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SUMMARY

High-grade serous ovarian carcinomas (HGSOCs)
with BRCA1/2 mutations exhibit improved outcome
and sensitivity to double-strand DNA break (DSB)-
inducing agents (i.e., platinum and poly(ADP-ribose)
polymerase inhibitors [PARPis]) due to an underly-
ing defect in homologous recombination (HR). How-
ever, resistance to platinum and PARPis represents
a significant barrier to the long-term survival of
these patients. Although BRCA1/2-reversion muta-
tions are a clinically validated resistance mecha-
nism, they account for less than half of platinum-
resistant BRCA1/2-mutated HGSOCs. We uncover
a resistance mechanism by which a microRNA,
miR-622, induces resistance to PARPis and plat-
inum in BRCA1 mutant HGSOCs by targeting the
Ku complex and restoring HR-mediated DSB repair.
Physiologically, miR-622 inversely correlates with
Ku expression during the cell cycle, suppressing
non-homologous end-joining and facilitating HR-
mediated DSB repair in S phase. Importantly, high
expression of miR-622 in BRCA1-deficient HGSOCs
is associated with worse outcome after platinum
chemotherapy, indicating microRNA-mediated
resistance through HR rescue.
INTRODUCTION

Approximately 15%–20% of patients with epithelial ovarian can-

cer (EOC) harbor germline (10%–15%) or somatic (6%–7%)

BRCA1 or BRCA2mutations (TCGA, 2011). Furthermore, epige-
netic silencing of BRCA1 via promoter hypermethylation occurs

in �10%–20% of EOCs. Due to the underlying defect in DNA

repair via homologous recombination (HR), patients with

BRCA1/2-inactivated EOCs exhibit enhanced sensitivity to

platinum analogs and other cytotoxic drugs that induce double-

strandDNAbreaks (DSBs) such as the poly(ADP ribose) polymer-

ase inhibitors (PARPis) (Fong et al., 2009). Of these drugs,

olaparib was granted accelerated approval by the US Food and

Drug Administration for use in EOC patients with germline

BRCA1/2 mutations (Fong et al., 2009). However, a substantial

fraction of these patients do not respond or eventually develop

resistance to theseagents, suggesting that de novoandacquired

platinum and PARPi resistance is a significant clinical problem in

HR-defective EOCs. The most common mechanism of resis-

tance to these agents in BRCA1/2-mutated tumors is secondary

intragenic mutations restoring BRCA1 or BRCA2 protein func-

tionality; 46%of platinum-resistantBRCA-mutated EOCs exhibit

tumor-specific secondary mutations that restore the open

reading frame of either BRCA1 or BRCA2 (Norquist et al., 2011).

The interplay of the two major mechanistically distinct DSB

repair pathways, HR and non-homologous end-joining (NHEJ)

(Chapman et al., 2012b; Ciccia and Elledge, 2010), is also critical

for resistance to platinum and PARPis. Surprisingly, the sensi-

tivity of BRCA1-mutant tumors to PARPis is almost completely

abolished by loss of the NHEJ factor 53BP1 (Bouwman et al.,

2010; Bunting et al., 2010; Chapman et al., 2012a), which also

correlates with the restoration of competent HR. Furthermore,

a recent small hairpin RNA (shRNA) screen for hairpins promot-

ing survival of BRCA1-deficient mouse mammary tumors to

PARPis identified 53BP1 and REV7, a factor implicated in

NHEJ, as the top hits (Boersma et al., 2015; Xu et al., 2015). How-

ever, unlike BRCA1/2 reversion mutations, these resistance

mechanisms have not been shown to be clinically relevant for

patients with BRCA1/2-inactivated EOCs. However, it is feasible

that the NHEJ pathway may be relevant for PARPi resistance in
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EOCs, and other NHEJ factors may contribute to the resistant

phenotype.

Here, we uncover mechanism of resistance to PARPi and plat-

inum inBRCA1-mutated EOCs that involvesmicroRNA (miRNA)-

mediated regulation of NHEJ. Specifically, we have identified a

miRNA, miR-622, that regulates the expression of the Ku-com-

plex and specifically suppresses NHEJ during S-phase. Consis-

tent with this effect, overexpression of miR-622 rescues the

HR-deficiency ofBRCA1mutant ovarian tumor lines and induces

resistance to PARPi and platinum-based drugs. Furthermore,

expression of miR-622 in two cohorts of patients withBRCA1-in-

activated EOCs correlates with reduced disease-free survival

after platinum-based therapy, suggesting direct clinical rele-

vance in patients with EOC.

RESULTS

miR-622 ‘‘Desensitizes’’ BRCA1-Mutant Cells to PARP
Inhibitors and Platinum-Based Therapy
Recently, we used PARPi sensitivity as a marker for HR defi-

ciency to conduct a functional screen for identifying miRNAs

that downregulate HR in a breast cancer line, MDA-MB231

(Choi et al., 2014). We characterized the miRNAs (miR-1255b,

miR-193b*, andmiR-148b*) that suppress HRby downregulating

the expression of BRCA1, BRCA2, and RAD51. Strikingly, in that

screen, sixmiRNAs (miR-644, miR-492, miR-613, miR-577, miR-

622, and miR-126*) (Choi et al., 2014) demonstrated a surprising

trend of inducing PARPi resistance. Our original screen was con-

ducted to assess the impact of these miRNAs on PARPi sensi-

tivity in a BRCA proficient breast cancer line MDA-MB231.

Considering BRCA-mutant cells are responsive to PARPi, we

also examined the impact of these miRNAs in a BRCA1-mutant

breast line, MDA-MB436. There was no significant impact of

miR-644, miR-492, miR-613, miR-577, and miR-126* on PARPi

sensitivity in MDA-MB231 and MDA-MB436 cells (Figure S1A);

however, miR-622 significantly induced resistance to the clin-

ical-grade PARPis olaparib and veliparib specifically in the

MDA-MB436 cells (Figure S1B). Furthermore, we tested the

impact of miR-622 on PARPi sensitivity on the BRCA1-mutant

EOC line UWB1.289 and found that overexpression of miR-622

caused resistance to both PARPis, olaparib and veliparib (ABT-

888) (Figure 1A). Interestingly, miR-622 expression also caused

resistance to the platinum-based chemotherapeutic agents car-

boplatin and cisplatin in the BRCA1-mutated UWB1.289 cells

(Figure 1A). Importantly, restoring BRCA1 expression in

UWB1.289 cells completely negates the impact of miR-622 on

PARPi sensitivity and also sensitivity to platinum drugs (Fig-

ureS1C). In order to exclude the possibility that theBrca1-mutant

lines MDA-MB436 and UWB1.289 have acquired other unac-

countedmutations thatmay contribute to the phenotype induced

bymiR-622,weexpressedmiR-622 inBRCA1nullmouseembry-

onic fibroblasts (MEFs) and assessed sensitivity to olaparib and

cisplatin. Consistent with our previous results, miR-622 signifi-

cantly ‘‘desensitized’’ Brca1�/� MEFs to both drugs (Figure 1B)

but did not impact the sensitivity of their wild-type counterparts

(Figure S1D). Together, these data suggest that the impact of

miR-622 on PARPi- and platinum-based therapy is specific to

the loss of BRCA1.
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Expression of miR-622 Correlates with Response to
Platinum Chemotherapy in BRCA1-Inactivated EOCs
To evaluate the association between miR-622 expression and

platinum response in EOCs with BRCA1 inactivation, we as-

sessed data from the ovarian TCGA dataset (TCGA, 2011). In

that dataset, 89 EOCs (all high-grade serous ovarian carcinomas

[HGSOCs]) exhibited BRCA1-inactivation; 38 EOCs harbored

BRCA1 mutations (out of 316 EOCs that underwent whole-

exome sequencing), while 51 tumors (out of 489 tumors with

DNA promoter methylation data) harbored BRCA1 epigenetic

silencing via promoter hypermethylation. All patients underwent

surgery followed by platinum-based chemotherapy. We evalu-

ated the association between miR-622 expression and platinum

response using various cutoffs for low versus high miR-622

expression. In all cases, we consistently found that tumors

with higher miR-622 expression were associated with inferior

response to first-line platinum-based chemotherapy and worse

survival. Specifically, using median miR-622 expression as a

threshold to classify BRCA1-inactivated EOCs as exhibiting

high versus low miR-622 expression, we found that BRCA1-in-

activated tumors with high expression of miR-622 were associ-

ated with worse disease-free survival (DFS) (median DFS 14.7

versus 19.8 months, respectively, log rank p = 0.03) and overall

survival (OS) (median OS 39 versus 49.3 months, respectively,

log rank p = 0.03) compared with tumors with low miR-622

expression (Figure 1C). Conversely, there was no association

betweenmiR-622 expression and outcome, DFS, or OS in the re-

maining tumors in the TCGA dataset, i.e., those without BRCA1

mutations and without BRCA1 promoter hypermethylation (data

not shown). This trend was particularly evident in tumors with the

highest miR-622 expression, i.e., those whose miR-622 expres-

sion was in the highest quintile. Specifically, BRCA1-inactivated

tumors whose expression levels for miR-622 were in the highest

quintile were associated with worse DFS (median DFS 13.7

versus 18.1 months, respectively, log rank p = 0.005) and OS

(median OS 35.3 versus 48.3 months, respectively, log rank

p = 0.001; Figure 1D).

Furthermore, we compared tumors with the highest miR-622

expression versus those with the lowest miR-622 expression.

Specifically, when comparing the top 5, 10, or 15 tumors with

the highest miR-622 expression with the lowest 5, 10, or 15 tu-

mors, respectively, we consistently found that the tumors with

the highest miR-622 expression were associated with inferior

response to first-line platinum chemotherapy, i.e., worse DFS

and OS compared to the tumors with the lowest expression (Fig-

ures 1E and S1E).

Given the absence of other miRNA expression datasets with

sizeable numbers of ovarian tumors with BRCA1-mutations or

BRCA1 promoter hypermethylation, we explored the correla-

tion between miR-622 and outcome in tumors with low

BRCA1 expression in a different, clinically annotated ovarian

cancer dataset (Shih et al., 2011). This dataset included miRNA

and mRNA expression data from 60 patients with newly diag-

nosed FIGO stage III or IV tumors with serous histology,

including 3 tumors with BRCA1 mutations. As shown in Fig-

ure S1F, we found similar correlation between high miR-622

expression and inferior outcome to first line platinum based

chemotherapy.



Figure 1. miRNA-Mediated Resistance to PARP Inhibitors and Platinum in BRCA1 Mutant Cells

(A and B) Viability assays to examine the impact of miR-622 on drug sensitivity. BRCA1 null UWB1.289 cells (A) or Brca1-deficient MEF cells (B) were transfected

with control mimic or miR-622 mimic and treated with vehicle or indicated drug before measurement of viability by luminescence-based ATP quantification.

Curves were generated from three independent experiments.

(C) Association betweenmiR-622 expression levels andDFS andOS in tumorswithBRCA1mutation andBRCA1 promoter hypermethylation in the TCGA dataset

based on 50% cutoff. Tumors with BRCA1mutations and BRCA1 promoter hypermethylation with above-median expression levels of miR-622 were associated

with worse DFS (left, log rank p = 0.03) and OS (right, log rank p = 0.03).

(D) Association betweenmiR-622 expression levels and DFS andOS in tumorswithBRCA1mutation andBRCA1 promoter hypermethylation in the TCGA dataset

based on 20% cutoff. Tumors with BRCA1 mutations and BRCA1 promoter hypermethylation whose expression levels for miR-622 were in the highest quintile

were associated with worse DFS (left, log rank p = 0.005) and OS (right, log rank p = 0.001).

(E) DFS andOS in the ten tumors with the highest miR-622 expression versus the ten tumors with the lowestmiR-622 expression in the TCGA dataset (tumors with

BRCA1 mutation and BRCA1 promoter hypermethylation). The ten tumors with the lowest miR-622 expression were associated with worse DFS (left, log rank

p = 0.001) and OS (right, log rank p = 0.03) compared to the ten tumors with the highest miR-622 expression.
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miR-622 Impacts NHEJ-Mediated Repair of DSBs
The NHEJ pathway is composed of at least two branches: the

well-studied classical NHEJ (C-NHEJ) and the poorly under-

stood alternative end-joining (A-NHEJ) (Deriano and Roth,

2013). The molecular details and biological function of

A-NHEJ remains largely unclear (Deriano and Roth, 2013).

Loss or depletion of factors promoting C-NHEJ (such as

53BP1) or essential for C-NHEJ (such as Ku70) induces PARPi

resistance in BRCA1-deficient mouse cells (Bunting et al.,

2010, 2012). To test whether miR-622 indeed impacts NHEJ,

we assayed for C-NHEJ- and A-NHEJ-mediated repair of the
yeast endonuclease, I-SceI-induced DSBs, using the EJ5-

GFP reporter and EJ2-GFP reporter, respectively. These are in-

tegrated fluorescence-based reporters (Bennardo et al., 2008)

that allow for efficient quantification of the two distinct NHEJ

pathways at targeted DSBs. We observed that miR-622 signif-

icantly impedes C-NHEJ (Figure 2A) and enhances A-NHEJ

(Figure 2B). This is consistent with studies showing that deple-

tion of C-NHEJ factors increases the frequency of A-NHEJ (Fat-

tah et al., 2010). Depletion of 53BP1 and Ku70 induces PARPi

resistance in BRCA1-mutant cells by restoring HR-mediated

repair of DSBs and significantly enhancing genomic stability
Cell Reports 14, 1–11, January 26, 2016 ª2016 The Authors 3



Figure 2. Impact of miR-622 on Genome Stability and NHEJ Repair Pathways

(A and B) Measurement of C-NHEJ-mediated (A) or A-NHEJ-mediated (B) repair of I-SceI-induced site-specific DSBs. Cells carrying a single copy of the

recombination substrate with two tandem I-SceI sites were transfected with control mimic, miR-622mimic, Ku70 small interfering RNA (siRNA), or Ligase4 siRNA

before transfection with I-SceI or control vector. After 48 hr, GFP-positive cells were analyzed by flow cytometry.

(C) Analysis of genomic instability in metaphase. Brca1�/�MEF cells were transfected with control miRNAmimic or miR-622, treated with 100nM PARP inhibitor,

and measured for abnormal chromosomes in metaphase (n R 50 metaphases).

(D) Analysis of HR-mediated repair by RAD51 focus formation. UWB1.289 cells were transfected with control miRNA mimic or miR-622 and stained for RAD51

(green), gH2AX (red), and 40,6-diamidino-2-phenylindole (DAPI) (blue) 6 hr after exposure to 10Gy IR. The images were captured by fluorescencemicroscopy and

RAD51 focus-positive cells (with >20 foci) were quantified by comparing 100 cells.
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after PARPi treatment (Bunting et al., 2010, 2012). Consistent

with its impact on NHEJ, we observe that expression of miR-

622 in Brca1�/� MEFs causes a significant decrease in the

level of genomic instability (chromosomal aberrations) induced

by olaparib treatment (Figure 2C). To address the mechanism

by which miR-622 promotes genome integrity in BRCA1 mutant

cells, we tested whether its expression could cause an increase

in irradiation-induced Rad51 foci, a measure of the HR

pathway. We found that expression of miR-622 in UWB1.289

cells caused a statistically significant increase in Rad51 foci

(Figure 2D). Importantly, none of these effects are due to alter-

ations in the cell cycle caused by the miR-622 mimics

(Figure S2A).

miR-622 Regulates Expression of the Ku Complex
To investigate the mechanism by which miR-622 influences

NHEJ and impacts PARPi sensitivity, we used a candidate-

based approach whereby all genes implicated in NHEJ were
4 Cell Reports 14, 1–11, January 26, 2016 ª2016 The Authors
screened for miRNA recognition elements (MREs) of miR-622

using the PITA algorithm. This algorithm is unique in allowing

G:U wobbles or seed mismatches and identifies base pairing

beyond the 50 end of the miRNA, predicts the sites not restricted

to the 30UTR of mRNA, and identifies non-canonical MREs for

specific miRNA/mRNA combinations (Lal et al., 2009). Using

this algorithm, miR-622 was predicted to target the transcripts

of 53BP1, Ku70, Ku80, APTX, and APLF (Figure S3). We as-

sessed the impact of overexpressingmiR-622 in UWB1.289 cells

on the mRNA level of these genes and observed a significant

reduction in the transcripts of 53BP1, Ku70, and Ku80 (Fig-

ure 3A). Subsequently, we determined the impact of miR-622

on the protein level of their putative targets. Overexpressing

miR-622 reduces the protein levels of Ku70 and Ku80 in

UWB1.289 cells. The basal expression of the Ku proteins is lower

in MEFs, and the impact of miR-622 on Ku70 and Ku80 in

Brca1�/� MEFs is even more pronounced (Figure 3B). On the

contrary, there was no detectable impact of miR-622 on



Figure 3. Identifying and Validating Targets of miR-622

(A and B) Expression of DNA damage response (DDR) genes is impacted bymiR-622. UWB1.289 cells were transfected with control mimic or miR-622mimic and

mRNA levels of predicted DDR genes were analyzed by real-time qPCR using gene-specific primers and normalized to GAPDH (A). Cell lysates were then

analyzed by immunoblot for factors that had statistically significant reduction in mRNA in cells transfected with miR-622 (B). Images were quantified by ImageJ

software and the mean ± SD of three independent experiments is graphically shown.

(C) Interaction of target transcripts with miR-622. UWB1.289 cells were transfected with biotinylated-control mimic or biotinylated miR-622 mimic. The immu-

noprecipitated RNA was analyzed by real-time qPCR using gene-specific primers and normalized to GAPDH.

(D) Predicted MREs were obtained from PITA algorithm (http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html) and their mutants were generated by

mutating nucleotides providing complementarity to miR-622. CDS (coding sequence) means the region in the gene where the MRE is located.

(E) Luciferase reporter assay to assess direct interaction ofmiR-622with target genes. Individual or combinations of predictedmiRNA recognition sites (MREs) for

each putative target transcript of miR-622 were cloned into the luciferase reporter vector and transfected in UWB1.289 cells along with miRNA mimics. Renilla

luciferase activity of the reporter was measured 48 hr after transfection by normalization to an internal firefly luciferase control.

(F) Luciferase reporter assay for wild-type or mutant MREs for miRNA-622 targets was performed as described in Figure 2I.

Mean ± SD of three independent experiments is shown and statistical significance is indicated by *p < 0.05.
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53BP1 protein levels in the UWB1.289 cells. To test for associa-

tion of miR-622 with the Ku70 and Ku80 transcripts, we captured

miRNA-mRNA complexes using streptavidin-coated beads from

cells transfected with biotinylated forms of the miRNAmimic (Lal

et al., 2011; Orom and Lund, 2007). The amount of Ku70, Ku80,

and 53BP1 transcripts was measured in the pull-downs, and the

enrichment was assessed relative to pull-down with biotinylated

control mimic and also with GAPDH. Consistent with our previ-

ous results, miR-622 selectively pulled down Ku70 and Ku80
transcripts, but not the 53BP1 transcript (Figure 3C). To verify

further that Ku70 and Ku80 are targets of miR-622 and confirm

that the interaction is mediated by the predicted MREs, we

used luciferase reporter assays. The predicted MREs (Figure 3D)

were cloned in the 30 UTR of the luciferase gene, and expression

monitored in cells transfected with the miR-622 mimic (Fig-

ure 3E). As anticipated, there was significant decrease in lucif-

erase activity, and this was ‘‘rescued’’ by point mutations that

disrupt base pairing between miR-622 and their corresponding
Cell Reports 14, 1–11, January 26, 2016 ª2016 The Authors 5

http://genie.weizmann.ac.il/pubs/mir07/mir07_prediction.html


Figure 4. Correlating the Impact of miR-622 and Its Target, the Ku Complex

(A and B) Viability assays to examine the impact of miR-622 on targets. Control mimic, miR-622mimic, Ku70 siRNA, Ku80 siRNA, or dominant-negative Ku70was

introduced toUWB1.289 cells (A) orBRCA1-deficient MEF cells (B). Transfected cells were treatedwith vehicle or the indicated drug before viability measurement

as explained in Figure 1.

(C) Impact of miRNA target rescue. UWB1.289 cells were transfected with control mimic or miR-622 mimic with or without rat Ku70 cDNA or mouse Ku80 cDNA

and treated with vehicle or the indicated drug before viability measurement as explained in Figure 1. Expression of introduced genes was examined by

immunoblot.

(D) Correlation among miR-622 expression levels, Ku80 RNA expression levels, and Ku80 protein levels in the TCGA dataset. miR-622 expression levels were

statistically significantly inversely correlated with Ku80 RNA expression levels (p = 0.019) and Ku80 protein levels (p = 0.029).

(E) Correlation betweenmiR-622 expression levels and Ku80 RNA expression levels in a different ovarian cancer miRNA dataset. miR-622 expression levels were

statistically significantly inversely correlated with Ku80 RNA expression levels (p = 0.05) in a different ovarian cancer dataset.
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MREs in Ku70 and Ku80 (Figure 3F). Together, these results sug-

gest that miR-622 regulates the expression of the Ku complex by

direct interaction with Ku70 and Ku80 transcripts.

miR-622 Causes Resistance to PARP Inhibitor and
Cisplatin by Downregulating Expression of the Ku
Proteins
We examined the impact of Ku downregulation (using small

interfering RNAs [siRNAs]) or inhibition (dominant-negative

Ku; He et al., 2007) on olaparib and cisplatin sensitivity in par-

allel with miR-622 overexpression in UWB1.289 cells (Fig-

ure 4A) and in Brca1�/� MEFs (Figure 4B). We observe that
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depletion/inhibition (efficacy of siRNAs shown in Figure S4)

of the Ku complex and overexpression of miR-622 have a

comparable effect on de-sensitizing BRCA1-deficient cells to

both olaparib and cisplatin. To determine whether the effect

of miR-622 on olaparib and cisplatin sensitivity was indeed

mediated by Ku suppression, we utilized mouse Ku70 cDNA

and rat Ku80 cDNA that lack miR-622 MREs. Next,

UWB1.289 cells were co-transfected with miR-622 and mouse

Ku70 cDNA or rat Ku80 cDNA. The Ku expression constructs

lacking the miR-622 MREs rescued the expression of these

genes in the presence of miR-622 mimic, further validating

the predicted MREs (Figure 4C, right). Furthermore, individual
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expression of the Ku proteins partially rescued the impact of

miR-622 on olaparib and cisplatin sensitivity (Figure 4C, left

panel).

Ku80 protein and mRNA expression levels are available in

primary EOCs in the ovarian TCGA and were correlated with

miR-622 expression. Consistent with our results, there is statis-

tically significant inverse correlation of miR-622 with both Ku80

protein and mRNA expression in BRCA-inactivated EOCs from

the TCGA dataset. Specifically, among the 89 EOCs with either

BRCA1 mutations (n = 38) or BRCA1 promoter hypermethyla-

tion (n = 51), miR-622 expression levels were statistically signif-

icantly inversely correlated with Ku80 RNA expression levels

(p = 0.019) and Ku80 protein levels (p = 0.029) as determined

by reverse-phase protein array (RPPA) in the TCGA dataset

(Figure 4D). This correlation was further confirmed in the inde-

pendent cohort of EOC patients discussed above; specifically,

miR-622 expression levels were statistically significantly

inversely correlated with Ku80 RNA expression levels (p =

0.05) (Figure 4E). There was no Ku80 protein expression data

in that dataset.

Physiological Relevance of miR-622-Mediated
Suppression of the Ku Complex
To explore the physiological relevance of the interactions of

miR-622 with Ku70 and Ku80 transcripts, we assessed their

expression during the cell cycle, specifically during the G1

to S transition. When synchronizing UWB1.289 cells (profiles

shown in Figure S5A), we observe that mRNA levels of Ku70

and Ku80 are reduced in S phase relative to G1 phase (Fig-

ure 5A). Interestingly, miR-622 inversely correlates with Ku70

and Ku80 transcripts and is significantly upregulated as cells

move into S phase. Antagonizing miR-622 induces a specific

increase in Ku70 and Ku80 transcripts (Figure 5B) in S phase.

To further confirm the cell-cycle phase specificity of this

phenotype while avoiding the artifacts of synchronization,

and in a diploid cell line with relatively few genomic abnormal-

ities, we utilized the Fucci system (Sakaue-Sawano et al.,

2008) to visualize G1 phase (mKO2-CDT1-RFP) and S phase

(Geminin-GFP) in hTERT-immortalized retinal pigment epithe-

lial cell line (RPE-1) cells. The G1 cells and S/G2 phases

were separated and isolated using fluorescence-activated

cell sorting (FACS) selection. Consistent with the previous re-

sults, miR-622 expression inversely correlated with the Ku70

and Ku80 transcripts (Figure 5C) and inhibition of miR-622 in

RPE-1 caused a significant increase in Ku70 and Ku80 tran-

scripts in S phase (Figure 5D). To further elucidate the cell-cy-

cle-based impact of miR-622 on the Ku proteins, we utilized

luciferase assays (as in Figure 3). We confirmed that antago-

nizing endogenous miR-622 in S phase significantly increases

luciferase activity of constructs with miR-622 recognition ele-

ments in the Ku70 and Ku80 transcripts, and this was negated

by point mutations that disrupt base pairing between miR-622

and their corresponding binding sites in these transcripts

(Figure S5B).

Recruitment of the MRN (Mre11-Rad50-Nbs1) complex is

the first step in HR. From a functional standpoint, there is a

competitive interplay between the Ku complex and the MRN

complex (Balestrini et al., 2013; Foster et al., 2011). Specif-
ically, the overexpression of Ku proteins reduces recruitment

of Mre11 to DSBs in S/G2 phase when HR is the preferred

DSB repair pathway (Clerici et al., 2008). Therefore, we exam-

ined the Mre11 foci during S phase in irradiated cells trans-

fected with miR-622 antagomirs. Consistent with increased

Ku levels, antagonizing miR-622 causes a significant decrease

in Mre11 foci (Figure 5E). Furthermore, the subsequent step in

HR, which is the resection of broken DNA ends and RPA2 foci

formation, is also reduced by antagonizing miR-622 (Figure 5F).

Importantly, antagonizing miR-622 does not impact the

ionizing radiation (IR)-induced generation of DSBs (monitored

by g-H2AX; Figures 5E and 5G). Together, these results

strongly suggest that miR-622 plays a role in the optimal

expression of the Ku complex during the cell cycle and poten-

tially facilitates the initiation of HR-mediated DSB repair in

S phase.

DISCUSSION

There is tight regulation of the DSB repair pathways during the

cell cycle as HR is restricted to S/G2 phase and NHEJ is pre-

dominant in G1 but has moderate activity throughout the cell

cycle. Importantly, the choice of DSB repair pathways during

the cell cycle is critical for maintaining genomic stability.

A decisive factor in this choice is the competition between

DNA end protection (which is necessary for NHEJ) and DNA

end resection (which is necessary for HR). Depletion of end-

protecting factors (such as 53BP1) allows DNA end resection

in G1 phase, thereby impairing NHEJ and causing genomic

instability (Helmink et al., 2011; Escribano-Diaz et al., 2013).

Conversely, ectopic expression of BRCA1 in G1 phase via

the inhibition/deletion of miRNAs suppressing BRCA1 also al-

lows DSB end resection, leading to unrepaired DSBs (Choi

et al., 2014; Dimitrov et al., 2013). During the S/G2 phase of

the cell cycle, the relatively error-free HR pathway is preferred,

and NHEJ needs to be restricted. The mechanism via which

the NHEJ pathway is restricted in S phase remains unknown.

Here, we uncover regulation of this step by miR-622. We find

that miR-622 plays an important role in maintaining the balance

between HR and NHEJ repair pathways during the cell cycle

by regulating optimal expression of the Ku complex. The Ku

complex is pivotal in pathway choice, as it competes with

the MRN complex to capture broken DSB ends and divert it to-

ward the C-NHEJ pathway. miR-622 suppresses NHEJ

through targeting of the Ku complex during S phase and en-

hances initiation of HR-mediated DSB repair in S phase by

facilitating the recruitment of Mre11. Therefore, ectopic over-

expression of miR-622 can limit NHEJ and boost the HR

pathway.

Another important finding of our study is that this role for

miR-622 in maintaining a balance between DSB repair path-

ways may mediate resistance to PARPis and platinum agents

in BRCA1-inactivated tumors. Elucidating mechanisms of plat-

inum and PARPi resistance in BRCA-deficient EOCs is critical

in order to identify approaches that suppress de novo and

emerging resistant clones. Pharmacological effects that alter

the cellular response to PARPis, including increased expression

of ABC transporters such as the P-glycoprotein (PgP) efflux
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Figure 5. Impact of miR-622 on DSB Repair during the Cell Cycle

(A–D) Expression of miRNA and target transcripts in synchronized cells. (A) UWB1.289 cells were synchronized with mimosine, and the relative amount of miR-

622 or target mRNA for G1 or S phase was determined by real-time qPCR (normalized to RNU1). (B) UWB1.289 cells were transfected with control ANT or miR-

622 ANT and subsequently synchronized with mimosine. Expression of target mRNA was assessed by real-time qPCR in G1 and S phases (normalized to

GAPDH). (C) RPE1 Fucci cells were sorted according to cell-cycle-based fluorophore expression, and the relative amount of miR-622 or target mRNA for G1 or

S phase was quantified by real-time qPCR. (D) RPE1 Fucci cells were transfected with control ANT or miR-622 ANT and sorted for the cell cycle. Expression of

target mRNA was assessed by real-time qPCR in G1 and S phases. Mean ± SD of three independent experiments is shown, and statistical significance is

indicated by *p < 0.05.

(E–G) Impact ofmiR-622 inhibition on recruitment of DSB proteins. RPE1 Fucci cells were transfectedwith control ANT ormiR-622 ANT and irradiatedwith 5Gy IR

(for gH2AX andMre11, 3 hr after IR) or 10Gy (for RPA2, 4 hr after IR). Cells were stained forMre11 (red) (E), RPA2 (red), (F) or gH2AX (red) (G) and 40,6-diamidino-2-

phenylindole (blue). The images were captured by fluorescence microscopy, and Mre11, RPA2, or gH2AX focus-positive cells (with >20 foci or >50 foci) at S

phase (green) were quantified by comparing 100 cells.
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pump, have been associated with PARPi resistance in BRCA1-

mutated breast and ovarian cancer, but their clinical relevance

for platinum resistance remains unclear. Furthermore, although

a number of resistance mechanisms have been described

(Konstantinopoulos et al., 2015), only secondary BRCA1/2 mu-

tations restoring BRCA1/2 protein functionality have been vali-

dated in multiple EOC patient cohorts. It is noteworthy that

most of these models systems have not investigated ovarian

carcinomas, thereby undermining their clinical relevance. In

this regard, our study highlights a mechanism of PARPi resis-
8 Cell Reports 14, 1–11, January 26, 2016 ª2016 The Authors
tance in BRCA1-deficient EOC patients involving miR-622

overexpression and represents an extension of its physiological

role in maintaining the balance of DSB repair pathways.

Importantly, unlike 53BP1 loss, which confers only PARPi

resistance, this resistance mechanism confers resistance to

both platinum and PARPis. Although miRNA expression has

been recently implicated in mediating HR deficiency and

response to platinum and PARPis (Liu et al., 2015), we impli-

cate a miRNA in doing exactly the opposite, i.e., mediating

PARPi and platinum resistance by rescuing HR deficiency.
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Strikingly, the clinical relevance of this resistance mechanism

was evident in two different ovarian cancer datasets whereby

overexpression of miR-622 was associated with an inferior

outcome after platinum chemotherapy in BRCA1-inactivated

tumors. Of note, the expression of miR-622 was also inversely

correlated with protein and mRNA expression levels of Ku80,

thereby clinically validating our experimental observations

that the association of miR-622 with worse outcome may

indeed be related to its targeting of the Ku complex. In conclu-

sion, our work suggests a role for miR-622 in regulating the

balance between HR and NHEJ in the cell cycle and highlights

a potential role of this miRNA as a biomarker of res-

ponsiveness to platinum and PARPis in BRCA1-inactivated

EOCs. Furthermore, miR-622 may be a promising target for

augmenting PARPi and platinum response in BRCA1-inacti-

vated EOCs.

EXPERIMENTAL PROCEDURES

Viability Assay

Viability assays were done as previously described (Choi et al., 2014).

Ovarian Cancer Datasets and Statistical Analysis

The association between miR-622 expression levels and outcome (OS and

DFS) was assessed in two clinically annotated ovarian cancer datasets with

miRNA expression data. First, we accessed expression data from the

ovarian TCGA dataset, which included 38 tumors with BRCA1-mutations

(out of 316 EOCs that underwent whole-exome sequencing) and 51 tumors

(out of 489 tumors with DNA promoter methylation data) with BRCA1 epige-

netic silencing via promoter hypermethylation. Promoter hypermethylation

was assessed using the same criteria described in the ovarian TCGA

dataset publication. The second dataset included expression data from

60 patients with newly diagnosed FIGO stage III or IV tumors, all with

serous histology (Shih et al., 2011). The t test and Fisher’s exact test

were used to analyze the clinical and experimental data. The correlation be-

tween miR-622 and Ku80 expression levels was assessed using the

Pearson’s correlation coefficient. Significance was defined as a p < 0.05;

all reported p values are two sided. OS and DFS curves were generated

using the Kaplan-Meier method, and statistical significance was assessed

using the log-rank test.

Non-homologous End-Joining Reporter Assay

NHEJ reporter assayswere done as the HR assays previously described. (Choi

et al., 2014) by using U2OS cells carrying a single copy of the recombination

substrate with two tandem I-SceI sites.

Chromosome Breakage Analysis

Brca1�/� MEF cells were transfected with indicated miRNA mimics for 24 hr

followed by treatment with or without the indicated concentrations of PARPi

(olaparib) for 24, 48, or 72 hr. Cells were exposed to 100 ng/ml Colcemid

for 2 hr followed by treatment with a hypotonic solution (0.075 M KCl)

for 20 min and fixed with 3:1 methanol/acetic acid solution. Slides were

stained with Wright’s stain, and R50 metaphase spreads were scored for

aberrations.

Immunofluorescence

Immunofluorescence in UWB1.289 and RPE1 Fucci cells was done as previ-

ously described (Lee et al., 2010) using RAD51 (Santa Cruz Biotechnology

#sc-8349), g-H2AX (Cell Signaling #9718S), RPA2 (Abcam #ab2175), and

Mre11 (Novus Biologicals #NB100-142)

RNA Isolation and Real-Time qPCR

Total RNA was prepared and expression was analyzed by real-time qPCR as

described previously (Moskwa et al., 2011).
Gene-specific primers used for real-time qPCR are as follows:

53BP1-F-1, 50-GTCATTGAGCAGTTACCTCAG-30; R-1, GGGAATGTG

TAGTATTGCCTG

53BP1-F-2, 50-ATGGTGGAGACCCATGATCC-30; R-2, GTCTTCTGGGG

ACTGGCAAC

KU70-F-1, 50-GTTGATGCCTCCAAGGCTATG-30; R-2, GCACCTGGAT

TATCCAGCTC

KU70-F-2, 50-AATTCAGGTGACTCCTCCAG-30; R-2, TGAAGTGCTGCTG

CAGCAC

KU80-F-1, 50-AAGCAAAATCCAACCAGGTTCT-30; R-1, GAATTGCAGG

GAGATGTCACA

KU80-F-2, 50-ACTCTGATCACCAAAGAGGAA-30; R-2, TGGCAGCTCTCT

TAGATTCC

APTX-F, 50-TGGAAGCAGTTGTGATTGGG-30; R, CACCATGTGGA

GAACCTGG

APLF-F, 50-GAAGCCAAATCTATGGTGCTA-30; R, CTTCATCAAGCACTT

GACTGT.
Immunoblots

Immunoblots were done as described previously (Lee et al., 2010; Moskwa

et al., 2011) with 53BP1 (Cell Signaling Technology #4937), Ku70 (Santa

Cruz #sc-1486), Ku80 (Thermo Scientific #PA5-17454), and a-tubulin (Sigma

#T5168) antibodies.

Immunoprecipitation of miRNA Targets

Immunoprecipitation ofmiRNA target with biotinylatedmiR-622was donewith

UWB1.289 cells as previously described (Choi et al., 2014).

Luciferase Assay

The wild-type (WT) or mutant (Mt) MREs of target genes were synthesized as

oligonucleotide sequences and annealed and cloned in psiCHECK2 (Prom-

ega) downstream to Renilla luciferase. Luciferase assay in UWB1.289 cells us-

ing WT and Mt MRE constructs was done as described previously (Moskwa

et al., 2011). The oligonucleotide sequences are as follows:

KU70-MRE1 forward (F), 50-TCGAAAGCAATGAATAAAAGACTGGGAA

GAAGCAATGAATAAAAGACTGG-30; reverse (R), 50-GGCCCCAGTCTT

TTATTCATTGCTTCTTCCCAGTCTTTTATTCATTGCTT; KU70-MRE2-F,

50-TCGAACCAAGCACTTCCAGGACTGAGAAGACCAAGCACTTCCAGG

ACTGA-30; R, 50-GGCCTCAGTCCTGGAAGTGCTTGGTCTTCTCAGTC

CTGGAAGTGCTTGGT-30; KU70-MRE1+2-F, 50-TCGAAAGCAATGAA

TAAAAGACTGGGAAGACCAAGCACTTCCAGGACTGA-30; R, 50-GGCC

TCAGTCCTGGAAGTGCTTGGTCTTCCCAGTCTTTTATTCATTGCTT-30;
KU80-MRE1-F, 50-TCGAAGCTAAAAAATTAAAGACTGAGAAGAGCTAAA

AAATTAAAGACTGA-30; R, 50-GGCCTCAGTCTTTAATTTTTTAGCTCTT

CTCAGTCTTTAATTTTTTAGCT-30; KU80-MRE2-F, 50-TCGATTTATGAA

GAGCATAGACTGCGAAGTTTATGAAGAGCATAGACTGC-30; R, 50-GG

CCGCAGTCTATGCTCTTCATAAACTTCGCAGTCTATGCTCTTCATAAA-30;
KU80-MRE1+2-F, R, 50-GGCCGCAGTCTATGCTCTTCATAAACTTCT

CAGTCTTTAATTTTTTAGCT-30.

The oligonucleotides for mutant MREs are as follows:

Mt KU70-MRE1+2-F, 50-TCGAAAGGTTGGAATAAATCTGACGGAAG

AGGTAGCTGGAGCATCTGACA-30; R, 50-GGCCTGTCAGATGCTCCA

GCTACCTCTTCCGTCAGATTTATTCCAACCTT-30; Mt KU80-MRE1+2-F,

50-TCGAACGAAATTAAAGTATCTGACAGAAGTTTATGAAGTCGATTCTG

ACC-30; R, 50-GGCCGGTCAGAATCGACTTCATAAACTTCTGTCAGATA

CTTTAATTTCGT-30.
Cell-Cycle Synchronization and Sorting

Cell synchronization was performed in UWB1.289 cells as previously

described (Choi et al., 2014). Cells transfected with miR-622 antagomir with

rat Ku70 or mouse Ku80 cDNA (a gift from Andre Nussenzweig at the National

Cancer Institute) were similarly synchronized 48 hr after transfection. RPE1
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Fucci cells were sorted using BD FACSAria based on fluorophore expression

according to the cell cycle (RFP, G1 phase; GFP, S/G2/M phase).

miRNA Target Prediction

We used a candidate-based prediction approach by using PITA (http://genie.

weizmann.ac.il/pubs/mir07/mir07_data.html) to analyze the Human DNA

Repair Gene list (http://sciencepark.mdanderson.org/labs/wood/dna_repair_

genes.html#Human%20DNA%20Repair%20Genes), which resulted in a list

of DNA damage response genes predicted as targets of miRNAs of our inter-

est. Predicted targets are listed in Figure S2 and further validated as explained

in this article.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures and can be found with this
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