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ABSTRACT: PD, PD with dementia, and dementia with
Lewy bodies are clinical syndromes characterized by the
neuropathological accumulation of alpha-synuclein in the
CNS that represent a clinicopathological spectrum known
as Lewy body disorders. These clinical entities havemarked
heterogeneity ofmotor and nonmotor symptomswith highly
variable disease progression. The biological basis for this
clinical heterogeneity remains poorly understood. Previous
attempts to subtype patients within the spectrum of Lewy
body disorders have centered on clinical features, but con-
verging evidence from studies of neuropathology and ante
mortem biomarkers, including CSF, neuroimaging, and
genetic studies, suggest that Alzheimer’s disease beta-
amyloid and tau copathology strongly influence clinical het-
erogeneity and prognosis in Lewy body disorders. Here, we
review previous clinical biomarker and autopsy studies of
Lewy body disorders and propose that Alzheimer’s disease

copathology is one of several likely pathological contribu-
tors to clinical heterogeneity of Lewy body disorders, and
that such pathology can be assessed in vivo. Future work
integrating harmonized assessments and genetics in PD,
PD with dementia, and dementia with Lewy bodies patients
followed to autopsywill be critical to further refine the classi-
fication of Lewy body disorders into biologically distinct
endophenotypes. This approach will help facilitate clinical
trial design for both symptomatic and disease-modifying
therapies to target more homogenous subsets of Lewy
body disorders patients with similar prognosis and underly-
ing biology. © 2019 International Parkinson and Movement
Disorder Society
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Parkinson’s disease (PD) is a common neurological
disorder, affecting over 10 million people worldwide,1

and is marked by highly variable extrapyramidal motor

features of tremor, rigidity, and bradykinesia, but also
nonmotor features of depression, autonomic dysfunc-
tion, and cognitive impairment. The reasons for this
heterogeneity are unknown. Cognitive impairment and
dementia are particularly strong predictors of poor
prognosis.2 Cognitive impairment is present in approxi-
mately 25% of patients in early stages of the disease
and predicts faster progression to dementia,3,4 which is
likely inevitable but occurs at widely variable times
after the onset of motor parkinsonism.5,6 Early efforts
to create clinical subgroups were based on the observa-
tion in large cohort studies and clinical trials that dis-
ease progression was more benign in some patients
with a particular set of motor symptoms than in others.
Subsequent work has integrated new genetic markers,
imaging characteristics, and cerebrospinal fluid (CSF)
analytes in both hypothesis-driven studies and data-
driven cluster analyses. However, robust, reproducible,
clinical subgroups have been difficult to identify.
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The diagnostic neuropathologic hallmark of PD is
misfolded alpha-synuclein (SYN) aggregates that form
intraneuronal Lewy bodies (LB) and Lewy neurites (LN;
collectively, Lewy pathology [LP]). The introduction of
immunohistochemical staining for SYN increased the sen-
sitivity to detect these aggregates in PD and also revealed
SYN accumulations in the neocortex of many patients pre-
viously diagnosed with Alzheimer’s disease (AD).7,8 The
neuropathological terms to describe this mixed pathology
varied in early literature, but many of these patients
showed clinical features distinct from amnestic AD. The
clinicopathological syndrome of dementia with Lewy bod-
ies (DLB)9-11 was defined by consensus criteria in 1996,
with core features of motor parkinsonism, visual halluci-
nations, fluctuations of alertness, and dementia. Criteria
have been subsequently revised to include biomarkers to
improve the sensitivity of clinical diagnosis.12,13 Histori-
cally, the onset of the dementia should either predate or
occur within 1 year of the onset of the motor parkinson-
ism, the so-called 1-year rule, in order for a diagnosis of
DLB to be considered. However, because the clinical fea-
tures of DLB and PDwith dementia (PDD) are similar13,14

and the two entities share genetic risk factors,15-17 prodro-
mal features,18-20 and exhibit similar neuropathological
features at autopsy,9,21-23 the concept of a distinct separa-
tion between these overlapping conditions has been chal-
lenged by many investigators, who regard PD, PDD, and
DLB as a single disease, LBD, whose clinical features are
spread across a spectrum.9,23,24

