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Abstract

Cancer can recur when a subset of tumor cells, denoted here as persister cells, are able to
survive therapy and re-enter the cell cycle. The precise mechanisms that confer the persister state
and whether it is characteristic of a subgroup of cells or arises from multiple cellular lineages re-
main poorly understood. We hypothesize that an epigenetic signature underlies the drug-tolerant
persister state, characterized by transcriptional and chromatin accessibility changes that promote
survival of residual cancer following chemotherapy. To identify clinically relevant features of per-
sister cells in untreated tumors and residual disease, we performed single-cell multiomic profiling
(snRNA+snATAC) on a cohort of non-malignant fallopian tube, treatment-näıve, and neoadjuvant
chemotherapy (NACT)-treated high-grade serous ovarian cancer (HGSOC) samples. We identi-
fied differences in gene expression and open chromatin between näıve and residual patient tumors
following chemotherapy. Although only a small proportion of the differentially expressed genes
enriched in residual HGSOC overlapped with established gene sets for chemo-response and pa-
tient prognosis, the epigenomic analysis revealed activity of several DNA-binding factors that are
both enriched upon chemotherapy and also high in resistant tumors prior to treatment. From this
analysis, we identified an epigenetic signature that precedes expression and defines the persister
state. This epigenetic signature also correlated with chemotherapy sensitivity and resistance using
patient-derived xenograft models of HGSOC. Gene regulatory networks driven by the persister
signature are involved in the activation of oncogenic pathways, including changes to the cell cycle
promoting quiescence and stress response. Further study of the persister cells identified by this epi-
genetic signature may increase understanding of the mechanisms underlying persister cell survival
and reveal new vulnerabilities that could be exploited to delay or prevent cancer recurrence.
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Introduction

High-grade serous ovarian carcinoma (HGSOC) is the most common and lethal subtype of ovarian
cancer [1]. At the time of detection, most HGSOC patients have advanced-stage disease (III/IV) that
has already metastasized to the pelvis and abdomen and the five-year survival is below 30%. The treat-
ment strategy for HGSOC typically consists of radical debulking surgery combined with an adjuvant
or neoadjuvant platinum and taxane chemotherapy regimen [2]. However, despite advances in surgical
debulking and targeted therapy, patient outcomes remain poor due to the development of recurrent,
chemoresistant disease [3]. Since the standard of care is generally the same for most patients, HGSOC
becomes a valuable model to study chemotherapy response. Emerging evidence has highlighted the
critical role of non-genetic mechanisms as drivers of cancer progression and therapeutic resistance,
including the ability of a subset of cancer cells to adopt a drug tolerant persister (DTP) state [4, 5].
Although persisters are believed to arise from multiple cellular lineages, the precise mechanisms that
confer this state and enable these cells to tolerate standard therapies remain poorly understood in
HGSOC.

Persister states in cancer may be mediated by rewiring of transcriptional programs rather than
stable genetic changes. The interplay between lineage-specific master transcription factors (TFs) and
chromatin remodelers has been implicated in maintaining these states across various malignancies.
Recently the TFs MECOM, PAX8, SOX17, and WT1 were identified to have cooperative DNA-
binding patterns that are re-wired to promote pro-oncogenic signaling in HGSOC [6]. Tumor-specific
modifications to the chromatin landscape have also been established across female malignancies with
implications for cellular reprogramming and activation of oncogenic programs [7].

Non-coding regions are an integrative part of the regulatory information that contribute profoundly
to tumor biology [8, 9]. It has become increasingly evident that regulatory elements (i.e., cis-acting
enhancers) are rewired in cancer cells to promote growth, survival, and other aggressive phenotypes
associated with poor clinical outcome [10–12]. Several studies have used epigenomics, in parallel with
transcriptomics, to characterize molecular and clinical heterogeneity of HGSOC, revealing extensive
variation in regulatory mechanisms [6, 13, 14]. However, most studies to date have used bulk genomic
sequencing of material collected from heterogeneous mixtures of different cell types and from cell lines,
obscuring cancer cell-specific activity of oncogenic enhancers. Single-cell genomics has revolutionized
our ability to explore cellular heterogeneity of ovarian tumors, yet the characterizations have been
predominantly based on transcriptomes via single-cell RNA sequencing (snRNA-seq) [15–19]. The
single-cell assay for transposase-accessible chromatin by sequencing (snATAC-seq) [20, 21] performs
high-throughput profiling of chromatin accessibility, revealing complex facets of gene regulation that,
in combination with gene expression (GEX) allow for the analysis of enhancers activity at single-cell
resolution. Together, GEX and ATAC enable linking regulatory elements to putative target genes,
offering key mechanistic insights into the molecular basis of drug response and potentially predict
persister states.

Here we sought to characterize the epigenetic and transcriptional features of persister cells in HG-
SOC. We performed single-cell multiomic profiling from isolated nuclei (snRNA+snATAC seq) on a
cohort of non-malignant fallopian tubes (FT) as well as treatment-näıve and neoadjuvant chemother-
apy (NACT)-treated HGSOC patient tissues to identify a distinct epigenetic signature of persister
cells comprised of TFs and chromatin remodelers. Enrichment of this epigenetic signature distinctly
separated treatment-näıve resistant from treatment-näıve sensitive patient tumors indicating that the
persister potential is encoded in a chromatin signature. Importantly, this epigenetic signature also
successfully predicted response to chemotherapy in patient-derived xenograft (PDX) models of HG-
SOC. Understanding and targeting the mechanisms underlying persister cell survival may reveal new
vulnerabilities that could be exploited to delay or even prevent disease recurrence in HGSOC.
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Results

Transcriptomic and epigenomic landscape of fallopian tubes and HGSOC

To characterize the transcriptomic and epigenomic landscape of HGSOC, we performed single-cell mul-
tiomic profiling of GEX and open chromatin using ATAC sequencing using the 10x Genomics platform.
Our cohort consisted of tumor samples collected after de-bulking surgery from 9 HGSOC patients (6
at the time of primary debulking surgery, who are designated as “treatment-näıve” and 3 at the time
of interval debulking after NACT, who are designated as “NACT patients”) (Fig.1a). All tumors were
histologically classified as high grade; and the patients who received NACT prior to acquisition of the
de-bulking surgery specimen were classified as minimally or partially responsive to therapy based on
their chemotherapy response scores (CRS, range 1- 2) (SuppFig.S1a). Furthermore, we sequenced his-
tologically normal fallopian tube (FT) tissues with ostensibly normal cells from a cohort of 5 patients
who underwent salpingectomy as a control group (hereafter referred to as non-malignant FTs) [6, 22].
The median age of the cohort was 52 (range, 33-79).

After rigorous quality control (SuppFig.S1b), we obtained high quality multi-omic data for 52,864
cells (Fig.1b). Mitochondrial DNA variant analysis [23] confirmed the clonal origin of these tumors
as we did not detect multiple clones within each patient (SuppFig.S1c). Cell-types were identified
using an unsupervised clustering and reference-mapping approach followed by marker validation from
GEX, chromatin accessibility, and integration of GEX and ATAC data (Fig.1c-d). As expected, the
immune cells, stromal cells and non-malignant epithelial cells from the fallopian tube samples clustered
together by cell-type, while the malignant cells (epithelial cells from the tumor samples) clustered by
individual patient as these cells are likely to be genetically more similar to each other than any other
cell-type. The top gene expression markers for each cell type validate the integrated cell type annota-
tion (Fig.1e). By further analyzing the heterogeneous distribution of cell types across patient samples,
we observed an increased infiltration of immune and stromal cells in FT while the tumor samples were
comprised of cells primarily of malignant epithelial origin (Fig.1f). Global changes in open chromatin
(cut sites) could be characterized by two groups: 1) a decreasing trend in chromatin accessibility of
immune cells from FT to Näıve tumors and then to NACT tumors; 2) a general increasing trend in
open chromatin sites in endothelial cells, fibroblasts, and epithelial cells from Näıve tumors to NACT
tumors (SuppFig.S1d).

