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Abstract: Dense tumor innervation is associated with enhanced cancer progression and poor progno-
sis. We observed innervation in breast, prostate, pancreatic, lung, liver, ovarian, and colon cancers.
Defining innervation in high-grade serous ovarian carcinoma (HGSOC) was a focus since sensory
innervation was observed whereas the normal tissue contains predominantly sympathetic input. The
origin, specific nerve type, and the mechanisms promoting innervation and driving nerve-cancer
cell communications in ovarian cancer remain largely unknown. The technique of neuro-tracing
enhances the study of tumor innervation by offering a means for identification and mapping of nerve
sources that may directly and indirectly affect the tumor microenvironment. Here, we establish a
murine model of HGSOC and utilize image-guided microinjections of retrograde neuro-tracer to label
tumor-infiltrating peripheral neurons, mapping their source and circuitry. We show that regional
sensory neurons innervate HGSOC tumors. Interestingly, the axons within the tumor trace back to
local dorsal root ganglia as well as jugular–nodose ganglia. Further manipulations of these tumor
projecting neurons may define the neuronal contributions in tumor growth, invasion, metastasis, and
responses to therapeutics.

Keywords: ovarian cancer; innervation; ultrasound; nerve-tracing

1. Introduction

Ovarian cancer, the fifth most common cancer in women, remains the most lethal
gynecologic malignancy [1]. While this heterogeneous disease consists of multiple histo-
logical subtypes, high-grade serous ovarian carcinoma (HGSOC) accounts for 70% of the
cases and the majority of the deaths [1]. Worldwide, nearly 300,000 women are diagnosed
with this disease annually, half of which will succumb within the first 12 months [2]. This
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poor prognosis is commonly attributed to non-specific symptoms and a lack of screen-
ing and early detection [3,4]. Together, these factors typically culminate in late-stage
(metastatic) diagnosis.

Preclinical mouse models are essential tools for investigating the processes of tumor
development, growth, and disease progression. For ovarian cancers, preclinical modeling
is particularly urgent given its poor prognosis. Moreover, standard-of-care treatment
consists predominantly of chemotherapy. While some ovarian cancer patients benefit from
new therapeutics (targeted, immunotherapies), the majority do not [5]. The emergence
of faithful pre-clinical models provides a means with which to test new therapeutics
or therapy combinations to advance treatment for this aggressive disease. Given the
urgent need for such models, it is not surprising that syngeneic models harboring known
human alterations, replicating the ovarian cancer landscape, tumor microenvironment and
development of ascites have recently been published [6–8]. Here, we describe a syngeneic
model of HGSOC derived from oviducts, the cell of origin of this disease [9–12]. In addition
to utilizing oviductal cells, this model was also engineered to include loss of Trp53 and
Pten, commonly altered in cases of HGSOC. Together, these features generate a murine
model that is faithful to the human disease. Thus, we utilize this system to characterize
tumor innervation.

The presence of intra-tumoral nerves and the growing understanding of their ac-
tive contributions to cancer initiation and progression illustrates the complexity of the
tumor microenvironment (TME) and offers the possibility of new targets for therapeutic
intervention [13]. Recent studies indicate a significant role for autonomic (sympathetic
and parasympathetic) and sensory innervation of the TME in the regulation of tumor cell
growth, migration, and invasiveness [14–17]. Interestingly, a decrease in tumor growth
occurs following sympathetic and sensory denervation in models of pancreatic and breast
cancer as well as melanoma [18–20], while parasympathetic denervation generates mixed
effects [21,22]. The contributions of different autonomic and sensory nerve populations
vary by cancer type and may depend on the anatomical location where tumorigenesis
occurs. The ovary receives innervation from sympathetic sources as wells as dorsal root
ganglion (DRG) [23–25]. Moreover, innervation of the female reproductive tract undergoes
marked plasticity associated with hormonal changes and reproductive status [26]. While
the presence of nerves in these tissues is understood, studies documenting innervation of
ovarian tumors and the source of these intra-tumoral nerves is lacking.

