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I M M U N O L O G Y

Immunogenic cryptic peptides dominate the antigenic 
landscape of ovarian cancer
Remya Raja1†, Kiran K. Mangalaparthi2†, Anil K. Madugundu2, Erik Jessen3, Latha Pathangey1, 
Paul Magtibay4, Kristina Butler4,5, Elizabeth Christie6,7,  
Akhilesh Pandey2,8,9,10, Marion Curtis1,5,11,12*

Increased infiltration of CD3+ and CD8+ T cells into ovarian cancer (OC) is linked to better prognosis, but the spe-
cific antigens involved are unclear. Recent reports suggest that HLA class I can present peptides from noncoding 
genomic regions, known as noncanonical or cryptic peptides, but their immunogenicity is underexplored. To ad-
dress this, we used immunopeptidomic analysis and RNA sequencing on five metastatic OC samples, which identi-
fied 311 cryptic peptides (40 to 83 per patient). Despite comprising less than 1% of total peptides, cryptic peptides 
from noncoding transcripts emerged as the predominant antigen class when compared to the other major classes 
of known tumor-specific and tumor-associated antigens in OC samples. Notably, nearly 70% of the prioritized 
cryptic peptides elicited T cell activation, as evidenced by increased 4-1BB and IFN-γ expression in autologous 
CD8+ T cells. This study reveals noncoding cryptic peptides as an important class of immunogenic antigens in OC.

INTRODUCTION
High-grade serous ovarian cancer (OC) is a lethal gynecological 
malignancy with a 5-year survival rate of <50% (1). Targeted im-
munotherapies and immune checkpoint inhibitors have proven 
highly successful in multiple cancer types (2). However, patients 
with OC have limited benefit from these approaches, although sev-
eral studies have documented the presence of tumor-reactive T cells 
in OC and shown this to be a positive prognostic factor (3, 4). Pre-
sentation of peptides by human leukocyte antigen (HLA) on the 
cancer cell surface is an essential step in T cell recognition and plays 
a vital role in the immunosurveillance of cancers (5). Therefore, the 
discovery of tumor-associated or tumor-specific antigens that are 
recognized by T cells will be crucial for the success of immunother-
apeutic approaches in OC.

Mass spectrometry (MS)–based immunopeptidomics is now 
the only high-throughput approach available to identify and char-
acterize naturally presented HLA class I or class II peptides within 
the tumor microenvironment (6, 7). Tumor antigen discovery pipe-
lines have mainly focused on the identification of neoantigens de-
rived from patient-specific somatic mutations (8, 9). The presence 
of neoantigens within tumors robustly correlates with response to 
immunotherapy (10). However, the identification of tumor-reactive 
neoantigens has been challenging (11–13), particularly in OC.

Over the past decade, several studies that used genomic-based 
approaches combined with immunopeptidomics have reported 
the presence of nonmutated peptides derived from regions of the 

genome that have been conventionally considered noncoding 
(14–22). These noncanonical or cryptic peptides originating from 
outside the coding exon boundaries are gaining attention as po-
tential tumor-specific antigens owing to their nonmutated status 
and recurrence among patients with cancer. While there has been 
substantial interest in discovering cryptic tumor antigens, only 
one study has reported cryptic peptides in OC, leaving the cryptic 
antigenic landscape in OC largely unexplored (16). Moreover, the 
immunogenicity of these cryptic peptides is still under investiga-
tion, and as a result, their therapeutic potential remains to be 
fully elucidated.

In this study, we leveraged a proteogenomic approach to identify 
cryptic HLA class I peptides derived from coding and noncoding 
regions of the genome from five metastatic ovarian tumors. In con-
trast to previous studies on gynecologic cancer types, which only 
identified a maximum of 16 cryptic peptides from noncoding re-
gions in 23 ovarian tumors (16) or 21 from four unclassified gyne-
cologic tumors (22), our study has discovered 311 cryptic peptides 
from noncoding regions averaging more than 60 per patient. This 
study vastly expands the known landscape of cryptic HLA class I 
antigens in OC. Cryptic peptides were the dominant class of anti-
gens identified. Using patient-matched T cells, we evaluated the an-
tigenicity of 38 cryptic peptides from noncoding transcripts that 
were selectively up-regulated in tumor tissue compared to adjacent 
normal tissue. We found that 70% of the candidate cryptic antigens 
could trigger peptide-specific T cell responses. Our study demon-
strates that cryptic peptides from noncoding transcripts constitute a 
dominant class of immunogenic antigens in OC.

RESULTS
Identification of HLA class I peptides in patients with 
metastatic OC
To characterize the antigenic landscape of metastatic OC, we per-
formed high-throughput tandem mass spectrometry (MS/MS) analysis 
to identify class I major histocompatibility complex (MHC)–presented 
peptides from five patient samples. The clinical characteristics of the 
patients and HLA information are provided in table S1. In parallel, 
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we performed RNA sequencing (RNA-seq) analysis of the tumor 
specimens, which was used to generate a personalized three-frame 
translated custom protein database for each patient’s tumors. We 
also called variants from the RNA-seq data, which were then inte-
grated into the respective custom databases. Liquid chromatogra-
phy (LC)–MS/MS raw data were searched against the personalized 
proteomic databases to identify various antigen classes, namely the 
mutated, canonical, or cryptic antigens (Fig. 1A). We first evaluated 
the number of peptides that were 8 to 12 amino acids long, which is the 
typical peptide length for HLA class I binders (Fig. 1B). Using the 
deconvolution algorithm MHCMotifDecon 1.0, we found that, as 
expected, nearly all class I peptides identified from each sample 
were predicted to bind HLA alleles that matched with the patient’s 
HLA type (Fig. 1C). In addition, the experimentally derived HLA 
motifs matched the known sequence motifs for the alleles (Fig. 1D 
and fig. S1). Overall, these results confirm the robustness of our im-
munopeptidomic pipeline in identifying peptides that bind class I 
HLA molecules.

Proteogenomics enables the identification of HLA class I 
cryptic peptides in OC
The identification of neoantigens is of considerable interest owing to 
their tumor-specific nature and ability to generate targeted antitu-
mor immune responses. In RNA-seq analysis, we identified a range 
of 192 to 2056 nonsynonymous mutations among the five patient 
samples. However, we did not detect any neoantigen-derived pep-
tides in immunopeptidome analysis (fig. S2A).