Sub-classification of epithelial cells from normal and malignant patient sam-

ples

To identify epithelial subpopulations that were distinct in their transcriptomic signatures, we sub-
clustered the epithelial cells (SuppFig.S2a) and applied batch-correction on the GEX data using Har-
mony to remove patient-specific variation (Fig.2a). Estimation of copy number variation (Fig.2b) using
Numbat [24] on the GEX data [25] to infer changes in genomic structure confirmed genetic variation
in malignant epithelial cells from HGSOC tumor samples. By overlapping the list of markers identified
in distinct clusters with markers from Ulrich et al. [26] and Vasquez-Garcia et al. [15], we identified
cycling, ciliated and secretory cell subpopulations (Fig.2c-d). Three other clusters (1-3) were mainly
tumor-specific. The top markers for each epithelial cluster (Fig.2e) and comparison with SingleR scores
validate the most likely cell types which each cluster may represent (SuppFig.S2b). FT samples were
mostly comprised of ciliated and secretory epithelial cells as expected, while the näıve tumors had the
most cycling cells (Fig.2f). Comparison with canonical cell cycle markers supported the epithelial sub-
cluster identification, such that cycling cells had the highest G2M score (Fig.2g). We observed reduced
numbers of cycling cells in NACT tumor samples, reflecting the fact that chemotherapy targets cycling
cells. The ability to infer regulatory interactions between open chromatin regions (enhancer elements
and promoters) and their putative target genes is possible given the signal from GEX and ATAC from
the same cells. Two of the markers for ciliated (FOXJ1) and secretory cells (MSLN) [26] demonstrate
increased co-accessibility in their respective cell types corresponding directly to their increased gene
expression in FTs (Fig.2h). Interestingly, most of these interactions are maintained in tumors, indi-
cating that the regulatory networks for genes involved in cell identity are similar (SuppFig.S2c).
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Characterizing the transcriptomic and epigenomic programs in HGSOC

Recent studies suggests that most cases of HGSOC arise from the FTs [6, 22]. To identify tran-
scriptomic and epigenomic patterns that distinguish and explain the transition from normal cells to
malignant cancer cells, we performed differential analyses between the FT samples and the treatment-
näıve tumor samples (Fig.3a). We first analyzed the features of FT and näıve tumor samples at the
transcriptional level to identify differentially expressed genes per cell type in HGSOC (Fig.3b). Glob-
ally, we found an increase in the proportion of up-regulated genes in epithelial cells and fibroblasts
and a decrease in the proportion of upregulated genes in macrophages. We also identified changes in
the monocyte to macrophage ratio between FTs and Näıve tumors which may represent alterations of
the myeloid lineage phenotypes during cancer progression (SuppFig.S3a) [16]. Further analysis of the
changes in gene expression between non-malignant epithelial cells from FTs and malignant treatment-
naive epithelial cells revealed an enrichment of several established ovarian cancer master TFs including
MECOM, ESR1, WT1, and PAX8 (Fig.3b). Cancer-related processes were found to be up-regulated
in näıve tumors, including changes in cell cycle genes. By contrast, FTs displayed an enrichment of
inflammatory signaling pathways and tumor suppressor responses (Fig.3c). We then sought to define
the epigenetic changes underpinning the transition from normal cells to cancer cells. Assessment of
DNA binding factors (DBFs) that may be orchestrating the changes in gene expression in each cell
type identified changes in the markers between FTs and tumors, particularly in the epithelial cells
(SuppFig.S3b). The correlation between the top epithelial DNA binding factors (derived from both
GEX and ATAC) shows a cooperative DNA-binding pattern in both FTs and tumors (Fig.3d-e). This
suggests that these factors may be working together to orchestrate the changes that occur during
oncogenesis. Of note, when comparing DBF correlation, there is closer clustering and a stronger as-
sociation between E2F family (E2F1, E2F3, E2F7, E2F8), FOXM1, and MYCN in the näıve tumors
compared to the FTs, which may contribute to overactivation of the cell cycle. The known regulators
of ovarian cancer SOX17, PAX8, WT1, and MECOM are highly correlated in both FTs and cancer,
but SOX17 shifts its cooperativity to oncogenic programs driven by other SOX family members in the
malignant state. The AP-1 TF FOSB gains stronger correlations with MECOM, PAX8, and WT1
in tumor cells, suggesting that stress-adaptive mechanisms might reinforce oncogenic transcriptional
programs. Furthermore, the histone methyltransferase KMT2C and the DNA methylation regulator
DNMT1 display altered correlations in näıve tumors supporting an epigenetic reprogramming in cancer
development. FOXM1, SOX2, and KMT2C form a cluster in näıve tumors but not in FT which could
reflect a stemness-like transcriptional program in HGSOC. (Fig.3e).

We then implemented Functional Inference of Gene Regulation (FigR) [27] to better understand the
regulatory relationships between TFs and their target genes in malignant and non-malignant states.
This revealed changes in TFs and their gene regulatory networks (Fig.3f). The KLF family (KLF4,
KLF6 and KLF9), AP-1 TFs (ATF3, JUN, JUNB, FOS, FOSB, FOSL1), established drivers of ovarian
cancer progression (PAX8, WT1, FOXM1), hormonal signaling TFs (ESR1 and PGR) and others such
as RUNX3 and BARX1 orchestrate many of the changes in gene expression between FT and Näıve
tumors. Master regulators with predominantly non-malignant transcriptional programs include TP73,
RFX2, STAT4, and RELA while those with more malignant transcriptional programs include AR,
ZNF496, FOXP2, and FOXJ1. Globally there was an increase in the number of repressive TF-target
gene regulatory relationships in the Näıve tumors than in the non-malignant FTs (Fig.3g). Among
the TFs with shared activity in both contexts, we observed that some TFs shift from an activating
to a repressive role between FTs and Näıve tumors and vice-versa (Fig.3h). These include ATF3,
PGR, FOXM1, NR2F1, and ZEB2 which had repressive roles in FT and became activators in Näıve
tumors. By contrast, the TFs BACH2, IRF1, RUNX3, STAT4, WT1, ESR1, and SNAI1 shifted from
activators in FTs to repressors in Näıve HGSOC. Together these changes in TF activity and coop-
eration may orchestrate changes in the transcriptome that are involved in the development of HGSOC.

Open chromatin in residual HGSOC following NACT reveals features of

chemotherapy resistance

To identify features that allow malignant cells to resist chemotherapy, we compared chemotherapy-
näıve tumors from untreated patients and residual disease in patients treated with NACT (Fig.4a).
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We characterized the differentially expressed genes between näıve and NACT-treated tumors (Fig.4b
and SuppFig.S4a). Pathways related to the cell cycle, which were upregulated in näıve tumors relative
to FT, were downregulated in residual NACT tumors. Conversely, there was an upregulation of hor-
monal (estrogen response), Notch and inflammatory signaling pathways in NACT tumors. Of note,
differentially expressed genes also supported changes in cell-cell adhesion and epithelial-mesenchymal
transition (EMT) signaling pathways in residual tumors after NACT (SuppFig.S4b). We overlapped
gene signatures that were established for predicting patient prognosis [28, 29], chemoresponse [19, 30],
master transcription factors (MTFs) known to be drivers of ovarian cancer [4], and markers of molecu-
lar subtypes of ovarian cancer with the differentially expressed genes [28] (Fig.4b-c and SuppFig.S4c).
Of the 4375 differentially expressed genes (3327 up-regulated in Näıve, 1048 up-regulated in NACT)
only 192 (4.4%) overlapped with any genes in the represented gene sets (Fig.4c and SuppFig.S4c),
including genes predictive for both good and bad patient prognosis and those associated with ovarian
cancer response to chemotherapy. The greatest overlap observed was with naive HGSOC and the pro-
liferative DNA repair signature, suggesting once again the effect of chemotherapy in eliminating cells
actively dividing. Together, this result suggests that gene expression in residual ovarian cancer, which
is expected to be enriched in persister cells (cells that persist after chemotherapy), was not enough to
explain chemoresponse.

To explore this further, we analyzed differential enrichment of DNA binding factors (DBF) that
include TFs and chromatin regulators in the open chromatin data. Using enrichment scores calcu-
lated by ChromVAR with DNA binding information obtained from a curated database of ChIP-seq
and CUT&RUN data from ReMap and other sources [6, 31], we identified several MTFs known to
be important regulators during ovarian cancer tumorigenesis (9 of 14; 64% ovarian specific MTFs [4]
differentially enriched in NACT tumors). The DBFs significantly enriched in the residual tumors after
NACT compared to näıve tumors included SOX17, PAX8, MECOM, WT1, and the hormone receptor
ESR1 (Fig.4d). There was also an enrichment of other TFs that are known to play a role in multiple
cancers, including ovarian cancer, in residual tumors (33 of 65; 51% MTFs [4] differentially enriched
in NACT tumors) (SuppFig.S4d). We further refined this list of DBFs by including only those whose
binding potential was enriched in residual tumors and depleted in the näıve tumors, and those that
were expressed in residual tumors (Fig.4e).