Neural tracing has been a valuable tool for defining circuits within the central ner-
vous system (CNS). We have implemented axonal tracing with the fluorescent marker
wheat germ agglutinin (WGA) to study the presence and source of intra-tumoral nerves in
HGSOC. WGA is a lectin with specific affinity for neural membranes, binding to specific
saccharide components of glycoproteins and glycolipids ubiquitous in neuronal mem-
branes. Moreover, neurons have lectin receptors concentrated at axon terminals [27–29].
Therefore, once taken up, this neuro-tracer will label only neurons with terminals at the
site of injection. In addition, fluorescent retrograde tracers do not require additional
immunohistochemical processing and can be transported transynaptically or transgan-
glionically [30–32] enabling extensive circuit mapping. Additional advantages to using
WGA is its rapid transport in vivo, its intense brightness, which facilitates whole mount
imaging of tissue, and its flexibility for pairing with other markers [33]. Here, we identify
that HGSOCs are innervated, describe a new syngeneic model of HGSOC, and provide
evidence utilizing this model that the source of tumor innervation is via recruitment from
regional nerve endings originating from peripheral ganglia.

2. Materials and Methods
2.1. Immunohistochemistry (IHC)

Tissues were obtained with Institutional Review Board approval from Sanford Health
and the University of Pennsylvania through the BioTrust Collection (https://www.med.
upenn.edu/OCRCBioTrust/ accessed on 1 September 2021). Tissues were fixed in 10%
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neutral buffered formalin and processed on a Leica 300 ASP tissue processor. Tissue
sections (5 µm) were immunohistochemically stained for β-III tubulin (2G10, ab78078,
1:250, Abcam; RRID: AB_2256751), TRPV1 (cat# ACC-030, 1:100, Alomone labs; RRID:
AB_2313819), TH (Ab112, 1:750, Abcam; RRID: AB_297840), and VIP (ab22736, 1:100,
Abcam; RRID: AB_447294); sections were also histochemically stained by hematoxylin
& eosin. Antibody optimization and staining were performed with the BenchMark® XT
automated slide staining system (Ventana Medical Systems, Inc., Oro Valley, AZ, USA).
Primary antibody was omitted as the negative control. For hematoxylin & eosin staining,
slides were stained on a Sakura Tissue-Tek H & E stainer. The program runs as follows:
deparaffinize and rehydrate tissue, stain in Gill’s hematoxylin (2 min), differentiate running
tap water, blue in ammonia water, and counterstain in eosin (1 min), dehydrate and clear.
Slides were counterstained with hematoxylin, dehydrated, cleared, and coverslipped. The
Aperio VERSA 8 slide scanning system from Leica Biosystems, equipped with a Point Grey
Grasshopper3 color camera for brightfield scanning was used to analyze stained sections.

2.2. Scoring of IHC Staining

Five independent evaluators scored all tissue samples at 20× magnification on an
Olympus BX51 microscope, scoring 5 random fields/sample for β-III tubulin labeled nerve
twigs. A score of 0 was given to indicate the absence of staining within each field; a score
of +1 indicated 1–10% staining, +2 indicated 30–50% staining, and +3 indicated greater
than 50% staining. Only single twigs were scored; nerve bundles were not scored.

2.3. Double Immunofluorescent Staining

Formalin fixed and paraffin-embedded sections were deparaffinized and rehydrated
by using the following washes at RT: 100% Histo-Clear (National Diagnostics) for 5 min,
100% ethanol for 1 min, 90% ethanol for 1 min, 70% ethanol for 1 min and then in PBS for
1 min. A heat-induced antigen retrieval step was performed prior to immunofluorescent
staining as follows: sections were incubated with 10 mM Sodium Citrate Buffer (10 mM
Sodium Citrate Buffer, 0.05% Tween 20, pH 6.0) at 95 ◦C for 1 h. After cooling down at room
temperature for 30 min, slides were washed with PBS and then blocked in blocking buffer
(1X PBS, 10% goat serum, 0.5% TX-100, 1% BSA) for 1 h at RT. Sections were incubated with
primary antibodies [β-III tubulin (Abcam, cat# 78078, 1:100 dilution, RRID:AB_2256751),
TRPV1 (Alomone labs, cat# ACC-030, 1:100 dilution, RRID:AB_2313819), neurofilament
(Biolegend, cat#837801, 1:100, RRID:AB_2565383)] overnight at +4 ◦C. Slides were washed
three times in PBS for 5 min each and incubated in secondary antibodies and Hoescht
(1:10,000, Invitrogen) at RT. Slides were washed in PBS three times, for 5 min each, and
coverslips were mounted by using FaramountTM aqueous mounting media (Dako). Im-
munostained sections were observed by using an Olympus FV1000 confocal microscope
equipped with a laser scanning fluorescence and a 12-bit camera; images were taken using
a 60× or 100× oil PlanApo objective.