Whereas SYN is the hallmark pathology of LBD, tau
and beta-amyloid (Aβ) copathology is common (overall
~50% of all LBD have a secondary neuropathological
diagnosis of medium- or high-level AD in most large
autopsy series; see below).21,24-28 Several converging
lines of evidence indicate that AD copathology not only
contributes to decreased survival and a shortened
motor-dementia interval, but also influences specific
motor and cognitive features.21,25,29-32 Whereas in vivo
SYN biomarkers are still being developed, methods to
detect Aβ and tau in living LBD patients are improv-
ing.33-37 Here, we will review previous and ongoing
efforts to connect LBD patient subtypes with ante mor-
tem biomarkers and underlying neuropathology to
improve understanding of the biological basis of LBD’s
clinical heterogeneity.

The Role of Alpha-Synuclein in LBD
Pathogenesis

In 1997, a mutation in the SNCA gene coding for SYN
was discovered in a Greek/Italian family with autosomal
dominantly inherited PD. Later that year, SYN was
reported to be the major constituent of LB and LN found
in both PD and DLB.7,38 Landmark work by Braak and
colleagues in 2003 proposed a conserved pattern of spread

of LP in the brains of patients with PD, starting in the cau-
dal brainstem and progressing rostrally through the upper
brainstem, limbic regions, and finally the neocortex.39

Other staging systems have emerged,12,40 and additional
patterns of LP have been added to account for the frequent
finding of LP in the amygdala and limbic regions of
patients with AD.41-43 Current hypotheses regarding why
particular regions of the brain are affected selectively
include the spread of pathology along functionally con-
nected networks44 and selective vulnerability of long
unmyelinated axons.45 LP in DLB is thought to ascend the
neuroaxis in a similar caudorostral pattern,12,46 although
the prominence of early dementiawith limited or nomotor
parkinsonism—rare patients without dopamine trans-
porter deficits on single-photon emission computed
tomography imaging47 and rare autopsy cases with iso-
lated neocortical SYN pathology without brainstem or
limbic SYN48—suggests an alternative pattern of spread
in some cases.
The observations of SYN Lewy-like pathology in

transplanted mesencephalic grafts in PD patients49 sup-
port a “prion-like” mechanism of spread of misfolded
SYN aggregates as central to disease pathogenesis. More-
over, recent experiments in cell and animal models use
preformed SYN fibrils50,51 or brain homogenates from
human LBD subjects52,53 to induce spread of SYN pathol-
ogy that results in neuron loss and dysfunction as well as
motor phenotypes which further supports this theory.
Most recently, separate SYN species have been identified
that may have different “strain-like” properties, with cer-
tain preparations being additionally capable of cross-
seeding either tau54-56 or Aβ57 and others leading toMSA-
type pathologies.58-60 However, the core prion feature of
infectivity has not clearly been demonstrated for LBD or
AD in humans.61

Many autopsy studies have shown a correlation of LP
with motor disease severity in PD.43,62 The majority of
studies have found that PDD is associated with either lim-
bic (transitional)13 or neocortical (diffuse) stage LB pathol-
ogy63-67 with higher cortical LP density being observed
than in nondemented PD.2,64-70 Neocortical LP is also
associated with the onset of visual hallucinations,70 and
hippocampal SYN pathology is associated with memory
deficits even after controlling for age and co-occurring
pathologies.71 The current neuropathological assessment
of DLB recognizes that cases with pure synucleinopathy
without AD copathology are the most likely to exhibit
core DLB features or visual hallucinations and fluctua-
tions.13 Although LP is observed often at autopsy in
asymptomatic individuals (incidental Lewy body disease;
ILBD),29,72,73 it is frequently less severe than the SYN
pathology observed in DLB and PD74,75 and is associated
with mild degrees of nigral neuron loss and tyrosine
hydroxylase–positive neuron loss, suggesting that ILBD
may be a preclinical state before motor symptoms of an
LBD emerge.75-78 Some studies have not observed strong
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correlations between LP and neuronal loss in the SN75,79

or other brain regions.26 These data could suggest that LP
is an epiphenomenon rather than central to disease patho-
genesis80; however, there are several alternative explana-
tions. It is suggested that oligomeric SYN species, which
predate LB formation, may be more toxic than more
mature species81,82 and may therefore result in cell death
apart from visible LP post mortem. Synaptic dysfunction
from these early SYN species may lead to neuronal dys-
function rather than frank cell death.83,84 Furthermore, as
opposed to the extracellular pathology of tau neurofibril-
lary ghost tangles left behind from degenerated neurons,
LP is cleared after cell death, leaving minimal “ghost”
pathology detectable in highly degenerated regions.85

Last, different methods and different antibodies used to
detect SYN inclusions may show different degrees of
pathology.86,87 Although SYN pathology is diagnostic for
LBD, further understanding of the biological mechanisms
of SYN aggregation and associated neurodegeneration are
needed, and it is possible that cell-autonomous factors may
also influence the spread of pathogenic SYN to selectively
vulnerable neuronswith resultant neurodegeneration.88

AD Neuropathology

Aβ plaques and tau-positive neurofibrillary tangle
pathology sufficient for a secondary neuropathological
diagnosis of AD occurs in ~10% of PD, ~35% of PDD,
and ~70% of DLB patients (overall ~50% of all
LBD).21,24-28 In some studies, higher degrees of Aβ plaques
have been identified in neocortical, limbic, and striatal
region inDLB than PDD,89,90 and striatal Aβ plaques have
also been shown to be more severe in PDD than nonde-
mented PD patients.91 Although these group-wise differ-
ences exist between PDD and DLB, there are no
neuropathological findings that reliably distinguish these
clinical phenotypes on an individual patient level.21,22 Tau
neurofibrillary tangle pathology is most often shown to
have a similar distribution as observed in typical AD using
conventional neuropathological staging methods,92 but
more recent digital assessments suggest relative sparing of
medial temporal lobe93 and greater relative distribution in
temporal neocortex in LBD versus AD.94

Several investigations of the neuropathology of LBD
have shown that coexistent AD pathology may influ-
ence the onset of dementia in PD.21,25,65,66,69,95,96 In
patients with PDD, AD copathology is associated with
older age, decreased motor-dementia interval, and
decreased overall survival.21,25,29,97,98 Two of these
studies reported that tau and Aβ pathology had a
greater impact on the age of dementia onset than SYN
alone.32,96 Studies differ on whether tau21 or Aβ99 is
the most significant contributor to dementia and short-
ened survival.100 AD copathology has also been associ-
ated with a greater burden of neocortical deposition of

SYN.21,65,69,94,96,99,101,102 These disparate conclusions
may be, in part, attributed to the high correlation
between these pathologies21,94 and relatively sparse
sampling and qualitative ratings used on traditional
autopsy studies.
Co-occurring tau and Aβ pathology may affect spe-

cific clinical features in LBD as well overall prognosis.
In DLB, several studies have reported that increasing
levels of tau and Aβ are associated with a decreased
likelihood of visual hallucinations or attentional fluctu-
ations.30,31,103 These observations have resulted in
alterations to the neuropathological assessment of DLB,
whereby higher stages of tau are associated with a
lower likelihood of patients exhibiting a “classic” DLB
phenotype.13 Other studies have documented alter-
ations in domain-specific cognitive function in LBD
patients with co-occurring tau and Aβ pathology at
autopsy.94,104,105 In PD, patients with tau and Aβ
copathology are more likely to have a clinical pheno-
type of postural instability with little or no tremor (the
“postural-instability-gait dysfunction” or PIGD pheno-
type).25,32,106 Whereas co-occurring tau and Aβ pathol-
ogy is often associated with worse prognosis in LBD,
several studies also describe small groups of patients
with “pure” synucleinopathy at autopsy with a fulmi-
nant course suggesting other potential biological
sources of clinical heterogeneity.95,103,107

The studies listed above have relied on traditional neuro-
pathological assessments which use semiquantitative, sub-
jective ordinal measurements and severity scales that tend
to emphasize topography rather than density of pathol-
ogy.12,108 Digital histological measurements, using image
analysis techniques, offer a potential improvement over
traditional methods by generating objective, finely grained,
continuous measurements of pathological burden, which,
in contrast to the traditional methodology, may improve
the potential to make clinicopathological correlations and
relate pathological burden to ante mortem biomarker
assessments.However, morework is needed to standardize
methodology across labs.93,94,100,109 In our recent work
using digital histology, we found that co-occurring tau and
Aβ pathology was related to a higher burden of neocortical
SYN in patients with LBD. The degree of tau pathology
was several fold less in LBD compared to age-matched AD
patients even when comparing subjects with similar Braak
tau stages.We also found that tau in LBD occurred in a dif-
ferent distribution than in AD,withmore relative temporal
neocortical pathology. Last, we also found that regional
tau burden was consistently related to worse cognitive per-
formance both on measures of global cognition and
domain-specific testing.94 Another recent digital study of
LBD found relative sparing of tau pathology in the hippo-
campus of LBD patients with AD copathology, compared
to patients with clinical AD and mixed AD and SYN
pathology.93 Finally, others find similar correlation of
mixed SYN, Tau, and Aβ pathology, with strong influence

Movement Disorders, 2019 3

N E U R O P A T H O L O G I C A L I N F L U E N C E S I N L B D



of neocortical SYN on overall survival in DLB.100

Together, these studies highlight the ability of digital
methods to enhance clinicopathological correlations and
suggest that the distribution of tau in LBD may diverge
fromAD and influence clinical phenotype.

Subtyping by Clinical Features
Tremor-Dominant Versus Postural Instability

Gait Disorder
Early attempts to parse the clinical heterogeneity of

PD centered on two motor subtypes: (1) predominant
rest tremor (tremor dominant; TD) with relatively less
bradykinesia, rigidity, and postural instability and a
slower rate of progression compared with (2) PIGD
with significant gait and postural dysfunction and asso-
ciated with older age of onset, more rapid progression
and early onset of cognitive impairment.110-115 The
notion of motor-based subtypes was first promoted in
H & Y’s 1967 description of the clinical features of
PD116 and has been recapitulated in other publications
since.117,118 Commonly used motor scales may be used
to assign designations.110,119,120 Nonmotor symptoms,
such as depression and autonomic dysfunction,121,122

have been reported with greater frequency and severity
in PIGD patients than in TD patients.123,124 In addi-
tion, patients with a higher burden of PIGD signs have
decreased survival when matched to other patients with
similar age and disease duration.125,126 Patients with
lower CSF Aβ and higher CSF tau (i.e., findings indica-
tive of underlying AD copathology) are more likely to
have a PIGD phenotype.127,128 One of these studies
was a partial analysis of PD patients with new-onset
disease recruited to the PPMI (Parkinson Progression
Markers Initiative), a project sponsored by the Michael
J. Fox Foundation, but a subsequent analysis failed to
reproduce the earlier result.34 Amyloid PET imaging
has shown a greater likelihood of increased cortical
tracer retention in PIGD versus TD.129 There are mini-
mal data directly comparing motor symptoms of DLB
patients with and without co-occurring AD pathology,
but the majority of reported autopsy cases suggest less
prominent rest tremor or a greater likelihood of PIGD
phenotypes in DLB than PD,112,130 which aligns with
the knowledge that DLB overall is more likely to har-
bor coexisting AD pathology than nondemented PD
cases.
There are problems with TD and PIGD distinctions.

Many patients in large cohorts have clinical features of
both phenotypes and therefore fall into an “intermedi-
ate” category of uncertain significance,124,131 and many
patients will change designations, typically from TD to
PIGD, over the course of their illness.112,131,132 The
designations are particularly unstable early in the dis-
ease course.131

Age of Onset
Age of onset is also a well-recognized predictor of pro-

gression. The Sydney Multi-Center Study followed 136
patients from onset of PD symptoms over the course of
20 years and has shown that a younger age of onset was
associated with a longer course and also that an older age
of onset was associated with decreased survival and
greater likelihood of tau and Aβ copathology.5,95 These
observations are not surprising, given that age is a risk fac-
tor for AD pathology, even in asymptomatic elderly indi-
viduals. Most subsequent studies have found that an older
age of onset is associated with a greater burden of motor
disease at diagnosis with a faster decline in motor scores,
shorter motor-dementia interval, and a greater burden of
PIGD scores.110,133-137 It is notable that the prognostic
value of age of onset appears to be independent from dis-
ease duration137 and from postmortem severity of AD
pathology.21

Data-Driven Patient Subtypes using
Cluster Analyses

More recently, many have used a group of statistical
data-driven methods known as cluster analyses to eluci-
date potential subtypes in different LBD populations.
This type of approach is attractive given the data-driven
approach rather than hypothesis-driven analyses. It is
important to note that the clustering solutions and
patient subtypes derived from these studies are, by defi-
nition, found in the specific population studied and are
not always generalizable to other populations. Further-
more, the clustering solutions are derived from the vari-
ables that are collected a particular study. A review of
the literature published after the year 2000, using
PubMed and Medline using search terms “cluster anal-
ysis,” “Parkinson’s disease,” and “Dementia with Lewy
Bodies,” yielded 11 studies: 10 in PD and one in
DLB.135,138-147

Many of the above studies have recapitulated an older
age and rapid progression phenotype135,138,143,144,146,148

and some have shown groups with benign courses and
tremor-predominant phenotypes similar to previous stud-
ies.138,146 Others have found that groups with more
PIGD-like phenotype are also marked by more severe
motor deficits at onset, more nonmotor symptoms, and
higher mortality.125,139,140,142 In studies where such vari-
ables were included, nonmotor symptoms often proved to
be stronger determinants of cluster membership than
motor features.139,141 Many of these studies have not
attempted validation in other cohorts, and when it has
been attempted, results have been disappoint-
ing.140,141,145,146 One of the above cluster analysis studies
incorporated CSF tau and Aβ levels into a post-hoc analy-
sis and found that patients with the “diffuse-malignant”
phenotype who had worse motor scores, higher PIGD
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subscores, higher autonomic dysfunction, worse cogni-
tion, and faster disease progression had lower CSF Aβ and
higher tau than the other subtypes.141 The details of the
methods and results of these studies are detailed in Table 1.
These purely clinical studies have not had pathological
validation, except one recent publication which performed
a retrospective cluster analysis and found no difference in
SYN or co-occurring tau and beta Aβ pathology among
their subgroups.149

In Vivo Biomarker Associations with
Patient Subtypes

CSF
Cross-sectional studies of CSF Aβ1-42, total tau and

181 phospho-tau in LBD showwide ranges of values, with
some patients having overlapping with healthy controls to
others displaying pathological levels similar to AD.24,150

In PD, most large studies find that CSF Aβ1-42 is lower
than controls at diagnosis and is associated with worse
memory impairment in more advanced disease.4,151-158

Low levels of CSF Aβ1-42 have also been linked to faster
motor progression.156 In DLB, AD-like CSF values are
more likely than in PDD159 and lower Aβ1-42 and higher
tau levels were associated with a greater likelihood of
admission to a long-term care facility and higher mortal-
ity.160 Total tau and 181 phospho-tau are reported to
be either equivalent or lower than healthy controls in
nondemented PD patients,34,128,151,152 but higher in
PDD.153,161,162 An analysis of the DATATOP (Deprenyl
And Tocopherol Antioxidant Therapy of Parkinson’s)
trial found that higher levels of CSF tau may be related to
faster motor progression.163 Whereas postmortem valida-
tion studies in LBD are rare, CSFmeasurements of tau and
Aβ1-42 relate to the severity of AD pathology in
LBD,35,164 as previously observed in AD.165-167 Interest-
ingly, low CSF Aβ1-42 may also relate to neocortical dis-
tribution of SYN pathology.35 Further work is needed to
elucidate the relationship between ante mortem AD CSF
biomarkers and underlying neuropathology and to con-
tinue to collect longitudinal data on CSF measurements in
well-characterized cohorts.168 Nevertheless, CSF tau and
Aβ biomarkers appear to have some prognostic value in
LBD, but further data are needed to clarify this association
and longitudinal progression of these markers over
time.163,169

In vivo SYNdetection remains a critical need to advance
LBD research. Developing a reliable assay for CSF SYN
assay has proven difficult, in part because CSF SYN is pre-
sent in relatively low amounts and leakage of peripheral
blood into CSF during lumbar puncture can contaminate
measurements.170 Most, but not all, studies have found
CSF total SYN to be lower in PD compared to healthy con-
trols.128,157,171-174 Higher levels of CSF total SYN were

associated with faster cognitive decline in the DATATOP
study.156,175 A separate study reported lower levels of CSF
SYN in patients with nontremor phenotypes.34 Assays for
phosphorylated and oligomeric CSF SYN, both likely
more specific for pathological SYN, have shown eleva-
tions in patients with PD in some studies, but replication
between centers has proven difficult.153,175-178 Moreover,
in AD, there are elevated levels of SYN that may represent
leakage from damaged synapses, suggesting that underly-
ing mixed AD copathology could alter total SYN levels in
LBD.150More recently, real-time quaking induced conver-
sion methods, which take CSF samples containing patho-
genic SYN and incubate them in substrate containing
nonaggregated SYN monomers and allow templating to
happen in repeated cycles, allow for signal amplification
of CSF SYN that may aid in demonstrating increases in
PD and DLB patients over healthy controls.179,180 Two
drawbacks to this technique are the occasional false nega-
tives and the fact that it is largely a binary measure given
that detection is only currently possible after several ampli-
fication cycles.180,181 Nonetheless, this is an emerging
approach that utilizes the pathological aggregation of
SYN from patient samples that may be beneficial to detect
the presence of underlying synucleinopathy in vivo. The
interaction of CSF SYN, tau, and Aβ in LBD continues to
be investigated, but dynamic changes over the course of
the disease are expected.

PET
Amyloid PET imaging studies show a gradient in the

proportions of cases with increased retention across the
LBD spectrum with generally low retention observed
in PD to higher uptake in PDD and DLB.24,182-186 11C-
Pittsburgh compound B may be more specific for neuritic
amyloid plaques, rather than diffuse plaques, and has been
described to have greater neocortical retention in DLB
than PDD.187 The degree of amyloid tracer retention in
patients with LBD is generally less than what is observed
in AD.188,189 Some studies have demonstrated that amy-
loid PET positivity is related to the presence and severity
of cognitive deficits in PD184,186,190,191; however, this find-
ing is not universal.192 Several tau tracers have been
developed, including 18F- flortaucipir (formerly AV1451),
18F-THK523, 18F-5105, 18F-FDDNP, and 11C-PBB3,193

some of which have been studied in LBD.37,194,195 18F-
flortaucipir uptake is elevated in some LBD patients com-
pared to controls, often in patients who also have evidence
of amyloidosis on PET imaging, and the degree of uptake
is typically less thanwhat is observed inAD.37,194,195 Simi-
lar to rates of co-occurring tau and Aβ neuropathology,
patients with a DLB phenotype are more likely to have
elevated 18F-flortaucipir uptake than nondemented
PD.195,196 Patterns of uptake in LBD have differed from
AD by concentrating in posterior temporo-parieto-
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occipital regions37,194 with unique areas of uptake in
the primary motor and sensory cortices,195 as opposed
to temporal and frontal lobes as observed in AD. These
data show many similarities to our recently published
postmortem work using digital histological methods.94

Increased 18F-flortaucipir uptake in LBD is associated
with cognitive deficits across PD, PDD, and DLB.37,196

Postmortem validation studies of 18F-flortaucipir in
LBD are needed to confirm these in vivo observations
and further clarify the regional distribution and cogni-
tive phenotypes associated with tau pathology in LBD.
Nonetheless, these divergent patterns of uptake in LBD
compared with AD could potentially be interpreted as
consistent with the aforementioned model data
suggesting cross-seeding of SYN, tau, and Aβ by specific
alpha-synuclein strains.54-57 Moreover, the intermedi-
ate degree of 18F-flortaupcipir uptake in LBD between
healthy controls and AD is consistent with our observa-
tions using digital histological measurements of tau
pathology in LBD and AD.94

Genetic Influences

Monogenic causes of LBD, including mutations, dupli-
cations, and triplications of the SNCA gene as well as
mutations in PARKIN, PINK1,DJ-1, and others, are rare
in PD and DLB.197-203 More common genetic risk factors
for the development of LBD include theMAPTH1 haplo-
type,206-209 apolipoprotein epsilon ε4 alleles (APOE
ε4),210-215 and the glucocerebrocidase gene (GBA)17,199

and leucine-rich repeat kinease-2 (LRRK2).216,217 MAPT
H1 haplotypes have been associated with greater risk of
occurrence of PD and DLB218-220 and dementia in

PD221,222 and may be associated with higher degree of
SYN pathology at autopsy.223,224 Certain studies have not
found an association of H1 haplotypes with DLB,225 and,
additionally, one other study has documented decreased
in AD copathology in DLB associated with H1 haplo-
types.226 APOE ε4 alleles in LBD have been associated
with higher likelihood of both tau and Aβ copathology
and also higher degrees of SYN,16,209,227-229 a higher risk
of developing dementia,208,230,231 and altered cognitive
performance on specific tests.208 GBA mutations have
been associated with earlier-onset PD and a more rapidly
progressive clinical course with a 6-fold higher risk of
dementia.17,201,232-234 Autopsy data show relatively
greater neocortical synucleinopathy burdens in patients
withGBAmutations than sporadic PDwith variable rates
of AD copathology.235-237 LRRK2 mutations are not
associated with a more aggressive clinical course of PD,
although one study of young patients showed an associa-
tion with the PIGD phenotypes.186,187 Postmortem studies
of brains from patients with LRRK2 mutations have
found mixed SYN, tau, and transactive response DNA
binding protein 43 kDa (TDP-43) neuropathol-
ogies.216,238 In some patients with LRRK2mutations and
also in patients with other, more rare, monogenic causes
of PD, SYN pathology can be absent even in the setting of
severe clinical phenotypes.238 Genome-wide association
studies (GWAS) comparing statistical frequencies of sin-
gle-nucleotide polymorphisms (SNPs) between disease
and control populations are an important mechanism for
discovery of novel common risk variants. Two recent
GWAS in DLB that had pathological validation in a
subsection of their subjects confirmed the strong effect of
APOE ε4 alleles,GBA, and SNCA genes in the occurrence
of DLB,209,225 similar to other studies in PD.218,220 SNPs

FIG. 1. Current criteria separate lewy body disorders (LBDs) into Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) on the basis of the
“1-year rule” (dashed line). Within LBD, neuropathology ranges from pure synucleinopathy (SYN only: blue) to those with clinically significant AD
copathology (SYN + AD: red). Emerging biomarker data suggest that AD copathology may be accurately detected in living patients, and we illustrate
here a potential strategy to stratify clinical cohorts of LBD by the AD biomarker profiles (dashed lines) to improve clinical trials for SYN and Tau and/or
Aβ directed therapies during life for LBD patients (shaded clinical phenotype boxes represent relative frequency of pure SYN or mixed AD copathology
in large autopsy series in PD, Parkinson’s disease dementia (PDD), and DLB). PD-MCI, PD with mild cognitive impairment.
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in SNCA have been linked to increased SNCA gene
expression in sporadic PD.204 Interestingly, SNPs in the
SNCA gene that associated with PD in previous studies
were different than the ones implicated in the occurrence
of DLB.218,225 Thus, there are both shared and distinct
risk SNPs implicated in DLB compared to PD and AD,
likely contributing to the clinicopathological spectrum of
LBD. These GWAS studies have also highlighted potential
roles for other genes coding for proteins related to antigen
presentation (HLA-DPA1/DPB1 and DRB5),218,220,239

tyrosine kinases (GAK),220,240 cell adhesion molecules
(CNTN1),225 lysosomal degradation (SCARB2,
TMEM175),209,241 synuclein processing (SPTBN1),239

vesicular transport (SYT11),220,240 and many others in the
potential pathogenesis of LBD, although their role in dis-
ease progression and neuropathology remains to be seen.
Finally, emerging studies highlight SNP associations with
cognitive and motor features in sporadic PD,205,208

suggesting that common genetic variation may also influ-
ence clinical heterogeneity in LBD.

Conclusion

LBDs comprise a complex spectrum of clinicopatho-
logical entities with marked clinical heterogeneity and a
common neuropathology of misfolded alpha-synuclein
aggregating into Lewy bodies, Lewy neurites, and vari-
able amounts of tau and Aβ pathology. Here, we review
multiple converging lines of evidence from CSF mea-
surements, PET imaging, and neuropathological studies
emphasize the importance of co-occurring tau and Aβ
pathology affecting the clinical features and course of
LBD (Table 2). Although lower in overall burden com-
pared to AD, tau in particular appears to have a strong
influence on dementia and survival. We are optimistic
that detailed neuropathological studies of SYN, Aβ,
and tau, using increasingly sophisticated techniques,
will continue to improve the understanding of how the
mixed neuropathology in LBDs can be accurately
predicted by precisely measured ante mortem bio-
markers compared with the current strictly clinical sys-
tem of classification. Whereas the neuropathology in
LBD is likely a spectrum, postmortem work reviewed
here suggest those patients with moderate- to high-level
AD neuropathological change at death have a worse
prognosis and altered clinical phenotypes. Such patients
can be currently identified using emerging biomarkers,
and we propose that AD biomarker profiles be included
in research categorization of LBD. This proposed for-
mulation has the potential to put the assignment of
patients participating in well-designed therapeutic or
disease-modifying clinical trials of the future on firmer
molecular biological footing. Indeed, stratifying classi-
cal LBD clinical phenotypes (PD, PD-MCI, PDD, and
DLB) by the presence of absence of in vivo biomarkers

of AD pathology, in a manner similar to those proposed
in AD dementia,242 will improve prognostication and
potentially improve statistical power of clinical trials for
both symptomatic and disease-modifying therapies by
providingmore homogenous patient populations (Fig. 1).
Moreover, based on growing experimental and human
pathology data suggesting synergistic association of AD
and SYN pathology, it is possible LBD patients with
mixed pathology may benefit from AD-directed therapies
as they are developed.
Although neuropathology observed in LBD postmor-

tem represents a spectrum of both SYN and AD pathol-
ogy, the factors that influence the occurrence of these
pathologies is unclear. Age, genetic influences, or poten-
tially different strains of pathogenic alpha-synuclein
may partially account for divergence in LBD patients
who develop significant AD copathology and possibly
the rate of progression of these pathologies. Factors
that result in varying expression of these pathologies
are also poorly understood. Longitudinal, prospective
studies of LBD patients, using multimodal biomarkers
followed to autopsy, will aid in beginning to answer
these questions. Other copathologies, including cerebro-
vascular disease and TDP-43, are likely to influence
clinical features and progression in LBD as well243;
however, they require further study. The majority of
existing LBD studies focus on either PD/PDD or DLB
separately, based partly on separate referral patterns to
movement disorders specialists and memory clinics
respectively. We suggest that harmonized assessments
of PD, PDD, and DLB cohorts followed to autopsy are
urgently needed to capture the full clinicopathological
spectrum of LBD and further elucidate the underlying
biological substrates for clinical heterogeneity.
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