To test the hypothesis that these DBFs might be involved in orchestrating a persister-like epigenetic
state in residual disease, we sought to identify the target genes regulated by these factors. Using FigR
to predict the gene regulatory network by combining both GEX and ATAC data, we identified genes
that are predicted to be activated or repressed by each of these factors (Fig.4f-g). From this analysis,
we found that a large subset of the differentially expressed genes (n = 1996; 45.6%) were predicted
to be TF targets. Since each of these target genes was regulated by more than one factor, we looked
at the ratio between activating and repressing relationships to determine if each gene was predicted
to be more activated or more repressed. A large set of genes up-regulated in NACT samples (n =
435) were more activated than repressed, while a subset of genes down-regulated in NACT samples (n
= 385) were more repressed than activated by the 103 TFs, giving us potential changes in the gene
expression of cells in the persister-like state driven by the TFs enriched in residual disease. Upon per-
forming pathway over-representation analysis on these gene sets using gProfiler [32], we found that cell
cycle associated pathways were repressed and pathways associated with transcriptional misregulation
in cancer, signal transduction and cytokine signaling were activated (Fig.4h). The TFs enriched in
residual disease and the signaling pathways they regulate may be driving chemotherapy tolerance and
subsequent recurrence in HGSOC.

Epigenetic persister signature distinguishes chemotherapy response in näıve

patients

At this point we hypothesized that the DBF enrichment observed in NACT could correlate with re-
sponse to therapy in näıve patients. Based on clinical response, the cohort of näıve tumors can be
further classified as sensitive (n=3) or resistant (n=3) to chemotherapy if recurrence is within 6 months
of the last cycle of chemotherapy (Fig.5a). Since debulking status could be a confounding factor for
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recurrence, we selected only näıve tumors with optimal debulking. Differential gene expression between
epithelial cells from sensitive and resistant tumors shows that only a few ovarian specific MTFs (3 out
of 14; 21%) are upregulated in cells from the resistant group at the gene expression level (Fig.5b).
However, epigenomics analysis revealed that a majority of ovarian-specific MTFs (10 of 14; 71%) were
enriched in patients who developed chemotherapy-resistant disease (Fig.5c). When we further looked
at the TFs with established roles in multiple cancers, including ovarian cancer, some of them were
differentially expressed (14 of 65 MTFs; 22%) and most of them (46 of 65 MTFs; 71%) were enriched
in open chromatin binding in the resistant group (SuppFig.S5a-b). The TFs enriched in resistant
disease were able to explain some of the differentially expressed genes between sensitive and resistant
tumors (SuppFig.S5c) and promoted signaling pathways related to chromatin remodeling, changes to
cell cycle, metabolism, and stress responses (SuppFig.S5d). Given the small overlap between NACT
and resistance signatures in gene expression (N=60; 2%) but very strong overlap in chromatin accessi-
bility binding (N=594; 57%) (Fig.5d-e), we refined the list of DBFs that could be driving persistence
by converging the signature revealed in NACT and now in resistant tumors (Fig.5f). This led us to
identify 178 DBFs which we defined as the epigenetic signature of chemotherapy persister cells (Fig.5f
and SuppFig.S5e-f). To understand if these factors need to act together or if they are result of a
sum of different networks in different cells we first looked at the absolute expression of the persister
signature factors in individual cells. At least at the level of detection, we see that the entire signature
showed positive correlation in NACT (SuppFig.S6a). Additionally, many of the factors that comprise
the epigenetic signature are highly expressed in ovarian cancer cell lines and are important for ovarian
cancer cell survival (SuppFig.S6b).

Next, we sought to classify the genes from the epigenetic persister signature based on their function,
and known association with ovarian cancer. Overall, the signature consisted of 113 TFs with known
motifs, including many members of the basic leucine zipper (bZIP), basic helix–loop–helix (bHLH),
and zinc-finger (ZF) families (Fig.5g). The TFs in the signature included 26 TFs with established
roles in ovarian cancer including MECOM, PAX8, WT1 and ESR1 and TFs linked to cancer stemness
such as SOX2, KLF4, and PAX6. Several of the factors in the signature are responsive to hormonal
signaling (AR, ESR1, ESR2, ESRRA), including PGR which has been linked to HGSOC progression
and metastasis [33]. Additionally, 65 members of the signature used to define persister cells were
chromatin regulators. These included families of chromatin remodelers, histone readers such as BRD4
and BRD2, histone writers like PAF1 and NSD2 and histone erasers including HDAC2 and RCOR1. A
smaller proportion of the DBFs have known roles in DNA repair including BRCA1, RAD21, PARP1,
and SMC3 and as elongation factors such as ELL2 and NELFE. The signature also includes key cell
cycle regulators such as APC, CDKN1B and SRC. The activity of these factors together may be dys-
regulated to promote a persister-like state in malignant epithelial cells that may drive resistance to
chemotherapy. The full persister signature DBFs and their features may be found in Table S1.

In order to define the signature at the single cell level, we calculated an enrichment score of the
178 DBF per cell, and between the three groups - Näıve Sensitive, Näıve Resistant, and NACT cells
(Fig.6a-b) and show a significant increase between sensitive and resistant, and between resistant and
NACT. Interestingly, cells with high persister signature scores came from multiple lineages of epithelial
cells (Fig.6c-d) indicating that the potential for persistence is not directly encoded in the transcription
profile. The cycling cluster was the one with the lowest persister score.

The correlation of DBF scores between näıve tumors and residual disease highlights the cooper-
ativity of the factors that comprise the persister signature (Fig.6e). By contrast with näıve disease,
the persister signature was closely correlated in NACT and mostly inversely correlated with all other
DBFs. Together the cooperative patterns of these DBFs in the epigenetic signature and their targets
may be responsible for the change in cell state towards a persister fate. Finally, to understand if the
prediction of the targets for the persister signature could help us identify the major pathways shown to
be implicated in response to chemotherapy, we compared our persister DBF to known gene signatures
identified in residual HGSOC or associated with quiescence in other tumors [19, 25]. The top gene
signatures with the most overlap were cytokine, stress-associated, and interferon signaling processes
(Fig.6f). Stress-associated differentially expressed genes were largely concordant with the predicted
regulation at the epigenetic level, supporting the role of the persister signature in regulation of stress
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responses (Fig.6g).

Persister signature separates sensitive and resistant tumors in Patient De-

rived Xenograft models of HGSOC

One of the limitations of the analysis of our patient cohort is the absence of paired samples before and
after chemotherapy. In order to modulate treatment and test the significance of our persister signature
before and after the carboplatin/taxol regimen, we used patient-derived xenografts (PDX) [34, 35].
HGSOC Tumors from three different patients were grafted in immunocompromised mice and treated
with 3 to 4 cycles of chemotherapy. Tumor tissue from each PDX was collected before treatment
(Untreated) and after the therapeutic regimen (Residual) and sequenced via single-cell multiomic pro-
filing (GEX + ATAC)(Fig.7a). All of the models were from patients with a median age 64 (range,
59-75) who presented with high stage and high grade disease (SuppFig.S7a). Based on the changes
in tumor size following treatment over time, the PDXs were classified as sensitive (PH27), stable dis-
ease (PH235), and resistant (PH626) (Fig.7b). After filtering out mouse cells based on gene expression
(SuppFig.S7b-d) and quality control (SuppFig.S7e), we obtained high quality data for 10,591 cells. Mi-
tochondrial DNA variants show that the clonality of the samples does not change with chemotherapy
treatment, suggesting non-genetic mechanisms underlying tumor response to chemotherapy (Fig.7c).
The entire PDX cohort was then pooled after batch correction (Fig.7d) and cell-types were identified
using an unsupervised clustering and marker validation from gene expression (SuppFig.S8a-b). The
top gene expression markers for each cell type validate the cell type annotation (SuppFig.S8c) and
their comparison to SingleR scores show us the most similar cell types in the HPCA database (Supp-
Fig.S8d). We identified changes in the proportions of epithelial cell sub-populations, including ciliated
and cycling cells, and two largely patient-specific clusters in PH235 (SuppFig.S8e). The enrichment
score of the 178 DNA binding factors per cell (Fig.7e-f) revealed high persister signature scores coming
from multiple lineages of epithelial cells (SuppFig.S9a). There was a significant increase in the average
scores across the three untreated PDXs, with scores increasing from sensitive to stable to resistant
(Fig.7f). There was also an increase in the average score of the persister signature in residual tumors
overall compared to näıve PDX tumors (SuppFig.S9b). Interestingly, following treatment, the average
score of the persister signature increased in the sensitive PDX (PH27), whereas the resistant tumor
did not show a significant change albeit with an initial higher score (Fig.7g-h and SuppFig.S9c). The
higher score of the epigenetic signature in PH27-treated was also followed by differences in the cor-
relation of DBFs between untreated and residual PH27 tumors as predicted by ChromVAR analysis.
Before chemotherapy, the DBFs that make up the signature were largely dispersed, but in the residual
malignant epithelial cells, the epigenetic signature factors were more tightly correlated with each other
in two major clusters (Fig.7i). Conversely, The 178 factors that make up the epigenetic signature were
strongly correlated with each other in untreated resistant PDX (PH626) malignant epithelial cells and
became even more tightly correlated in the resistant tumor after chemotherapy (Fig.7j).

Subsequently, the differential enrichment of DBFs (TFs and chromatin remodelers) between un-
treated sensitive (PH27) and resistant (PH626) PDX tumors was predicted by ChromVAR analysis
(Fig.7k). As in the patient cohort, there was a differential enrichment in the DNA binding factor
score of several DBFs in resistant PDX tumors compared to sensitive PDX tumors. Many of the same
DBFs in the epigenetic signature were enriched in the resistant PDX epithelial cells (142 of 178) and
these factors were able to predict the differentially expressed genes between PH27 and PH626 (Fig.7l).
Genes differentially expressed in PH626 vs PH27 (SuppFig.S9d) promoted signaling pathways related
to angiogenesis, response to hypoxia, homeostasis, and hormonal response (SuppFig.S9e). Targets of
the epigenetic signature largely corresponded with an upregulation of signaling pathways related to
angiogenesis, hormonal response, stress response and changes to cell-cell adhesion (Fig.7m). When we
pooled all of the untreated and residual PDX tumors together and compared their differentially ex-
pressed genes (SuppFig.S9f), cell cycle related pathways were downregulated in residual tumors, while
angiogenesis and immune signaling responses were upregulated (SuppFig.S9g). As in the sensitive vs
resistant comparison, many of the DBFs in the signature were differentially enriched in the residual
PDX tumors (SuppFig.S9h) and their targets were differentially expressed (SuppFig.S9i). Pathway
analysis of the differentially upregulated gene targets of the signature factors corresponded to changes
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to cell-cell adhesion, metabolism, and immune signaling (SuppFig.S9j). Together these data sup-
port the potential of the epigenetic signature in predicting chemotherapy response and suggest that
persister-associated genes can change the phenotype of residual cancer cells to promote mechanisms
of cancer resistance.

Discussion

The survival and latent growth activity of chemoresistant cancer cells remains a significant barrier
to improving patient outcomes to cancer therapy. Here we sought to characterize the epigenetic and
transcriptional features of residual cancer cells to reveal a potential persister state associated with
chemotherapy resistance. We performed single-cell multiomic profiling on a cohort of treatment-näıve
and NACT-treated HGSOC patient tissues and identified a distinct epigenetic signature of persister
cells consisting of 178 TFs and chromatin remodelers. This epigenetic persister signature was highly
enriched in residual tumors and distinguished, albeit retrospectively, patient response in treatment-
näıve tumors. Importantly, this epigenetic signature was also correlated with chemotherapy sensitivity
and resistance in a PDX model of HGSOC.

To date, the investigation of chemoresistance in cancer has primarily focused on genetic mutations,
DNA repair deficiencies, and changes at the gene expression level [28, 30, 36, 37]. However, emerging
evidence suggests that epigenetic mechanisms, including changes to chromatin remodeling, may play
a pivotal role in cancer development [38] and the persistence of tumor cells following treatment [5].
Consistent with recent studies that have identified changes in chromatin accessibility in tumor cells
post-chemotherapy [39], we show that residual cancer cells following NACT display an enrichment of
open chromatin that corresponds with the activity of DBFs implicated in changes to the cell cycle,
stress responses, and oncogenic signaling processes. However, what we found is that some epigenetic
features are already present before treatment in cells from tumors that will persist therapy. Moreover,
even when comparing a sensitive PDX model before and after treatment, we found that there is an
adaptation from the tumor towards that persister state.

While the differentially expressed genes were not consistent in each condition, our identification of
an enriched signature composed of both TFs and chromatin remodelers in residual HGSOC, resistant
HGSOC, and resistant PDX tumors highlights the necessity of studying tumor resistance mechanisms
at the epigenetic level. The signature consists of TFs that have established roles in HGSOC such
as PAX8, MECOM, WT1 which are known to cooperate during the transition of FT towards onco-
genic programs [6]. Several members of the AP-1 family of TFs (including FOS, FOSB, FOSL1, JUN,
JUNB, and ATF3) linked to stress-adaptive transcriptional responses are also part of the epigenetic
signature [19]. Recently ATF3 has also been shown to promote a partial Epithelial to Mesenchymal
transition (EMT) state and linked to drug tolerant persister cells in HGSOC [40]. Further supporting
the role of response to stress in persister cells, the antioxidative response TFs NFE2L2, NFE2L1 and
YY1AP1 were also enriched in the persister state [5, 41]. AR, ESR1, PGR, NR3C1 and several other
TFs in the signature are critical in regulating hormone signaling pathways which may influence tumor
progression and response to therapy in HGSOC. While the presence of chromatin regulators includ-
ing BRD2, BRD4, HDAC2, KMT2D, NSD2, and SMARCA4 supports that idea that the features of
persistence to chemotherapy have to be highly coordinated at the epigenetic level. Dysregulation of
the activity of these DBFs in persister cells may allow them to evade chemotherapy-induced apoptosis
through chromatin-mediated suppression of proliferation while maintaining the capacity to re-enter
the cell cycle.

Importantly, the accessibility of several stemness factors including SOX2, FOXM1, and KLF4 may
be influenced by these chromatin remodelers in the signature. Of these, SOX2, in cooperation with
JUNB, FOS, and TSC22D1, has already been implicated in the reactivation of the cell cycle after
a reversible cell cycle arrest seen in quiescent cancer cells [42, 43]. The inclusion of key cell cycle
regulators such as E2F1, E2F7, and CDKN1B within the signature further suggests that cell cycle
modulation may play a crucial role in chemoresistance. Residual cancer cells may exploit alternative
repair mechanisms for surviving chemotherapy stress via DNA repair factors such as BRCA1, PARP1,
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and RAD21 within the persister signature, suggesting the importance of targeting these pathways in
combination with standard-of-care therapies.

Based on our signature, we expect that cancer cells have several mechanisms that allow them to
persist in the face of chemotherapy. Both cycling and non-cycling lineages are believed to give rise
to persister cells [5] although entering into a transient quiescent-like phenotype may enable malignant
cells to tolerate chemotherapy. Cells can shift from the transient quiescent state and then subsequently
re-enter the cell cycle [42]. In our study, we found proportions of cells with a high score of the persis-
ter signature from all lineages, but a consistently lower average of the epigenetic signature in cycling
populations. Another adaptation of persister cells that comprise minimal residual disease is the abil-
ity to manage oxidative stress [5]. We identified antioxidant defense signaling pathways at the gene
expression level and as part of the epigenetic signature which included NRF2 and NRF1. NRF2 serves
as a master sensor of redox homeostasis in the cell and promotes compensatory antioxidant responses
when the balance of reactive oxygen species is impaired in the cell. NRF2 has been shown to be acti-
vated in dormant disease and its activation has been linked to metabolic reprogramming and cancer
recurrence [41]. Chemoresistant tumor subpopulations have already been shown to develop changes
in their chromatin landscapes [39] which may give cancer cells the potential to develop chemotherapy
adaptions in the first place. These could be mediated by the components of the epigenetic signature
including the SWI/SNF chromatin remodeling complex members ARID1A and the SMARCA fam-
ily and their interactions with pioneer factors such as KLF4 and the AP-1 family [44]. Following
chemotherapy, persister cells have also been shown to upregulate stemness and EMT responses which
promote cancer cell proliferation and subsequent metastatic outgrowth. In our study, residual tumor
cells shifted towards regions of open chromatin at binding sites for transcriptional regulators of cancer
stemness such as SOX2, KLF4, and the notch co-activator MAML1. Bopple et al generated DTP cells
in culture from HGSOC cell lines and show that DTPs display enhanced motility and that aggressive
clones display higher expression of ATF3 which they link to EMT related and stress response pathways
at the gene expression level [40].

The ability of the epigenetic persister signature to stratify treatment-näıve patient tumors into
chemotherapy-sensitive and -resistant groups suggests that epigenetic profiling could be used as a pre-
dictive tool for treatment response. Given the high recurrence rates observed in HGSOC, early identi-
fication of patients harboring tumors with a high persister signature score could facilitate personalized
treatment strategies aimed at pre-emptively targeting residual disease. In these patients, targeting
chromatin regulators or TF-driven transcriptional programs may enhance chemotherapy efficacy. For
instance, inhibitors of bromodomain proteins (e.g., BET inhibitors such as BRD4 inhibitors) [45] or
histone deacetylase inhibitors (HDACis) [46, 47] could be explored as adjuvant therapies to disrupt
the changes to the chromatin remodeling that enable cells to enter into a persister state.

This study provides important insights into the mechanisms of cancer cell persistence following
chemotherapy, but there are several limitations which should be acknowledged. While the findings
from the patient cohort were validated in PDX models, additional validation in larger patient cohorts
is needed to include different molecular subtypes from HGSOC. It is possible that the homologous
recombination (HR) status will determine different pathways for persistence. The precise mechanisms
by which the identified TFs and chromatin regulators drive persister cell survival remain to be fully
elucidated and may be specific for HR deficient versus proficient tumors. Future studies should focus
on functional evaluation of the synergistic role of these factors, to determine their likelihood to promote
the persister state.

Additionally, our patient cohort did not include paired tumor samples from before and after
chemotherapy based on the lack of clinical availability of these tissues. This may partially explain
why we did not find a consistent signature of the persister state at the gene expression level and
highlights the importance of looking upstream at the DBFs that orchestrate the changes in gene ex-
pression. The PDX cohort gave us this sequential information in tumors with different responses to
chemotherapy, however PDXs do not fully replicate the biology of HGSOC, especially because PDX
models lack critical components of the immune system.
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In conclusion, we have identified potential markers of persister cells in HGSOC at the epigenetic
level. Understanding and targeting the mechanisms underlying persister cell survival may reveal new
vulnerabilities that could be exploited to delay or prevent cancer recurrence.
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Resource Availability

Lead contact

Requests for further information and resources should be directed to and will be fulfilled by the lead
contact, Alexandre Gaspar-Maia (maia.alexandre@mayo.edu).

Data and materials availability

The Multiome (GEX + ATAC) datasets generated and analyzed in this study are available upon
request.
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Methods

Patient samples

Fresh tissues from patients with high grade ovarian cancer were collected at the time of primary
debulking surgery at Mayo Clinic, Rochester. Written informed consent was obtained from all patients
and documented in the electronic medical record. The procedures involving human participants were
conducted in accordance with the Declaration of Helsinki. All tumor tissues were coded with a patient
heterotransplant (PH) number to protect patient identity in accordance with the Mayo Clinic IRB
(09-008768 ) and in accordance with the Health Insurance Portability and Accountability Act through
the Mayo Clinic Ovarian Tumor Repository. Normal human fallopian tube specimens were obtained
from the Mayo Clinic Fallopian Tube Organoid Biobank, IRB 18-001967, with study approval under
IRB 18-007521.

Nuclei isolation

Nuclei isolation procedure for single cell Multiome experiments were performed as previously estab-
lished [48]. Fresh tumor tissue obtained from ovarian cancer patients after debulking surgery was
transferred in a sterile 10 cm culture dish and finely minced using scissors in KRB buffer. The sample
was centrifuged at 500 g for 5 mins at 4℃, and the supernatant was gently removed without disrupting
the pellet. Washes were repeated until the supernatant appeared clear. After the last centrifugation,
tissue was aliquoted in cryovials and frozen in liquid nitrogen. On the day of the experiment, frozen
tissue was cut into small pieces without thawing and used for the nuclei isolations. For fresh fallopian
tube specimens from patients undergoing salpingectomy were collected, single cells were isolated, red
blood cells were lysed, and the remaining cells were processed. The nuclei isolation was performed
based on the 10x genomics suggested protocol for Complex Tissues for Single Cell snATAC + snRNA.
After mincing, a small piece of tissue the size of rice grain was transferred to a 2 mL microcentrifuge
tube containing 300 µL of NP-40 Lysis Buffer and homogenized on ice using a pellet pestle. After
adding 1 mL of NP-40 Lysis Buffer, the samples were incubated on ice for either 5 or 30 minutes.
After incubation, the samples were strained using a 70 µm cell strainer, and the flow through was then
centrifuged 500 g for 5 mins at 4℃. After centrifugation, the nuclei were permeabilized by resuspending
in 100 µL of 0.1X Lysis Buffer and incubating on ice for 2 minutes. After adding 1 mL of Wash Buffer,
the nuclei were centrifuged at 500 g for 5 mins at 4°C, and the pellet was resuspended in Diluted nuclei
buffer. The nuclei concentration was assessed by PI staining using a Cellometer K2 cell counter. As
described below, five thousand nuclei were targeted for capture and used for single nuclei snATAC +
snRNA.

Single nuclei snATAC + snRNA-seq

Between 1000 and 8000 nuclei per sample were subjected to transposase assays (exposing buffered
nuclei to Tn5 transposase) before proceeding to single-cell partitioning into gel beads in emulsion,
barcoding, and pre-amplification. ATAC library construction and cDNA, followed by GEX library
construction, were done following established 10x Genomics protocols. The libraries concentration
was measured using Qubit High Sensitivity assays (Thermo Fisher Scientific), and library profiles were
assessed in a fragment analyzer (Advance Analytical) before sequencing. The snATAC and snRNA
libraries were sequenced for 50bp paired end sequencing, PE50 and 100PE, respectively on a HiSeq
4000, NextSeq 2000 or NovaSeq X 1.5B instrument (Illumina) before demultiplexing and alignment to
the reference genome (GRCh38/hg38).

PDX models

PDXs were developed by intraperitoneal injection of the donor tumor into female SCID beige mice
(C.B.-17/IcrHsd-Prkdcscid Lystbg; ENVIGO). Briefly, 0.1 to 0.3 cc of grossly malignant tissue was
minced and mixed 1:1 with McCoy’s media, supplemented with a one-time dose of Rituximab at the
time of initial tumor implantation to reduce the occurrence of spontaneous lymphomas, and injected
intraperitoneally. No enzymatic or mechanical tumor dissociation was performed. Mice were moni-
tored by routine palpation for engraftment and tumors were harvested when moribund. PDX models
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are reported here in accordance to the international minimal information standards. Treatments were
started when palpated tumors reached 0.5–1 cm2. Chemotherapy consisted of carboplatin (51mg·kg−1)
and paclitaxel (15mg·kg−1) administered intraperitoneally (IP) once a week. All therapies were ad-
ministered for 3 or 4 weeks for PH27, PH235, and PH626. The tumor size was assessed weekly by
ultrasound; three measurements per session for each animal were made and averaged.

Data analysis

Multiome data processing: The single nuclei snATAC + snRNA-seq data was processed using data
analysis pipeline previously published [48]. Sequenced reads from the gene expression (GEX) and DNA
accessibility (ATAC) droplet libraries were aligned and quantified using 10x Genomics Cell Ranger ARC
v2.0.0. The reads were aligned to the pre-built human reference genome GRCh38 - v2020-A-2.0.0 (May
3, 2021) provided by 10X Genomics. After quality control, data from each sample was processed using
Seurat [49] and Signac functions [50]. GEX and ATAC count matrices from each sample were merged
independently using Seurat. GEX count matrix was log-normalized, scaled to mean 0 and variance
1, and dimensionality reduction was performed using PCA on the top 2000 highly variable genes.
Uniform manifold approximation and projection (UMAP) for GEX was calculated using the top 50
principal components. Open chromatin peaks called per sample were merged using reduce function
from GenomicRanges R package, then the ATAC fragment count matrix was recalculated using Signac.
Merged peaks that were smaller than 20 base pairs or larger than 10000 base pairs were removed from
analysis. The ATAC count matrix was normalized using Term Frequency - Inverse Document Fre-
quency (TF-IDF) and dimensionality reduction performed using singular value decomposition (SVD)
using only peaks with non-zero counts in at least 20 cells - together known as latent semantic indexing
(LSI) that generates LSI components. The UMAP for ATAC was calculated using LSI components 2
to 50. Seurat’s weighted nearest neighbor (WNN) algorithm was used on principal components 1 to 50
(GEX) and LSI components 2 to 50 (ATAC) together to obtain a combined UMAP projection of both
modalities. The integrated data included 70,675 cells from 14 patient samples. Cells with more than
20% of reads mapped to mitochondrial genes, those with less than 200 unique genes detected (GEX),
those with less than 200 unique peaks detected (ATAC) and those with transcription start site (TSS)
enrichment score (as calculated by Signac) less than 1 were removed for quality control. After QC
filtering 52,864 cells were used for all downstream analysis.