2.4. Ovarian Cancer Tumor Model

The Trp53 -/- Pten -/- murine model of HGSOC was generated as follows. Ten oviducts
were isolated from 6-week-old female mice (C57Bl/6) under aseptic conditions and treated
with trypsin for 30 min at 37 ◦C. The resulting cell suspension was centrifuged at 400 rpm
for 5 min at 4 ◦C and pelleted cells were re-suspended in α-MEM medium containing
ribonucleosides, deoxynucleosides, and L-glutamine (Gibco; Cat#12571-048) and sup-
plemented with 10 ug/mL insulin-transferrin-sodium selenite (Roche; #11074547001),
20 pg/mL β-estradiol (Sigma; # E8875), 10 u/mL penicillin-streptomycin solution (Invit-
rogen; #15140122) and 10% fetal bovine serum (Atlanta Biologicals; Cat#S11550). Most
cultured mouse oviduct secretory epithelium derived cells (MOSEC) lacked cytoplasmic
protrusions characteristic for ciliated cells and expressed common markers of secretory
cells, Pax8 and OVGP1. Some ciliated cells were observed initially but were eliminated
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after successive cell passages, consistent with a similar protocol to isolate human fallopian
tube secretory cells [34,35].

Exon 5 of the Trp53 gene and the phosphatase domain of Pten were targeted using the
CRISPR-Cas9 system in the second passage of cultured primary MOSEC. The synthetic
guide (sg) RNAs, GAAGTCACAGCACATGACGGAGG and TGGTCAAGATCTTCACA-
GAA against Trp53 and Pten, respectively, were generated by annealing respective crRNA
and tracrRNA pairs according to manufacturer’s instructions (Invitrogen [36]. The cells
were then transfected with the TrueCut Cas9 protein v2 (Invitrogen; Cat#A36496) and
sgRNA complexes using the Lipofectamine CRISPRMAX Cas9 Transfection Reagent (Invit-
rogen; Cat#CMAX00008). The presence of mutations and loss of protein expression was
confirmed by Sanger sequencing and Western blot analysis, respectively, in two different
Trp53 -/-; Pten -/- double knockout lines (clones 2 and 4).

For initial characterization of the tumor model, Trp53 -/-; Pten -/- DKO MOSEC cells
(clone 4) were expanded in culture and injected intraperitoneally (i.p.) into five 6-week-old
C57Bl/6 female mice (1 × 107 cells in ice cold PBS per animal). All animal testing was
conducted in strict accordance with the recommendations of the National Institutes of
Health set out in the Guide for the Care and Use of Laboratory Animals and with an
approved protocol from University of Pennsylvania Institutional Animal Care and Use
Committee. Tumor morphology was assessed using hematoxylin and eosin staining and
immunohistochemical analyses with HGSOC markers (Pax8, WT-1) and was found to be
consistent with that of HGSOC. Pax8 antibody (ProteinTech, Rosemont, IL, USA, 10336-
1-AP, 1:3000) and WT-1 (Abcam, ab89901, 1:300) required a citrate buffer pressure cooker
method of antigen retrieval.

Tumor tissue isolated from tumor-bearing mice was dissociated using 90 µg/mL colla-
genase (GIBCO, Cat#17105-041), 500 µg/mL dispase (GIBCO, Cat#17105-041) and 1 µg/mL
DNAse I (Sigma, Cat#D4527) in culture medium (α-MEM medium supplemented with ri-
bonucleosides, deoxynucleosides, and L-glutamine (Gibco; Cat#12571-048) and containing
10 µg/mL insulin-transferrin-sodium selenite (Roche; #11074547001), 20 pg/mL β-estradiol
(Sigma; # E8875), 10 u/mL penicillin-streptomycin solution (Invitrogen; #15140122) contain-
ing 10% fetal bovine serum (Atlanta Biologicals; Cat#S11550). Tumor-derived lines were
developed and injected i.p. into 10 female C57Bl/6 mice. All animals developed tumors
within five weeks of injection. Histological and immunohistochemical analyses of these
tumors showed that they maintained HGSOC-like morphology and marker expression.

2.5. Preparation and Injection of Trp53 -/- Pten -/- Cell Lines for Innervation Studies

The Trp53 -/- Pten -/- cells were grown in Minimum Essential Medium (MEM) alpha
(500 mL, Gibco, 12571-048) with L-glutamine, supplemented with 10% Fetal Bovine Serum
(FBS), 500 mL insulin/transferrin/sodium selenite (Roche Cat# 11074547001), 10 mL of
beta-estradiol (Sigma Cat# E8875) maintained at 37 ◦C and 5% CO2 culture medium
was refreshed every 3 days. Once the cells reached 85–90% confluence, the media was
removed and cells were washed twice with warm (37 ◦C), sterile phosphate-buffered saline
(PBS). Cells were trypsinized and suspended in cold Matrigel sufficient to yield 5 × 106

cells/100 µL/mouse. Cells were kept cold until ready to inject and mixed before and
in between injections to prevent cells from settling to the bottom of the tube, ensuring
an accurate implantation of cells. Seven-week-old female C57Bl/6 mice (n = 4, Jackson
laboratories, Bar Harbor, ME) were injected IP with 100 µL 5 × 106 Trp53 -/- Pten -/- cells.
As a control, mice were similarly injected subcutaneously in the hind limb (n = 4).

2.6. Ultrasound-Guided Injection of Axonal Tracer and Collection of Peripheral Ganglia

Starting at 1-week post-tumor implantation, the abdomen was scanned weekly to
assess tumor formation by ultrasound (MS700 probe 48 Hz, Vevo2100, VisualSonics with
abdominal imaging package) under isoflurane anesthesia. After locating the tumor region,
the position of the transducer and surrounding anatomical structures of interest were noted.
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When tumors reached approximately 3 × 3 mm in size, they were injected with neuronal
tracer as described below.

Mice were anesthetized and prepped for imaging. A 10 µL Hamilton syringe with
30-G needle was loaded with WGA-Alexa 568 (1% in PBS) and placed bevel side up in
the syringe clamp. The needle was slowly inserted through the skin and the peritoneal
wall. The needle guide was used to visualize the needle tract to the target. The needle was
advanced just past the middle of the tumor then pulled back slightly to reduce pressure
and prevent leakage outside of the tumor. Tracer was slowly injected (2 µL over 10 min).
The needle was maintained in place for 2 min after the infusion was complete and then
slowly retracted from the mouse abdomen. Mice were quickly returned to a mouse cage on
a heating pad until they fully recovered from anesthesia. Five days following intra-tumoral
injection of neuronal tracer, mice were deeply anesthetized and transcardially perfused
(PBS/4% paraformaldehyde). Using a stereo microscope, laminectomy was performed to
remove the roof of the vertebral canal and expose the spinal cord and DRGs [37]. DRGs
from all spinal levels were removed and collected in HBSS in a 96 well plate on ice. Tumor
tissue and jugular–nodose ganglia, which contain the sensory peripheral neurons of the
vagus nerve, where also collected [38]. Immunofluorescent staining was carried out for
TRPV1, TH, and VIP as described above (Section 2.2).

2.7. Human Studies

The cases for this study were obtained with patient consent and the study was ap-
proved by the Institutional Review Boards at Sanford Research and the University of Penn-
sylvania (through the BioTrust Collection; https://www.med.upenn.edu/OCRCBioTrust/
accessed on 1 September 2021). Ovarian cancer cases utilized consisted of high-grade
serous ovarian carcinoma (n = 75 formalin-fixed paraffin-embedded (FFPE) tumors). Con-
trol FFPE tissues were also collected (normal ovary: n= 10; normal fallopian tube: n = 10).
Consented patients spanned 38–83 years of age. FFPE samples were cut into 5µm sec-
tions and immunohistochemically stained. Cases of breast, prostate, pancreatic, lung,
liver, and colon cancers consisted of n = 10 for each cancer type. The breast cancer cases
were all female and ranged in ages 43–86. The prostate cancer patient samples were all
males ages 48–71. Pancreatic patient samples consisted of n= 6 females ages 48–90 and
n = 4 males ages 73–79. Lung cancer patient samples consisted of n = 5 females ages 52–77
and n = 5 males ages 54–70. Liver cancer patient samples consisted of n= 6 females ages
45–84 and n = 4 males ages 56–74. Colon cancer patient samples consisted of n = 5 females
ages 55–85 and n = 5 males ages 59–91.

3. Results
3.1. Sensory Nerves Innervate HGSOCs

Our new understanding of neuronal contributions to cancer progression, together
with the poor prognosis associated with HGSOC, prompted us to define innervation in
this tumor type. A total of 75 cases of HGSOC were studied by staining serial sections
histologically with H&E and immunohistochemically (IHC) for β-III tubulin, a neuronal
marker [39,40]. We paid particular attention to the presence and localization of β-III
tubulin positive twigs in relation to tumor and stroma; representative examples are shown
in Figure 1. In the first case, islands of tumor cells are surrounded by stroma (Figure 1A)
with β-III tubulin positive twigs in close proximity to a tumor island (Figure 1B and high
magnification inset). In another case, a large tumor is clearly demarcated from the stroma
(Figure 1C) and β-III tubulin positive twigs are found coursing throughout the stromal
compartment (Figure 1D, and high magnification inset). In the third example, tumor
islands are again easily visible and surrounded by stroma (Figure 1E). Here, tumor cells are
in close proximity to β-III tubulin positive twigs (Figure 1F and high magnification inset).
Interestingly, we noticed that in many instances, β-III tubulin positive twigs localize near
blood vessels (Supplementary Figure S1). We also noted that many HGSOC tumor cells
themselves are positive for β-III tubulin; some samples exhibiting robust immunostaining
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(Supplementary Figure S2A, Figure 1D), others with variable staining (Supplementary
Figure S2B) and still others predominantly negative for β-III tubulin (Supplementary Figure
S2C, Figure 1F). It is important to note that twig and tumoral β-III tubulin staining are
different. Twigs that are immune-positive for β-III tubulin are found coursing between
cellular components of the stroma and tumor islands while tumor cell β-III tubulin staining
is clearly cytoplasmic. This distinction enables us to focus our study on twigs. While the
significance of β-III tubulin expression in tumor cells remains unclear, correlations with
aggressive disease and poor survival exist [41]. Given our interest in tumor innervation,
however, we focused only on β-III tubulin positive nerve twigs.
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Figure 1. Representative serial sections of three HGSOC cases with serial sections histologically stained by H&E and
immunohistochemically stained for β-III tubulin. In the first example (A,B) tumor islands (T) are surrounded by stroma.
β-III tubulin positive twigs are found coursing through out the stroma. The boxed area is shown in higher magnification
(insets) where β-III tubulin positive twigs are in close proximity to tumor cells. Arrows point out additional areas where
β-III tubulin positive twigs are in close proximity to another tumor island. In the second case (C,D), tumor and stroma
are clearly defined and β-III tubulin positive twigs are found throughout the stroma. The boxed area depicts higher
magnification of these regions. In the third representative case (E,F), small tumor islands (T) are surrounded by stroma. The
boxed regions are shown in higher magnification and illustrate the complexity of these sprouted twigs. Scale bar, 300 µm. n
= 75 cases were analyzed.

Given the presence of twigs within HGSOCs, we wondered what types of nerves
they were. Molecular studies demonstrate that HGSOCs are derived from fallopian tube
secretory cells [9,12,42–50]; thus, normal tissue controls include normal fallopian tubes
and ovaries. IHC staining shows that normal fallopian tube contains TH (sympathetic)
positive nerve bundles (Supplementary Figure S3A, open arrowheads) that are negative
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for TRPV1 (sensory) and VIP (parasympathetic); scant single nerve fibers (Supplementary
Figure S3A, β-III tubulin positive, small, filled arrowheads) are also evident. Normal
ovary is similarly innervated with TH positive, TRPV1 and VIP negative nerve bundles
(Supplementary Figure S3A, open arrowheads). While not all HGSOC cases harbor the
same extent of twigs, the staining contrasts that of normal tissues; these twigs are TRPV1
positive but negative for TH and VIP (Supplementary Figure S3A, arrows). In addition,
we immunofluorescently stained HGSOC cases for TRPV1 and β-III tubulin; their co-
localization further indicates that HGSOCs are innervated by TRPV1 sensory neurons
(Figure S3B). Positive controls for VIP, TRPV1 and TH IHC can be found in Supplementary
Figure S4A–C. To further validate the presence of tumor-infiltrating twigs in HGSOC, we
immunofluorescently stained patient samples for neurofilament, another neuronal marker
(Supplementary Figure S4D). Since the type of innervation (sensory) in HGSOC differs from
that in normal fallopian tube and ovary (sympathetic), these data suggest that HGSOCs
obtain sensory nerves as a consequence of disease rather than by default.

The presence of twigs within HGSOC is very similar to our published findings in
head and neck squamous cell carcinoma (HNSCC) and cervical cancer patient samples. We
wondered whether twigs are similarly present within the TME of other solid tumors. To
test this, we surveyed a collection of cancers in a similar fashion. Ten samples per tumor
type were scored for innervation by five independent scorers. Like HNSCC, cervical and
HGOSC cancers, breast, prostate, pancreatic, lung, liver, and colon cancers harbor β-III
tubulin positive nerve twigs (Supplementary Figure S5A–F). Importantly, these tumor-
infiltrating twigs are seen as single fibers rather than established nerve bundles suggesting
they are actively recruited to the tumor bed rather than pre-existing in the tissue. While
β-III tubulin scoring of tumor-infiltrating twigs was variable, all tumor types analyzed
were innervated (Supplementary Figure S5G).

3.2. Syngeneic Model of HGSOC

To assess and trace tumor-infiltrating twigs in HGSOC, we developed a syngeneic
mouse model of the disease. In this model, murine oviductal secretory epithelial cells
(MOSEC) from C57Bl/6 females harbor CRISPR-Cas9 mediated deletion of Trp53 and Pten,
commonly altered in HGSOC [51–53] (Figure 2A). Western blot analysis of positive clones
validated their retained expression of lineage markers (Pax8, Ovgp1). As expected, loss of
Pten resulted in phosphorylation and activation of Akt (Figure 2B). These cells generate
tumors in mice that are Pax8 and WT1 lineage marker positive (Figure 2C) and grow
following intraperitoneal (Figure 3A) as well as subcutaneous injection (Figure 3B). Notably,
these murine tumors harbor β-III tubulin/TRPV1 positive nerve twigs (Figure 3C,D),
identifying them as sensory in nature. Moreover, additional immunohistochemical (IHC)
staining for the neuronal markers neurofilament and peripherin (Figure 3E,F) further
validate the presence of nerves in these murine tumors. Taken together, these data support
this as a faithful model of HGSOC and further support the presence of intra-tumoral nerves
in this disease.
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Figure 2. (A) Graphic illustration depicting methodology used to generate an MOSEC line deleted for
Trp53 and Pten. CRISPR-Cas9 was used to delete Trp53 and Pten in early passage primary MOSECs.
(B) Western blot analysis of CRISPR-Cas9 mediated knockout of Trp53 and Pten. Five clones were
evaluated for protein expression, including Pax8, Ovgp1, Pten, phospho-AKT, and β-actin. Loss of
Pten protein was associated with acquisition of phospho-AKT in clones 2 and 4. MOSEC represents
the parental murine oviductal secretory epithelial cells that was used for genome editing to generate
the Trp53; Pten double knockout cell lines. (C) Morphology and immunophenotype of Trp53; Pten
double knockout tumors. Top panel: H&E of tumors (20× and 40×) show a morphology consistent
with a high-grade carcinoma. Lower panel: immunohistochemistry for Pax8 and WT1 (20×) shows
that tumors retain lineage markers associated with high-grade serous carcinomas.
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Figure 3. Trp53 -/- Pten -/- syngeneic ovarian tumors grow in the peritoneal cavity (A) as well
as subcutaneously (B). Immunohistochemical staining of subcutaneous Trp53 -/- Pten -/- tumors
demonstrates they harbor β-III tubulin (C), TRPV1 (D), neurofilament (E), peripherin (F) positive
nerve twigs (arrows). Scale bar, 50 µm.

3.3. Nerve Tracing in HGSOC

Retrograde axonal tracing was employed for visualizing tumor-infiltrating neurons.
Given our findings demonstrating the presence of intra-tumoral twigs in many different
cancers (Supplementary Figure S5) and that HGSOC innervation is sensory, differing from
the sympathetic innervation endogenous to the tumor site (Supplementary Figure S3B),
we wondered where the intra-tumor sensory twigs originate. For nerve tracing studies,
female C57Bl/6 mice (n = 4) were implanted intraperitoneally with our murine model of
HGSOC and tumor growth was monitored weekly by ultrasound. Four weeks post tumor
implantation, anesthetized mice underwent ultrasound guided intra-tumoral injection with
the fluorescently conjugated axonal tracer, WGA-A568 (Figure 4A,B).
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Figure 4. Representative ultrasound images of (A) transverse view of intraperitoneal tumor in lateral
lower right quadrant of the abdomen showing skin line and fat under the skin. (B) Placement of the
needle within the tumor for injection. Dotted line highlights tumor.

Tumors were permitted to continue growing for an additional 5-days post-tracer
injection, after which animals were euthanized and tissues collected. Tumors and all
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associated tissues, including DRG were collected and analyzed for tracer fluorescence.
Whole mount images of tumor taken near the site of tracer injection show bright tracer
fluorescence (Figure 5A). Sections taken distal to the tracer injection site show tracer
positive twigs (Figure 5B). The presence of tracer positive twigs indicates that their nerve
terminals took up the tracer and retrogradely transported it such that their entire length is
tracer positive.

Cells 2021, 10, x FOR PEER REVIEW 10 of 17 
 

 

Tumors were permitted to continue growing for an additional 5-days post-tracer in-
jection, after which animals were euthanized and tissues collected. Tumors and all asso-
ciated tissues, including DRG were collected and analyzed for tracer fluorescence. Whole 
mount images of tumor taken near the site of tracer injection show bright tracer fluores-
cence (Figure 5A). Sections taken distal to the tracer injection site show tracer positive 
twigs (Figure 5B). The presence of tracer positive twigs indicates that their nerve terminals 
took up the tracer and retrogradely transported it such that their entire length is tracer 
positive.  

 
Figure 5. (A) Representative 4× confocal image of Trp53-/- Pten-/- tumor at the site of WGA-A568 (red) 
injection. (B) Tracer positive (red) intra-tumoral neuronal twigs distal to the injection site. Scale bar, 
500 µm. 

In addition, retrograde transport of WGA also resulted in tracer fluorescence of ipsi-
lateral neuronal somata within thoracic DRG and jugular–nodose ganglia identifying 
them as a source of intra-tumoral twigs (Figure 6 A,B). There was some scattered labeling 
throughout the thoracic DRG with a precipitous increase concentrated on one spinal seg-
ment depending upon the location of the tumor in the peritoneal cavity (Figure 7). DRG 
from cervical, lumbar, and sacral spinal segments were unlabeled. In control animals in 
which tumors grew subcutaneously in the hindlimb, WGA fluorescence was exclusively 
present in lumbar DRG, L3-4 in particular (Figure 6C). Labeled cells were dispersed 
throughout each labeled ganglion.  

 
Figure 6. Representative 10× confocal images of whole mount DRG containing labeled neurons innervating HGSOC. (A) 
Labeled thoracic DRG neurons following WGA injections into abdominal HGSOC. (B) Labeled neurons of the jugular–
nodose ganglia containing sensory peripheral neurons of the vagus nerve. (C) