10 h after a fall. 

g An astrocyte immunoreactive for FBG with process extending towards a vessel at the 

surface of the cingulate cortex in a 56-year-old female 24 h following TBI caused by a road 

traffic accident. Scale bars a–e, g 100 μm, f 50 μm
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