Given that noncanonical or cryptic peptides constitute a sub-
stantial proportion of the HLA class I ligandome  (23), we next 
aimed to characterize the cryptic peptidome in OC. On the basis of 
their genomic origin, we have broadly categorized these peptides 
into two groups: those derived from regions that contain coding se-
quences and those originating from noncoding regions of the ge-
nome (Fig. 2A). The peptides identified by MS analysis were assigned 
Gencode biotypes for identifying cryptic peptides and were further 
stratified by their genomic region. We identified ~6000 to 14,000 
peptides per patient, of which cryptic peptides constituted 4.4 to 
7.1% of the total (Fig. 2B). A summary of the number of peptides 
identified per sample is provided in Fig. 2C. The list of cryptic pep-
tides identified by LC-MS/MS is provided in table S2.

Cryptic peptides originating from coding regions such as the 5′ 
untranslated region (5′UTR) formed the dominant cryptic peptide 
category, with ~300 to 800 identified per patient, consistent with pre-
vious studies (24, 25). However, very few 5′UTR peptides, among the 
many that have been identified to date, have demonstrable immuno-
genic potential (17, 22). As a result, we focused on peptides originat-
ing from noncoding transcripts as a potential source of antigens. 
Overall, these peptides accounted for less than 1% of the total immu-
nopeptidome in our dataset, ranging from 40 to 83 per patient (Fig. 
2D) for a total of 311 cryptic peptides from 256 unique noncoding 
RNAs. We then determined whether cryptic peptides displayed any 
altered physical properties compared to canonical peptides by com-
paring the hydrophobicity scores of cryptic and canonical peptides 
against MS retention time. Cryptic peptides displayed no altered dis-
tribution in retention time and hydrophobicity when compared with 
canonical peptides, suggesting no potential bias in their identification 
relative to canonical peptides (Fig. 2E). Next, we categorized the pep-
tides based on the type of noncoding transcript, and we observed that 
a large proportion of cryptic peptides originated from pseudogenes, 

followed by long noncoding RNA (lncRNA) and antisense RNA (Fig. 
2F). Overall, these findings are consistent with previously published 
proteogenomic studies (26, 27).

Cryptic peptides from noncoding transcripts are the major 
antigen class presented in OC
To determine whether cryptic peptides can be a reliable source for 
tumor antigens, we compared the number of known tumor-associated 
antigens (TAAs) and cancer-testis (CT) antigens identified in our da-
taset to the number of antigens from noncoding transcripts. To assess 
this, we overlaid the canonical peptidome over the cancer antigen 
atlas (caAtlas), which is a comprehensive resource generated from 
publicly available immunopeptidomic datasets from nine cancer 
types, including OC and 707 benign tissues (28). Despite being less 
than 1% of the immunopeptidome, the cryptic antigens from non-
coding transcripts outnumbered all other TAAs or CT antigens de-
tected in our canonical peptidome dataset (Fig. 3A). This observation 
was consistent in all five samples tested in this study. Up to 8% of the 
peptides or 20% of the noncoding RNAs detected in our dataset were 
shared among at least two patients at the peptide and gene levels, re-
spectively (Fig. 3B). Next, we wanted to determine whether these 
cryptic antigens were expressed across different tumor types. So, we 
leveraged some of the largest publicly available immunopeptidomic 
datasets (22, 24) and found that, at the gene level, 45 of 258 cryptic 
antigens from noncoding transcripts were detected in other cancers, 
including melanoma (Fig. 3C). The overlap at the peptide level (9 of 
311) was reduced compared to the gene level, as expected, consider-
ing the diversity of HLA expression across the samples (Fig. 3C). 
Similarly, we detected an overlap (31 of 256) when the data were com-
pared against the consolidated open reading frames detected from 
eight ribosomal sequencing (Ribo-seq) datasets (29), indicating per-
sistent translation from these regions across tumor types (Fig. 3C). A 
representative example of a peptide from a noncoding RNA identi-
fied in the present study and its corresponding position within the 
translated Riboseq sequence is shown (Fig. 3D). Rank prediction of 
the translated protein sequence using NetMHCpan 4.1 shows that the 
identified peptide is a strong HLA class I binder (Fig. 3E). Together, 
our results indicate that cryptic antigens from noncoding transcripts 
could serve as a rich source for immunotherapeutic targets.