Cell type identification: Cell type identification was performed using SingleR [51] in combination with
unsupervised clustering using a shared nearest neighbor (SNN) modularity optimization-based cluster-
ing algorithm performed by Seurat’s FindNeighbors and FindClusters functions. A subset of relevant
cell types curated from the Human Primary Cell Atlas [52] reference dataset from celldex was used
as the transcriptome reference for SingleR. Clusters that distinctly grouped by patients and contained
majority epithelial cells (as identified by SingleR) were all relabeled as epithelial cells. Markers for each
cell type was identified using Seurat’s FindAllMarkers function for validating the cell types identified.

Epithelial sub-clustering: To identify sub-populations within epithelial cells, we applied Harmony [53]
batch-correction on the GEX matrix containing only the epithelial subset, then performed unsuper-
vised clustering followed by marker identification using Seurat’s FindAllMarkers function. The markers
were overlapped with known markers to identify known cell sub-populations like cycling, ciliated and
secretory cells.

Differential gene expression analysis: Differential gene expression testing in GEX data was performed
on the log-normalized counts using Seurat’s FindMarkers function with default parameters unless spec-
ified otherwise. Wilcoxon Rank Sum test with p-values adjusted using Bonferroni correction based on
the total number of genes in the dataset. Statistically significant differentially expressed genes were
selected by keeping only genes that fall below the adjusted p-value threshold of 0.05. Differential gene
expression testing comparing any two conditions was always done for each cell type independently
(although shown together in the volcano plots for efficient visualization), unless specified otherwise.
To make sure that the results were not driven by a single patient sample we applied a leave-one-out
approach on all tests where we removed cells from one sample at a time redoing the tests and keeping
only the genes that passed the adjusted p-value threshold in all tests. Pathway analysis was performed
using singleseqgset R package. Gene set overrepresentation analysis was performed using gprofiler [54].
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Enrichment of DNA binding factors in ATAC data: DNA binding factor enrichment in open chromatin
(ATAC) data was estimated using ChromVAR [55] enrichment scores calculated using binding-site data
obtained from ReMap2022 [56]. Differential enrichment between groups of cells was calculated using
Seurat’s FindMarkers function (Wilcoxon Rank Sum test with p-values adjusted using Bonferroni cor-
rection) on the ChromVAR deviation scores (Z scores).

Persister signature: The epigenetic persister signature was defined starting from those DNA binding
factors that were significantly up-regulated (adjusted p value < 0.05 and average difference in Chrom-
VAR scores > 0) in the NACT samples in comparison with the Näıve samples. These factors were then
filtered for only those that were expressed in at least 1% of NACT cells, average ChromVAR score
> 0 in NACT cells, and average ChromVAR score < 0 in Näıve cells. This list was then intersected
with those factors that were significantly up-regulated in Näıve Resistant samples in comparison with
the Näıve Sensitive samples, yielding 178 DNA binding factors which we characterized as epigenetic
persister signature. The combined enrichment of all 178 DNA binding factors (signature score) per
cell was calculated using Seurat’s AddModuleScore function. Curated datasets were used to classify
persister signature factors as TFs [27, 57] and as chromatin regulators [58, 59].

Identification and removal of mouse cells in PDX data: The sequenced reads from the Multiome assay
performed on the PDX samples were aligned to both the mouse (mm10) and human (hg38) reference
genomes using 10x Genomics Cell Ranger ARC v2.0.0. All downstream processing was performed as
described above, on both of these genomes independently. The fraction of reads that map to mouse
genes and the fraction of reads mapping to human genes were calculated per cell. Unsupervised clus-
tering and this fraction were used to determine the cluster of mouse cells.

Prediction of TF regulatory relationships with target genes: The relationship between transcription
factors and their target genes were inferred from both GEX and ATAC data by using FigR [27]. FigR
combines gene-peak correlation calculated from both modalities to identify domains of regulatory chro-
matin (DORC) which are gene neighborhoods that likely have high regulatory activity. The algorithm
then combined relative enrichment of TF motifs in DORCs and the correlation of TF RNA expression
and DORC accessibility to identify TFs that activate or repress different target genes.

Mitochondrial DNA variant analysis: Single-cell mitochondrial DNA genotyping was performed using
mgatk [60] on the snATAC data from each sample. Default parameters were used while running mgatk.
Only variants that were confidently detected in more than 5 cells and those with a strand correlation
> 0.65 were considered after QC.

Copy number variants identification: Numbat [24] was used on the snRNA data from each sample for
identifying copy number variants, using default parameters. Cells with posterior probability score >

0.55 were considered CNV high, and those with probability < 0.45 were considered CNV low, and
those in between 0.45 and 0.55 were considered ambiguous.

Co-accessibility plots: Co-accessibility scores between open-chromatin regions in each cell type were
calculated using Cicero [61]. The co-accessibility plots around genes were plotted using Seurat’s Cov-
eragePlot function.

DeMap Dependency Analysis: The dependency and expression data used in this manuscript were de-
rived from the Public 24Q4 dataset, using all HGSOC cell lines. These data are available online, at
https://depmap.org/portal [62].
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15. Vázquez-Garćıa, I. et al. Ovarian cancer mutational processes drive site-specific immune evasion.
Nature 612, 778–786 (2022).

16. Brand, J. et al. Fallopian tube single cell analysis reveals myeloid cell alterations in high-grade
serous ovarian cancer. Iscience 27 (2024).

17. Olalekan, S., Xie, B., Back, R., Eckart, H. & Basu, A. Characterizing the tumor microenvironment
of metastatic ovarian cancer by single-cell transcriptomics. Cell reports 35 (2021).

18. Hornburg, M. et al. Single-cell dissection of cellular components and interactions shaping the
tumor immune phenotypes in ovarian cancer. Cancer cell 39, 928–944 (2021).

19. Zhang, K. et al. Longitudinal single-cell RNA-seq analysis reveals stress-promoted chemoresis-
tance in metastatic ovarian cancer. Science advances 8, eabm1831 (2022).

20. Buenrostro, J. D. et al. Integrated single-cell analysis maps the continuous regulatory landscape
of human hematopoietic differentiation. Cell 173, 1535–1548 (2018).

21. Sundaram, L. et al. Single-cell chromatin accessibility reveals malignant regulatory programs in
primary human cancers. Science 385, eadk9217 (2024).

22. Kim, J. et al. High-grade serous ovarian cancer arises from fallopian tube in a mouse model.
Proceedings of the National Academy of Sciences 109, 3921–3926 (2012).

23. Miller, T. E. et al. Mitochondrial variant enrichment from high-throughput single-cell RNA se-
quencing resolves clonal populations. Nature biotechnology 40, 1030–1034 (2022).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.16.649175doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.16.649175


24. Gao, T. et al. Haplotype-aware analysis of somatic copy number variations from single-cell tran-
scriptomes. en. Nat. Biotechnol. 41, 417–426 (Mar. 2023).

25. Patel, A. P. et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblas-
toma. Science 344, 1396–1401 (2014).

26. Ulrich, N. D. et al. Cellular heterogeneity of human fallopian tubes in normal and hydrosalpinx
disease states identified using scRNA-seq. Developmental cell 57, 914–929 (2022).

27. Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. Cell
Genomics 2, 100166. issn: 2666-979X (2022).

28. Verhaak, R. G. et al. Prognostically relevant gene signatures of high-grade serous ovarian carci-
noma. The Journal of clinical investigation 123 (2012).

29. Millstein, J. et al. Prognostic gene expression signature for high-grade serous ovarian cancer. en.
Ann. Oncol. 31, 1240–1250 (Sept. 2020).

30. Matondo, A. et al. The prognostic 97 chemoresponse gene signature in ovarian cancer. Scientific
reports 7, 9689 (2017).

31. Hammal, F., De Langen, P., Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of
Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of
DNA-binding sequencing experiments. Nucleic acids research 50, D316–D325 (2022).

32. Reimand, J. et al. g: Profiler—a web server for functional interpretation of gene lists (2016
update). Nucleic acids research 44, W83–W89 (2016).

33. Kim, O. et al. Targeting progesterone signaling prevents metastatic ovarian cancer. Proceedings
of the National Academy of Sciences 117, 31993–32004 (2020).

34. Weroha, S. J. et al. Tumorgrafts as in vivo surrogates for women with ovarian cancer. Clinical
Cancer Research 20, 1288–1297 (2014).

35. Liu, Y. et al. Gene expression differences between matched pairs of ovarian cancer patient tumors
and patient-derived xenografts. Scientific reports 9, 6314 (2019).

36. Patch, A.-M. et al.Whole–genome characterization of chemoresistant ovarian cancer. Nature 521,

489–494 (2015).

37. Network, C. G. A. R. et al. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609
(2011).

38. Terekhanova, N. V. et al. Epigenetic regulation during cancer transitions across 11 tumour types.
Nature 623, 432–441 (2023).

39. Croft, W. et al. The chromatin landscape of high-grade serous ovarian cancer metastasis identifies
regulatory drivers in post-chemotherapy residual tumour cells. Communications Biology 7, 1211
(2024).

40. Böpple, K. et al. ATF3 characterizes aggressive drug-tolerant persister cells in HGSOC. Cell death
& disease 15, 290 (2024).

41. Fox, D. B. et al. NRF2 activation promotes the recurrence of dormant tumour cells through
regulation of redox and nucleotide metabolism. Nature metabolism 2, 318–334 (2020).

42. Xie, X. P. et al. Quiescent human glioblastoma cancer stem cells drive tumor initiation, expansion,
and recurrence following chemotherapy. Developmental cell 57, 32–46 (2022).

43. Fu, R. Z. et al. Identification of genes with oscillatory expression in glioblastoma: The paradigm
of SOX2. Scientific Reports 14, 2123 (2024).

44. Wolf, B. K. et al. Cooperation of chromatin remodeling SWI/SNF complex and pioneer factor
AP-1 shapes 3D enhancer landscapes. Nature structural & molecular biology 30, 10–21 (2023).

45. Karakashev, S. et al. BET bromodomain inhibition synergizes with PARP inhibitor in epithelial
ovarian cancer. Cell reports 21, 3398–3405 (2017).

46. Moufarrij, S. et al. Combining DNMT and HDAC6 inhibitors increases anti-tumor immune sig-
naling and decreases tumor burden in ovarian cancer. Scientific reports 10, 3470 (2020).

47. Gupta, V. G. et al. Entinostat, a selective HDAC1/2 inhibitor, potentiates the effects of olaparib in
homologous recombination proficient ovarian cancer. Gynecologic oncology 162, 163–172 (2021).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.16.649175doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.16.649175


48. Sandoval, L. et al. Characterization and Optimization of Multiomic Single-Cell Epigenomic Pro-
filing. Genes 14. issn: 2073-4425 (2023).

49. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21 (2019).

50. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state
analysis with Signac. Nat Methods 18, 1333–1341 (2021).

51. Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profi-
brotic macrophage. en. Nat. Immunol. 20, 163–172 (Feb. 2019).

52. Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D. A. An expression atlas
of human primary cells: inference of gene function from coexpression networks. BMC Genomics

14, 632 (Sept. 2013).

53. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. en.
Nat. Methods 16, 1289–1296 (Dec. 2019).

54. Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler–a web-based toolset for
functional profiling of gene lists from large-scale experiments. en. Nucleic Acids Res. 35, W193–
200 (July 2007).

55. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-
factor-associated accessibility from single-cell epigenomic data. en. Nat. Methods 14, 975–978
(Oct. 2017).

56. Hammal, F., de Langen, P., Bergon, A., Lopez, F. & Ballester, B. ReMap 2022: a database of
Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of
DNA-binding sequencing experiments. en. Nucleic Acids Res. 50, D316–D325 (Jan. 2022).

57. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

58. Ru, B. et al. CR2Cancer: a database for chromatin regulators in human cancer. Nucleic Acids

Research 46, D918–D924 (2018).

59. Zhang, Y. et al. CRdb: a comprehensive resource for deciphering chromatin regulators in human.
Nucleic Acids Research 51, D88–D100 (2023).

60. Lareau, C. A. et al. Massively parallel single-cell mitochondrial DNA genotyping and chromatin
profiling. en. Nat. Biotechnol. 39, 451–461 (Apr. 2021).

61. Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin
accessibility data. en. Mol. Cell 71, 858–871.e8 (Sept. 2018).

62. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 22, 2025. ; https://doi.org/10.1101/2025.04.16.649175doi: bioRxiv preprint 

https://doi.org/10.1101/2025.04.16.649175


Main Figure Titles and Legends

c

d

b

a

e

f

T cell:CD8+

T cell:CD4+

T cell:Other

NK cell

B cell

Monocyte

Macrophage

DC

Neutrophils

Endothelial cells

Fibroblasts

Epithelial cells

T cell:CD8+ (3055)
T cell:CD4+ (705)
T cell:Other (885)
NK cell (1973)
B cell (75)
Monocyte (1186)
Macrophage (1560)
DC (181)
Neutrophils (92)
Endothelial cells (1140)
Fibroblasts (4753)
Epithelial cells (37259)

T cell:CD8+
T cell:CD4+
T cell:Other
NK cell
B cell
Monocyte
Macrophage
DC
Neutrophils
Endothelial cells
Fibroblasts
Epithelial cells

FT 

(16651)

Naive 

(27029)

Neoadjuvant 

(9184)

FT243 (6650)
FT244 (2606)
FT246 (3031)
FT281 (3436)
FT283 (928)
PH1199 (1673)
PH1230 (6043)
PH1239 (8305)
PH1243 (2574)
PH1302 (3763)
PH1303 (4671)
PH1214 (3912)
PH1238 (3092)
PH1252 (2180)

F
T

N
a

iv
e

N
A

C
T

0.00 0.25 0.50 0.75 1.00

FT283

FT281

FT246

FT244

FT243

PH1303

PH1302

PH1243

PH1239

PH1230

PH1199

PH1252

PH1238

PH1214

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

GEX + ATAC UMAP

Proportion of cells per celltype (GEX)

T cell:CD8+
T cell:CD4+
T cell:Other

NK cell
B cell

Monocyte
Macrophage

DC
Neutrophils

Endothelial cells
Fibroblasts

Epithelial cells

P
T

P
R

C
F

Y
N

C
C

L
5

S
T
A
T

4
C

X
C

R
4

S
R

G
N

A
R

H
G

A
P

1
5

T
H

E
M

IS
S

Y
T

L
3

C
D

9
6

E
T

S
1

B
C

L
1
1
B

IL
7
R

IK
Z

F
1

C
A

M
K

4
A

O
A

H
C

C
L
4

C
D

7
9
A

B
L
K

J
C

H
A

IN
F

C
R

L
5

M
S

4
A

1
F

C
R

L
1

T
N

F
R

S
F

1
7

T
N

F
R

S
F

1
3
B

P
2
R

X
1

T
C

L
1
A

L
A

P
T

M
5

Z
E

B
2

T
B

X
A

S
1

R
A

B
3
1

E
L
M

O
1

C
H

S
T

1
1

S
L
C

8
A

1
C

D
1
6
3

C
1
Q

B
C

1
Q

A
S

L
C

O
2
B

1
C

1
Q

C
R

G
S

1
D

O
C

K
4

C
D

1
E

H
L
A

D
Q

B
2

C
S

F
2
R

A
C

D
1
C

H
L
A

D
Q

A
1

G
P

R
1
8
3

IT
G

A
X

H
D

C
IL

1
R

L
1

T
P

S
A

B
1

T
R

E
M

1
F

C
A

R
C

S
F

3
R

T
P

S
B

2
C

P
A

3
L
D

B
2

V
W

F
P

T
P

R
B

E
R

G
F

LT
1

E
M

P
1

E
P
A

S
1

P
E

C
A

M
1

E
M

C
N

C
C

L
1
4

D
C

N
L
A

M
A

2
C

R
IS

P
L
D

2
C

O
L
6
A

2
F

B
L
N

1
C

O
L
6
A

3
R

B
M

S
3

F
B

N
1

E
B

F
1

C
O

L
6
A

1
M

E
C

O
M

R
H

E
X

E
R

B
B

4
P

P
P

1
R

9
A

K
IA

A
1
2
1
7

N
P
A

S
3

B
M

P
R

1
B

S
A

M
D

1
2

D
N

A
H

1
4

M
E

IS
1

Average

Expression

low

high

Percent 

Expressed

0
25
50
75

Transcriptomics

Epigenomics

 

Chromatin
Accesibility (ATAC)  

Cell type

Cell type

Cell type

Markers

C
e

ll 
ty

p
e

S
a

m
p

le

Proprotion of cells

Group

Sample

GEX UMAP

N = 52864

N = 52864

N = 52864 N = 52864 N = 52864

N = 52864

ATAC UMAP

Top 10 markers for each cell type (GEX)

UMAP 1

U
M

A
P

 2

UMAP 1

U
M

A
P

 2

Gene Expression
(GEX)

Multiomic Profiling of Patient Cohort

HGSOC Naive FT

N = 5 N = 6

HGSOC NACT

N = 3

Beads Droplets

Cell-Type Labels

snRNA 

snATAC

Nuclei Oil

16651 cells 27029 cells 9184 cells
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Figure 3: Comparison of transcriptomic and epigenomic programs between non-malignant FTs
and HGSOC. (a) Schematic overview of FT and Näıve patient cohorts. (b) Volcano plot showing differentially
expressed genes per cell type between FT and Näıve tumors. TFs known to play a role in ovarian cancer
malignant programs are highlighted. Bar plots on the right show the proportion of genes per cell type up-
regulated in FT and Näıve groups respectively. (c) Predicted ontology of hallmark gene sets enriched in FTs
and Näıve tumors. (d) Schematic overview showing how pairwise correlations of DNA Binding Factors (DBF)
are calculated. DBF enrichment scores per cell are calculated using ChromVAR followed by calculation of
Pearson correlation between enrichment scores. (e) Differences in cooperative binding of DNA binding factors
between FTs and Näıve tumor, quantified by correlation of enrichment scores across epithelial cells. Only
the top 10 DNA binding factors enriched in FTs and Näıve tumors and the top 10 DNA binding factors
differentially expressed in FTs and Näıve tumors are shown. (f) Gene regulatory networks highlighting the
top TFs that underlie each state and their activating or repressive relationships to their target genes. TF-
target gene relationships were inferred using FigR. Master regulators predominantly active in FT, Näıve and
those that are common to both are listed on the left, right and middle respectively. (g) Barplots summarizing
the proportion of activating (green), repressive (red) and inconsistent (grey) relationships predicted for all
shared TFs in FTs and Näıve tumors. (h) Barplots highlighting the proportion of activating, repressive, and
inconsistent relationships for each TF with activity in both FTs and Näıve tumors based on FigR predictions.
The total number of TF-target gene relationships for both FT and Näıve tumors is shown as a heatmap below.
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Figure 4: Chemotherapy modulates the transcriptomic and epigenomic landscape of HGSOC. (a)
Schematic overview of Näıve and NACT patient cohorts. (b) Volcano plot showing differentially expressed genes
in epithelial cells between Näıve and NACT tumors highlighting (c) overlap of gene sets predictive of patient
response/outcomes. (d) Differential enrichment of DNA binding factors (TFs and chromatin remodelers) in
epithelial cells between Näıve and NACT tumors predicted by ChromVAR analysis. (e) Characterization of
DNA binding factors that are enriched in NACT and depleted in Näıve tumors, while also expressed in at
least 1% of NACT epithelial cells. (f) Overview schematic of how differentially expressed genes are labeled
based on their FigR predicted TF relationships. (g) Volcano plot showing differentially expressed genes in
epithelial cells between Näıve and NACT tumors highlighting predicted targets of the TFs enriched in NACT
and their activating or repressive relationships. (h) Over-representation analysis to predict which pathways
are enriched by activated gene targets that are differentially upregulated in NACT and repressed gene targets
that are differentially downregulated in NACT.
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Figure 5: Identification of an epigenetic signature enriched in residual HGSOC post-chemotherapy
that distinguishes sensitive and resistant patients. (a) Näıve tumors can be classified as sensitive or
resistant based on patient clinical response. (b) Differentially expressed genes in epithelial cells between Näıve
sensitive and resistant tumors with ovarian-specific master transcription factors labeled. (c) Differential enrich-
ment of DNA binding factors (TFs and chromatin remodelers) in epithelial cells between Näıve sensitive and
resistant tumors predicted by ChromVAR analysis with ovarian-specific master transcription factors labeled.
(d) Overlap of differentially expressed genes between residual tumors treated with NACT and Näıve-resistant
tumors. (e) Overlap of DNA binding factors enriched in residual tumors treated with NACT and Näıve-
resistant tumors. (f) The factors enriched in in NACT were filtered based on ChromVAR scores and gene
expression. Their overlap with DBFs enriched in resistant patient tumors led to 178 DBFs which may encap-
sulate a signature of persistence after chemotherapy at the epigenetic level. (g) Classification of the epigenetic
persister signature into TFs, or non-TFs, function, and known association with ovarian cancer.
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Figure 6: The epigenetic signature distinguishes patient chemotherapy response and promotes
downstream oncogenic signaling pathways. (a) The enrichment of each of the DBFs that make up the
persister signature was calculated and summarized as a single score for the entire signature per cell. (b) Violin
plots showing the distribution of persister signature score per cell between Näıve sensitive, resistant, and NACT
tumors. Violin dots represent the mean signature score for each group. Dots represent mean values for each
group and the significance of each comparison is calculated using the two-sided pairwise Wilcox test with ****
= p<0.0001 (c) UMAP projections of GEX data from Näıve and NACT epithelial cells with the signature score
shown as a heatmap. Identified epithelial sub-clusters are shown in the inset plot. (d) Violin plots showing the
distribution of persister signature score per cell between epithelial sub-clusters. (e) Differences in correlation
of DNA binding enrichment scores calculated using ChromVAR, between Näıve tumors and NACT tumors.
The members of the persister signature are highlighted on top. (f) HGSOC established pathways predicted
to be regulated by the persister signature using FigR analysis. (g) Stress-associated differentially expressed
genes and their predicted regulation by the epigenetic persister signature between Näıve-sensitive and resistant
tumors and between Näıve and NACT tumors. Bolded genes are members of the epigenetic persister signature.
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Figure 7: Paired patient derived xenograft models display an enrichment of the Epigenetic sig-
nature and its downstream signaling pathways following chemotherapy. (a) HGSOC PDX cohort of 
Näıve and chemotherapy treated residual disease analyzed by single cell multiomic profiling. (b) PDX tumors 
were classified a s s ensitive, n eutral, a nd r esistant b ased o n c hanges i n t umor a rea f ollowing chemotherapy 
treatment over time. (c) Heatmap showing the allele frequencies of mitochondrial variants predicted using 
mgatk on the snATAC data from the PDX samples. (d) UMAP projections of GEX data from PDX epithelial 
cells after batch correction using Harmony, colored by sample. (e) UMAP projections of GEX data from PDX 
epithelial cells with the signature score shown as heatmap. (f) Violin plots showing the distribution of persis-
ter signature score per cell between untreated sensitive, neutral, and resistant PDX tumors. Dots represent 
mean values for each group and the significance of each comparison i s calculated using the two-sided pairwise 
Wilcox test with ns = p>0.05 and **** = p<0.0001. Changes in the persister signature score before and 
after chemotherapy treatment in PH27 (sensitive PDX tumor) (g) and in PH626 (resistant PDX tumor) (h). 
Changes in the correlation of DNA binding factor enrichment scores before and after chemotherapy treatment 
in PH27 (i) and in PH626 (j). (k) Volcano plot showing differential enrichment o f DNA binding f actors (TFs 
and chromatin remodelers) between untreated PH27 and PH626 predicted by ChromVAR analysis. The fac-
tors in the persister signature are highlighted. (l) Volcano plot showing differentially expressed genes between 
untreated PH27 and PH626 tumors highlighting predicted targets of the persister signature TFs enriched in 
PH626 and their activation or repression. (m) Over-representation analysis to predict which pathways are 
enriched by activated gene targets that are differentially upregulated in PH626 and repressed gene targets that 
are differentially downregulated in PH626.
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