In silico prioritization of candidate cryptic peptides for 
functional validation
Cryptic antigens have been reported in multiple cancers previously 
(16, 17, 25). To prioritize peptides for functional validation, we used 
multiple filtering strategies, as described below, to identify peptides 
that have a high likelihood of being immunogenic (Fig. 4A). We first 
used NetMHCpan 4.1 to predict the binding affinity of the cryptic 
peptides. We found that only a subset of the peptides showed high 
affinity, defined as <500 nM binding strength, to their cognate HLA 
(Fig. 4B and fig. S2B). Therefore, to identify peptides with higher 
likelihood of MHC presentation, predictions were performed using 
NetMHCpan 4.1-EL, which is trained in eluted ligand data from 
MS. Peptides were first prioritized using a 4% elution (EL) rank 
threshold, which was followed by the removal of peptides with gene 
expression levels less than 0.9 Transcripts per million (TPM) based 
on our RNA-seq data. Next, we retained peptides from transcripts 
that were more abundant in the tumor tissue compared to the adja-
cent normal tissue. We next evaluated whether any of our identified 
peptides were present in the HLA Ligand Atlas (30), an extensive 
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Fig. 1. Identification of HLA class I ligandome in ovarian cancer (OC). (A) Schematic overview of the immunopeptidomics approach and proteogenomic pipeline used 
to identify HLA class I canonical and noncanonical peptides. Class I HLA-bound peptides were purified following immunoprecipitation from tumor lysates and analyzed 
in the mass spectrometer. The LC-MS/MS data were searched using a 3% false discovery rate (FDR) threshold against a custom three-frame translated database generated 
from the RNA-seq data. Mayo Analysis Pipeline for RNA sequencing (MAP-RSeq) was employed for variant calling. Created with BioRender.com. (B) Length distribution of 
identified HLA class I peptides. Peptides up to 21 amino acids (aa) in length are shown. (C) Peptide deconvolution from sample T1 using NetMHCDecon is depicted. Only 
8– to 12–amino acid peptides were used for this analysis. (D) Experimentally derived HLA motifs from Sample T1 using NetMHCDecon. The number of peptides predicted 
to be presented by each HLA is indicated.
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Fig. 2. Detection of cryptic HLA class I peptides from noncoding transcripts and their characteristics. (A) A schematic illustrating the classification of canonical and 
cryptic peptides. Cryptic peptides are further categorized on the basis of their site of origin in the genome into peptides from coding and noncoding transcripts. Created 
with BioRender.com. (B) Cryptic peptide composition in the total immunopeptidome is shown. (C) The canonical and cryptic peptides identified from each patient sample 
in this study are enumerated in the table. (D) The percentage of peptides contributing to canonical and cryptic categories (coding or noncoding transcript) per patient is 
shown. (E) The retention time of eluted peptides (x axis) was plotted against predicted hydrophobicity (y axis). Gray dots represent canonical peptides, and cryptic pep-
tides from noncoding transcripts are shown as black dots. The regression line and R2 are shown, P value < 0.0001. (F) Peptides were categorized on the basis of the type 
of noncoding transcripts, and their relative contribution to cryptic ligandome is shown. lncRNA, long noncoding RNA.
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Fig. 3. Cryptic antigens from noncoding transcripts are a reliable source of tumor antigens in OC. (A) Total number of peptides identified from each antigen category. 
Peptides from known OC TAAs and CT antigens were identified using publicly available caAtlas. (B) The number of peptides uniquely identified in one patient and those shared 
among two or three patients is depicted as a bar graph. The tumor antigen representation at the transcript level that is uniquely presented or shared among patients is shown. 
(C) Overlap with publicly available immunopeptidomic (left) and Riboseq (right) datasets are shown. (D) A representative example of peptide identified in this dataset with 
reported Riboseq evidence. (E) The rank prediction of all possible peptides binding to HLA-B*07:02 from the translated CTBP1-DT protein. The percentage rank prediction was 
performed using NetMHCpan4.1. Peptides are considered strong binders (% rank < 0.5) and weak binders (% rank = 0.5 to 2). The peptide derived from CTBP1-DT identified by 
immunopeptidomics in this study is indicated.
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Fig. 4. Identification of candidate noncoding cryptic tumor antigens. (A) The prioritization strategy used to derive candidate target antigen is depicted. The peptides 
were filtered on the basis of % rank EL followed by exclusion of peptides from low-abundance transcripts in the tumor. The possibility of presentation of peptides from 
normal tissue was ruled out using immunopeptidomic data from healthy and benign tissues (HLA Ligand Atlas). The peptides that had shared presentations or that came 
from shared noncoding transcripts were prioritized for further studies. (B) The binding affinity of peptides predicted to bind to the cognate HLA alleles as per NetMHC-
pan4.1 for the patient sample T1 is shown. The strong and weak affinity thresholds are indicated using dashed lines at 500 and 5000 nM. (C) Heatmap representing the 
RNA level expression of the 43 prioritized noncoding cryptic antigens in the OC tumor-normal data. For generating the heatmap, gene-level TPM for each of the noncod-
ing RNAs was converted to a z score to normalize the dynamic range of expression differences between transcripts. The heatmap was generated using Morpheus (https://
software.broadinstitute.org/morpheus). (D) Preferential binding of noncoding peptides to their HLA alleles. Peptides that are predicted to be strong binders (% rank < 0.5) 
by NetMHCpan 4.1 were considered.
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database of previously identified HLA class I and II peptides pre-
sented across 29 healthy tissues. However, none of the peptides were 
identified in the HLA Ligand Atlas, suggesting a lack of presentation 
in normal tissues. Last, we evaluated the spectral quality, shared pre-
sentation, and those that were identified with at least two peptide 
spectrum matches (PSMs) to prioritize peptides. Following these 
prioritization steps, 9 to 10 peptides were selected from each tumor 
sample for further analysis. The relative RNA expression of each pa-
tient’s prioritized antigens in the tumor and adjacent normal tissue 
is shown (Fig. 4C). A select number of the prioritized cryptic pep-
tides were additionally validated by comparing the experimental 
peptide spectra with the corresponding synthetic peptide spectra 
(data file S1). Representative mirror plots showing experimental 
and synthetic spectra of cryptic peptides are provided (fig. S3).

Previous studies have reported a preferential binding bias for 
cryptic peptides toward HLA-A*03:01 and HLA-A*11:01 (14). To 
understand whether there was HLA class I binding bias within our 
noncoding cryptic dataset, we assessed the cryptic peptides within 
the top 2% rank affinities predicted by NetMHCpan 4.1. Unlike pre-
viously published reports, we observed a distinct binding preference 
toward HLA-B*07:02 rather than HLA-A*03:01 probably due to a 
smaller sample size representing HLA-A*03:01 (one sample) or 
HLA-A*11:01, which did not have any representation (Fig. 4D).

Next, we assessed the mRNA expression of the shortlisted non-
coding transcripts from this study across 53 normal tissues of the 
human body using the Genotype-Tissue Expression (GTEx) data-
base to determine whether they are expressed in normal tissues 
(Fig. 5A). Among the 44 noncoding transcripts, 3 transcripts were 
not detected in the GTEx data, and the remaining 41 noncoding 
transcripts were found to have low to moderate expression across 
peripheral tissues. Among them, many transcripts (11 of 41) were 
found to have strong expression in tissues with low HLA expression, 
like the brain, nerve, and testis. Another subset of the transcripts (10 
of 41) showed reproductive tissue-restricted expression patterns 
and showed modest expression in the ovary, vagina, and cervix.

In an effort to understand the temporal dynamics of the cryptic 
antigen expression in the context of disease progression, we used a 
previously published RNA-seq dataset from 92 patients with high-
grade serous OC (79 primary tumors, 4 primary ascites, 24 recur-
rent ascites, and 6 relapse tumors) and 7 fallopian tube samples 
(31). Of the 36 prioritized genes, 12 of them were present across 
multiple stages of disease in the dataset. Among the 12, TMCC1-
AS1, DHRS4-AS1, PAXIP1-AS2, and SNHG7 showed significant 
differences across different stages relative to the primary tumor 
(Fig. 5B and fig. S4). Overall, we successfully identified 9 to 10 
cryptic peptides per patient that were reliably detected by immuno-
peptidomics, exhibited favorable MHC binding affinity, and had 
tumor-specific expression.

Cryptic antigen-specific T cell responses are found in 
patients with OC
We next assessed the potential of the cryptic peptides from noncod-
ing transcripts to induce T cell reactivity following in vitro stimula-
tion of autologous T cells from either ascites or peripheral blood 
mononuclear cells (PBMCs; Fig. 6A and table S3). After restimula-
tion with peptides, TNF receptor superfamily member 9 (4-1BB), 
tumor necrosis factor–α (TNFα), and interferon-γ (IFN-γ) expres-
sions were used to measure the antigen-specific CD8 T cell respons-
es by flow cytometry (Fig. 6, B and C, and figs. S5 and S6). Our 

results showed that approximately 70% of the cryptic peptides could 
induce an increase in intracellular expression of IFN-γ, and more 
than 50% of the peptides could also induce TNFα expression in au-
tologous CD8 T cells, demonstrating the potential immunogenicity 
of these peptides (Fig. 6C). Notably, the peptides that increased 
IFN-γ expression also had a concomitant increase in 4-1BB expres-
sion in CD8 T cells, confirming the antigen-specific activation. In 
addition, we assessed whether any of the peptides evaluated could 
trigger CD4 T cell activation. Only a fraction, 8 of 38 peptides in-
duced CD4 T cell activation as measured by increased expression of 
4-1BB as well as IFN-γ and TNFα. The corresponding flow plots, 
along with bar graphs showing the percentage of CD8 T cells ex-
pressing IFN-γ, TNFα, and 4-1BB relative to negative peptides, are 
provided (fig. S7). We plotted the % rank binding affinity (BA) and 
% rank EL against RNA expression (TPM) to understand the cor-
relation between RNA level expression and the likelihood of presen-
tation on T cell activation. Our results revealed that peptides arising 
from transcripts that have higher abundance (>4 TPM) showed an 
increased likelihood of inducing T cell responses (fig. S8, A and B).

Next, we generated HLA-A02:01 MHC class I tetramers for a 
subset of the HLA-A02:01–restricted peptides that exhibited im-
mune reactivity in samples T1 and T3, to determine whether pa-
tients had endogenous T cell clones reactive to cryptic peptides. The 
proportion of tetramer-positive CD8 cells was evaluated for each 
peptide individually, and samples showing frequencies more than 
threefold relative to negative peptide-loaded tetramers were consid-
ered positive (Fig. 6D). We detected tetramer positivity in five of six 
peptides tested, confirming the presence of T cell clones reactive to 
cryptic peptides in patient samples (Fig. 6D).

Having observed that cryptic peptides could elicit a T cell re-
sponse in an autologous culture system, we next evaluated whether 
these noncoding transcripts were associated with protective or 
spontaneous T cell responses within a large sample of patient tu-
mors. To accomplish this, we first created a score matrix for genes 
involved in inflammation, T cell invasion, and cytotoxicity. We then 
used a hierarchical-all-against-all clustering algorithm (HAllA) to 
correlate the expression of noncoding transcripts in The Cancer 
Genome Atlas (TCGA) against the T cell activation/infiltration ma-
trix (fig. S8C). We were able to carry out this analysis with 28 of 44 
transcripts, which were found to be expressed in the TCGA data. 
HAllA analysis revealed that noncoding transcripts such as XIST, 
MUC20-OT1, LINC02432, PAXIP1-AS2, SMG1P5, AC108010.1, 
and AL390728.4, which generated cytotoxic T lymphocyte respons-
es, showed a strong positive correlation (P value ≤ 0.05) with T cell 
cytotoxicity and invasion scores, suggesting a potential inflamma-
tory response in the tumor microenvironment. The list of genes in-
volved in inflammation and cytotoxicity in the TCGA data used for 
HAllA analysis is listed in table S4. Overall, these results suggest 
that the expression of noncoding transcripts may play a role in 
shaping the immune microenvironment in OC and could serve as 
promising therapeutic targets for immunotherapies in OC.

DISCUSSION
Identification of the antigenic landscape of tumors is crucial for the 
development of effective immunotherapies. The use of standard 
databases in conventional proteomic approaches precludes the 
identification of peptides with patient-specific alterations, such as 
mutations and alternate splice junction peptides, as the peptide 
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identification relies on the reference human protein database (14, 
32). Proteogenomics has been successfully used to obtain a more 
comprehensive overview of antigenic peptides presented in a sample 
that can be derived from both coding and noncoding regions of the 
genome (33–36). Previous studies have shown that translated products 
from noncoding regions of the genome are frequently presented by 

cancer cells and are observed across multiple tumor types accounting 
to 5 to 10% of the total immunopeptidome (7, 15, 18, 24, 25). In this 
study, our goal was to comprehensively characterize the tumor anti-
gens generated from noncoding regions of the genome in OC using 
multiomic approaches and determine their immunogenicity. Most 
current methods for discovering tumor antigens focus on identifying 

Fig. 5. Noncoding cryptic antigen expression in healthy tissues and various stages of OC progression. (A) The expression values of the 41 prioritized noncoding 
transcripts were compared across 53 normal biological tissues from the GTEx database of normal tissues. Four noncoding transcripts were not detected in the GTEx data. 
For heatmap generation, the TPM for each noncoding transcript was converted to a z score to normalize the dynamic range of expression differences between transcripts. 
(B) RNA expression profiles of four cryptic antigens showing significant variation across the fallopian tube, primary tumor/ascites, and recurrent ascites/relapsed tumors. 
A publicly available RNA-seq dataset from 113 samples (31), including 92 from patients with high-grade serous OC and 7 from normal fallopian tubes, was used to analyze 
cryptic antigen expression. Twelve antigens were represented in the dataset. Analysis of variance (ANOVA) and t test values comparing each sample type to the primary 
tumor are provided (*P < 0.05, **P < 0.01, and ****P < 0.0001). EBV, Epstein-Barr virus; ns, not significant.
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Fig. 6. Noncoding cryptic antigens activate peptide-specific T cell responses in patient-derived T cells. (A) A schematic of the workflow used for in vitro stimulation 
of patient T cells. Patient samples were stimulated with either a negative control peptide (10 μg/ml), the CEF peptide pool (5 μg/ml, positive control), or individual cryptic 
peptides (10 μg/ml) for 14 days, followed by another round of stimulation on day 15, and cells were expanded for another 8 days. On the day of the assay, the T cells were 
restimulated with peptide-pulsed autologous tumor cells and analyzed by flow cytometry. CEF is a pool of 32 class I peptides from cytomegalovirus, Epstein-Barr virus, 
and influenza virus. (B) Flow plots of intracellular IFN-γ expression in CD8 T cells from patient sample T2. (C) The percentage of CD8 T cells expressing either 4-1BB, TNFα, 
or IFN-γ following peptide stimulation in four OC samples. The colored dashed lines depict the baseline expression of 4-1BB, TNFα, and IFN-γ in negative peptide (neg 
pep)–stimulated T cells. (D) Frequencies of tetramer-positive CD8 T cell populations in samples T1 and T3 after a 19-day culture. HLA-A02:01–restricted peptides from HIV 
(gag) and cytomegalovirus (CMV; pp65) were used to generate tetramers that served as negative and positive controls, respectively. rhGM-CSF, recombinant human 
granulocyte-macrophage colony stimulating factor; LPS, lipopolysaccharide; PE, phycoerythrin.
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neoantigens. However, a previous study by Zhao et  al. (16) re-
vealed that neoantigens are rarely found in OC samples, making 
them unattractive targets in OC. These conclusions are consis-
tent with our findings, where despite the detection of many non-
synonymous mutations (192 to 2056 per patient), we did not 
identify any corresponding peptides carrying these neoepitopes. 
The low abundance of mutated class I peptides in advanced OCs 
could be due to a multitude of factors, including low mutation 
burden, immunoediting, or strong immune evasive programs 
like down-regulation of HLA expression (31, 37–39). These find-
ings underscore the need to look at alternate sources of target 
antigens for OC.

Using proteogenomics in this study, we identified approximately 
390 to 900 cryptic peptides per patient, averaging ~5% of the total 
immunopeptidome. Notably, we demonstrated that approximately 
70% of the prioritized cryptic peptides from noncoding transcripts 
induced 4-1BB expression and elicited an IFN-γ response, and 
around 50% of these also induced TNFα expression in autologous, 
patient-matched T cells using a scalable patient-derived T cell cul-
ture system. To date, only a select few studies have undertaken rig-
orous testing of cryptic peptides identified by immunopeptidomics 
to demonstrate the immunogenicity of these antigens conclusively 
(14, 17, 22, 39). In these limited studies, a mere fraction of the anti-
gens was discovered to be immunogenic. For example, Chong et al. 
(17), despite testing more than 700 cryptic peptides from melano-
ma, found only one peptide to be biologically active. The study at-
tributes this lack of recognition by autologous T cells to either 
prolonged culture of tumor-infiltrating lymphocytes (TILs) or loss 
of antigen expression in melanoma. In a recent study on OC, Hesnard 
et al. (40) found that 13 of 39 (33%) of the tested cryptic antigens 
were able to trigger a T cell response. This study focused on antigens 
identified in a previous study of 23 OC tumors that identified 91 
cryptic peptides (16). However, the research used T cells from HLA-
matched healthy donors to assess immunogenicity. This may have 
led to a suboptimal T cell response, as the cryptic antigen-specific T 
cells are likely present in limited quantities in peripheral blood from 
normal donors. Studies have shown that for effective tumor clear-
ance, factors such as peptide-MHC and TCR-peptide-MHC affini-
ties are of critical importance (41, 42). The lack of good prediction 
algorithms for TCR-peptide affinity has been a major roadblock for 
developing immunotherapies. Most studies use MHC-peptide pre-
diction algorithms like NetMHC that predict binding affinity be-
tween the HLA and peptide but do not take into account the 
likelihood of endogenous production of the peptide, which leads to 
high false-positive rates among the predicted epitopes (43). Our 
binding affinity prediction results showed that many of the discov-
ered cryptic peptides exhibited weak predicted affinity to HLA class 
I, which could be explained by the fact that cryptic peptides are 
thought to arise from self-antigens that have escaped tolerance (44–
46). Therefore, we relied on NetMHC predictions based on eluted 
peptides as a key filter criterion for candidate peptides. We also took 
the RNA-level expression of noncoding transcripts into account as a 
filtering strategy. Abelin et  al. (47) demonstrated that the level of 
gene expression is a highly predictive variable for epitope predic-
tion, and RNA-seq serves as a better indicator than MS-based pro-
teomic quantitation. Our data show that peptides derived from 
abundant transcripts were more likely to induce an immune re-
sponse, which is not unexpected as increased expression improves 
the likelihood of being presented by the HLA.

The specificity of expression of cryptic peptides in tumor tis-
sues is vital for developing effective immunotherapies. In this 
study, we found that while a subset of the noncoding RNAs was 
not detected in healthy RNA-seq data from GTEx, quite a few had 
low to moderate RNA expression across healthy tissues. It is im-
portant to note that the transcript abundance alone is not predictive 
of the noncanonical translation of these peptides. Lozano-Rabello 
et al. (22) have reported that the lack of presentation in healthy 
tissues indicates the tumor-specific nature of these cryptic pep-
tides. Our study suggests that our in silico prioritization pipeline, 
which incorporated many critical factors, including HLA binding 
affinity, tumor expression, and expression in normal tissues, was 
highly successful in identifying immunogenic antigens in a patient-
specific manner.

These findings may also have broader implications for other 
cancer types with low mutational burden, where neoantigens are 
rare (48). There is a clear need for larger-scale studies to identify the 
abundance of cryptic antigen expression across different tumor 
types and also understand how cryptic antigen burden may corre-
late with clinical responses to immunotherapy. Such studies could 
pave the way for the future development of immunotherapies tar-
geting cryptic antigens in additional tumor types. Moreover, under-
standing how cryptic antigens are processed and presented could 
provide innovative strategies to enhance immune recognition. In 
the long term, these efforts could broaden the reach of immuno-
therapy, making it viable for a wider range of cancers that now lack 
effective treatment options.

Recent trials of neoantigen vaccines have shown promising re-
sults, making personalized cryptic antigen-based vaccines an ap-
pealing treatment strategy. For example, NEO-PV-01, a long peptide 
cancer vaccine that included 20 neoantigens, was tested in combi-
nation with Nivolumab and was shown to induce the cytotoxic 
neoantigen-specific T cells in patients with non–small cell lung can-
cer, melanoma, and bladder cancer (49). The demonstrated efficacy 
of severe acute respiratory syndrome coronavirus 2 mRNA vaccines 
has provided substantial momentum in the field, leading to several 
clinical trials evaluating anticancer mRNA vaccines in combination 
with immune checkpoint inhibitors and other immunotherapies. A 
previous study by Sahin et al. (50) demonstrated the first-in-human 
application of an mRNA-based neoantigen vaccine that could 
effectively inhibit melanoma recurrence, leading to sustained 
progression-free survival. Recently, a phase 2b trial that tested a 
multiantigen, personalized cancer vaccine delivered with mRNA 
was reported to reduce the recurrence of melanoma when com-
bined with pembrolizumab (51). In this context, our study suggests 
that developing personalized antitumor vaccines targeting cryptic 
antigens in OC could be an effective therapeutic approach.

One limitation of our study is that we have mainly concentrated 
on peptides derived from long noncoding RNA and pseudogenes, 
potentially overlooking other types of antigens that were not well 
represented in our dataset, like peptides from retroviral elements 
(52,  53). Detection of human endogenous retrovirus (HERV)-
derived peptides would require bioinformatic pipelines to quantify 
HERV expression and merge this information with custom protein 
databases (17, 54). Therefore, this class of antigens may be under-
represented in our dataset, and a more complex bioinformatic pipe-
line could be developed to understand their contribution to the 
antigen landscape of OC in the future. Another limitation of our 
study is the small sample size, which may affect the characteristics 
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of the cryptic peptides that we identified. Also, all the patients in-
cluded in our study had advanced metastatic disease. In future 
studies, it will be important to understand how the stage and grade 
of OC tumors may influence the cryptic antigen landscape.

Evaluating autologous T cell responses to cryptic antigens using 
preclinical mouse models would provide important insights into the 
therapeutic potential of these antigens. However, assessing autolo-
gous human T cell responses in mouse models presents several tech-
nical challenges and limitations, including HLA incompatibility, 
graft-versus-host disease, and genomic differences between human 
and mouse diseases. Despite these limitations, such studies in the 
future could offer valuable insights into the role of cryptic antigens 
in shaping antitumor immunity.

Our research shows that cryptic peptides are the primary class of 
tumor antigens in OC. These peptides are immunogenic and may 
play a role in the observed clinical immune responses against 
OC. Overall, they represent a promising source of antigens for the 
potential future development of targeted immunotherapies.

MATERIALS AND METHODS
Patient samples
All samples were collected at Mayo Clinic Arizona after obtaining 
informed consent from women diagnosed with advanced-stage 
OC. The Institutional Review Board (IRB) of the Mayo Clinic 
approved the study protocol and the consent form (application 
#18-010082). Deidentified patient characteristics are provided in 
table S1. The tumor and the corresponding adjacent normal tissue 
were obtained after primary debulking on the procedure’s day. As-
cites samples were collected from patients who underwent ascites 
drainage. The tumor and adjacent normal tissue were snap-frozen 
for RNA-seq. A part of frozen tumors or ascites cell pellet (sample 
T3) following red blood cell (RBC) clearance was used for immu-
nopeptidome analysis. Fresh tissues were used to isolate stromal 
vascular fraction (SVF) and tumor digests for T cell stimula-
tion studies.

RNA sequencing
RNA-seq was performed by an external service provider (Genewiz, 
NJ). Briefly, RNA was isolated from cryopreserved tissue using the 
RNeasy Mini Kit (QIAGEN). One microgram of isolated RNA was 
used to prepare single index libraries using a TruSeq Stranded total 
RNA kit (Illumina) following ribosomal RNA (rRNA) depletion 
using a Riboseq rRNA depletion kit. The final library sizes were as-
sessed using the Agilent TapeStation, and concentration was deter-
mined by Qubit assay. Paired-end sequencing was performed in a 
HiSeq platform with a read length of 150 bp and a target read depth 
of at least 50 million reads.

HLA typing
HLA typing was performed from the genomic DNA isolated from a 
patient PBMC by next-generation sequencing (Creative Biolabs, 
New York, USA).

Enrichment of MHC-bound peptides from primary human 
OC samples
Enrichment of MHC class I–bound peptides was performed as de-
scribed before (55, 56). Five milligrams of pan-specific MHC class 
I antibody (W6/32 clone) and 1 ml of Protein A–Sepharose 4B 

beads (Invitrogen) were used to prepare antibody cross-linked col-
umns. Cross-linking was facilitated by incubating the columns 
with 20 mM dimethyl pimelimidate linker for 45 min. The cross-
linking reaction was quenched with 5 mM ethanolamine (pH 8.0). 
Columns were then washed with phosphate buffer saline and 
stored in phosphate-buffered saline (PBS)/0.02% sodium azide at 
4°C. Before the enrichment, columns were washed with 1 ml of 0.1 N 
acetic acid followed by 10 ml of 100 mM tris HCl (pH 8.0). Ovarian 
tumor tissues were homogenized using liquid nitrogen and resus-
pended in 6 ml of lysis buffer (0.25% sodium deoxycholate, 0.2 mM 
indole-3-acetic acid, 1 mM EDTA, 1 mM phenylmethylsulfonyl 
fluoride, 1% octyl-β-glucopyranoside, and 1:200 protease inhibitor 
cocktail) and incubated for 1 hour at 4°C. Ascites fluid is centri-
fuged at 14,000 rpm to pellet down the cells. The cell pellet was 
resuspended in lysis buffer and processed as performed for tumor 
tissues. Protein lysates were centrifuged at 14,000 rpm for 1 hour 
and loaded on a column with just Protein A–Sepharose 4B beads 
for preclearing. The flowthrough was then loaded onto the antibody 
cross-linked columns and incubated for 2 hours with rotation at 
4°C. The column containing the beads with enriched MHC-peptide 
complexes was washed with 10 ml of 150 mM NaCl in 20 mM tris HCl 
(pH 8.0), 400 mM NaCl in 20 mM tris HCl (pH 8.0), followed by 
150 mM NaCl in 20 mM tris HCl (pH 8.0) and 20 mM tris HCl 
(pH 8.0). MHC-bound peptide complexes were eluted using 1% 
trifluoroacetic acid, and peptides were purified on C18 stage tips 
and concentrated using SpeedVac.

LC-MS/MS analysis of MHC-bound peptides
Peptides were resuspended in 6 μl of 2% acetonitrile/0.1% formic 
acid and analyzed on a Orbitrap Eclipse Tribrid mass spectrometer 
connected to UltiMate RSLC3000 nanoLC system (Thermo Fisher 
Scientific, San Jose, CA). NanoLC was operated in a two-column 
mode which includes a trap column (PepMap C18 2 cm by 100 μm, 
100 Å) for the initial trapping of peptides and an analytical column 
(EasySpray 50 cm by 75 μm, C18 1.9 μm, 100 Å; Thermo Fisher 
Scientific, San Jose, CA) for separation of peptides. Before sample 
loading, both columns were equilibrated using 0.1% formic acid 
(solvent A) for 10 min. Elution of peptides was done using a gradi-
ent of 7 to 28% solvent B (acetonitrile/0.1% formic acid) for 115 min 
and then to 40% for 10 min. Last, the columns were washed with 
80% solvent B for 5 min. As the peptides were being eluted, the 
mass spectrometer was operated in a data-dependent mode in 
which the precursor ions were recorded in a survey MS scan fol-
lowed by MS/MS analysis for a cycle time of 2 s. MS scan was re-
corded at 60 K resolution [at 200 mass/charge ratio (m/z)], 4 × 
10−5 automatic gain control (AGC) target, and 50-ms injection 
time for a mass range of 350 to 1400 m/z in Orbitrap analyzer. MS/
MS analysis was performed separately for charge state 2 to 4 
(scan priority 1) and charge state 1 within the mass range of 700 to 
1400 m/z (scan priority 2). Highly abundant precursor ions were 
isolated using 1.4 m/z isolation width in quadrupole, subjected to 
higher-energy collisional dissociation (HCD) fragmentation at 
28% (scan priority 1) and 32% (scan priority 2). Fragment ions 
were recorded in an Orbitrap analyzer at 30,000 resolution, 1 × 
10−5 AGC target, and 100 ms injection time. Monoisotopic precur-
sor selection and a minimum intensity threshold of 20,000 counts 
were applied before precursor ion selection for MS/MS analysis. 
Precursors once fragmented were prevented from repeated analy-
sis by using a dynamic exclusion filter for an exclusion duration of 
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40 s. Internal mass calibration was performed using a lock mass of 
445.12002 m/z.

Custom database generation and identification of 
MHC-bound cryptic peptides
Fastq data from RNA-seq analysis of tumor and normal samples 
were checked for quality using FastQC software. Adapter sequence 
and low-quality bases in reads were trimmed using the Cutadapt tool 
(http://dx.doi.org/10.14806/ej.17.1.200). Quality processed reads 
were then aligned with human reference (GRCh38) and GENCODE 
v29 annotations using STAR aligner in two-pass mode by using a 
database of exon-exon junctions detected across samples in the first 
step to generate final alignment BAM files (57). STAR-aligned BAM 
files were further processed by marking duplicates, split CIGAR 
string, base recalibration, variant calling, and filtering using genomic 
analysis toolkit (GATK). Detection of somatic mutations in matched 
tumor-normal samples was carried out using VarScan2 software. 
Identified germ-line and somatic variants were annotated using 
SnpEff. Predicted nonsynonymous changes are then incorporated into 
reference protein sequences to generate a custom variant peptide data-
base of single nucleotide polymorphisms (SNPs) using an in-house 
script written in Python programming language. Reference-based 
transcript assembly and annotations against GENCODE features 
were carried out using StringTie (58). Identified transcripts were 
translated into peptide sequences in forward three frames.

MS raw data files were analyzed for peptide identification using 
both the Sequest search engine in Proteome Discoverer (version 2.5) 
and MSFragger in FragPipe v15 (59, 60). Database searching was 
performed by in silico digestion of sample-specific personalized 
protein databases with no enzyme specificity and peptide length of 
7 to 25 amino acids. Precursor ion tolerance of 10 parts per million 
(ppm), fragment ion tolerance of 0.05 Da, and dynamic modifica-
tions such as oxidation (M), cysteinylation (C), and deamidation (N 
and Q) were used in Sequest. In MSFragger, precursor and fragment 
ion tolerance of 20 ppm, oxidation (M), acetylation at protein N ter-
minus, and cysteinylation (C) were used as dynamic modifications. 
The false discovery rate (FDR) was controlled by Percolator, and 
identifications were filtered to 3% at the PSM level for both search 
engines (14, 61). Furthermore, peptides mapping to “protein_coding,” 
“IG_C_gene,” and “IG_V_gene” or HLA transcript biotypes were 
excluded to derive the cryptic peptides. The cryptic peptides were 
further stratified on the basis of the genomic origins into near-
coding and noncoding. MHC-bound peptide identifications from 
the noncanonical regions were selected for functional validation 
and were verified by manually checking MS/MS spectra.

Motif deconvolution of immunopeptidomic data
The multiallelic immunopeptidomic data were deconvoluted using 
the benchmarked MHCMotifDecon-1.0 (https://services.healthtech.
dtu.dk/service.php?MHCMotifDecon-1.0). The method uses a super-
vised approach wherein the peptides are assigned to the most likely 
class I HLA type based on the MHC binding predictions from 
NetMHCpan-4.1, and the potential contaminants are placed in a trash 
bin (62). We compared the resulting motifs to the known and predicted 
motifs of the HLA class I alleles using the MHC motif viewer (63).

Class I affinity predictions
The NetMHCpan 4.1 EL prediction method was used to identify 
peptides that have a higher likelihood of being naturally processed 

and presented. In parallel, the binding affinity of HLA class I pep-
tides was predicted using the NetMHCpan-4.1BA (http://tools.iedb.
org/mhci/) based on the patient-specific allotypes as determined by 
HLA typing. For class I predictions, 8- to 12-mer peptides were used 
as input. Peptides with a predicted binding rank of ≤0.5 or 500 nM 
were considered high-affinity binders (64).

Peptide hydrophobicity analysis
The hydrophobicity values for noncoding and canonical peptides 
were calculated using the peptide analysis tool from Thermo Fisher 
Scientific (https://thermofisher.com/us/en/home/life-science/protein-
biology/peptides-proteins/custom-peptide-synthesis-services/
peptide-analyzing-tool.html), and the values were plotted against the 
corresponding MS retention time in GraphPad Prism (v10.1.1).

Normal tissue expression of candidate noncoding transcripts
The expression values of the 41 noncoding transcripts were com-
pared across different biological tissues from the GTEx database of 
normal tissues. For plotting, each noncoding transcript was con-
verted to a z score to normalize the dynamic range of expression 
differences between transcripts. The data used for the analyses de-
scribed in this manuscript were obtained from UCSC from the BED 
file (/gbdb/hg19/gtex/gtexTranscExpr.bb).

HAllA correlations of noncoding transcripts to inflammation 
and cytotoxicity
Correlation of noncoding transcript expression to inflammation and 
cytotoxicity lists was performed using the HAllA (65). Associations 
with an adjusted P value less than 0.05 were considered significant. 
In addition, the inflammation and cytotoxicity were summarized per 
TCGA sample as an average expression z score value of all genes in 
each gene list. The z score was calculated on the basis of TCGA aver-
age expression and SD for each gene across all samples. The sum-
marized metric was used in HAllA to associate noncoding transcript 
expression with summarized inflammation and cytotoxicity metrics.

Tumor dissociation for TIL isolation
Tissues were minced into small pieces and transferred to magnetic-
activated cell sorting (MACS) C tubes containing tissue dissociation 
mix [collagenase II (2 mg/ml) and deoxyribonuclease I (30 μg/ml)]. 
Tissue digestion was carried out for 1 hour using the OctoMACS 
system (Milteny Biotech). Single-cell suspensions were obtained af-
ter filtration with 70-μm filters. Erythrocytes were lysed using RBC 
lysis buffer (Tonbo Biosciences, #TNB-4300). After two washes with 
PBS, the cells were cryopreserved till further use.

Isolation of TILs from SVF and ascites
Omental tissue was cut into small (3 to 5 mm) pieces and trans-
ferred to 250-ml Erlenmeyer flasks. Tissue digestion was performed 
using collagenase type I (17-100-017, Thermo Fisher Scientific) in a 
rotating shaker incubator at 37°C at 180 rpm for 1 hour. The tissue 
digest was filtered through a mesh-lined funnel and collected. The 
cell suspension was centrifuged to remove the top adipocyte layer. 
The RBCs in the pellet (SVF) were lysed using 1× RBC lysis solu-
tion. Cells after two washes with PBS were cryopreserved until fur-
ther use. Ascitic fluid was subjected to low-speed centrifugation 
(300g, 5 min). RBCs were lysed, and the cells were washed thor-
oughly with 1× PBS. The washed cells were cryopreserved and later 
used for TIL expansion.
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In vitro T cell expansion and antigen-specific activation
In vitro, omentum-derived TILs or PBMCs from patients with OC 
were peptide-stimulated and expanded as described previously with 
minor modifications (66). Omentum-derived cells thawed on day 0 
and were resuspended in AIM-V media (Gibco, #0870112-DK) 
with 0.5% human AB serum (Gemini Bioproducts, #100-512) and 
granulocyte-macrophage colony-stimulating factor (80 ng/ml; Tonbo 
Biosciences, #21-8339-U020). On day 1, the cells were stimulated 
with individual peptides (10 μg/ml). At 4 hours after antigen pulsing, 
Resiquimod (R848, 6 μg/ml; STEMCELL Technologies, #73782) was 
given, followed by lipopolysaccharide (10 ng/ml, InvivoGen, #TLRL-
3PELPS) and recombinant human (rh) IFN-γ (500 IU/ml; PeproTech, 
#300-02) after 30 min. On day 2, the cells were collected from wells 
and resuspended in AIM-V media with 2% AB serum with rh inter-
leukin-21 (IL-21; 6 ng/ml; BioLegend, #571202) and IL-7 (50 ng/ml; 
BioLegend, #581904) (67). The cells were split on day 8, and the 
media was replenished. The cells were expanded with intermittent 
splits, and media was changed every 4 days. On day 15, cells were 
given a second antigenic pulse, followed by expansion till day 21. Be-
tween days 21 and 24, the cells were collected for downstream assays.

Flow cytometry
For IFN-γ intracellular staining, the cells were restimulated with 
peptide-pulsed autologous tumor cells and treated with 1:1000 Golgi 
plug (BD Biosciences, #555029) and 1:1500 Monensin (Tonbo Bio-
sciences, #TNB-4505-L001). As positive control, pool of 32 class I 
peptides from cytomegalovirus, Epstein-Barr virus, and influenza 
virus (CEF; STEMCELL Technologies, #100-0675) was used. The 
cells were stained with anti-human CD45 (Tonbo Biosciences, 
#25-0459-T100), CD8 (BioLegend, #344724), and CD4 (Tonbo 
Biosciences, #65-0048-T100) and processed to measure intracellular 
IFN-γ (BioLegend, #502509), TNFα (BioLegend, #502932), and cell 
surface 4-1BB (Cytek Biosciences, #SKU 63-1379-42) after 16 hours 
of peptide stimulation for flow cytometry. Peptide-MHC class I 
tetramers were generated by peptide exchange using a QuickSwitch 
Quant HLA A02:01 Tetramer kit-Phycoerythrin (PE) (MBL Interna-
tional Corporation, #TB-7300-K1) as per the manufacturer’s instruc-
tions. Peptide pulsed T cells were treated with 50 nM dasatinib for 
30 min at 37°C before tetramer staining, followed by surface staining 
with anti-human CD45 and CD8 as described previously (68). 
Tetramers containing an HLA-A02–restricted peptide from HIV (gag: 
SLYNTVATL) was used as a negative control, and a peptide from cy-
tomegalovirus (pp65: NLVPMVATV) was used as a positive control.

Statistics and visualization of data
All graphs were prepared using GraphPad Prism (GraphPad, La 
Jolla, CA). Differences were considered significant if P < 0.05. Hier-
archical all-against-all clustering was performed using HAllA, and 
significant associations were determined by FDR < 0.05 (65). Heat-
maps were generated using the ggplot2 R package (Rv4.3.2) or 
Morpheus (https://software.broadinstitute.org/morpheus). One-
way analysis of variance (ANOVA) combined with Student’s t test 
was performed to compare the RNA level expression of noncoding 
transcripts across various stages of ovarian tumor progression.

Ethics approval and consent to participate
Ascites/tumor/blood was collected from patients with OC undergo-
ing primary debulking surgery by a gynecologic oncologist at the 
Mayo Clinic Hospital, Arizona. Informed consent was obtained before 

surgery, and the study was approved by the IRB of the Mayo Clinic 
(application #18-010082).

Supplementary Materials
The PDF file includes:
Figs. S1 to S8
Data file S1
Legends for tables S1 to S4

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S4
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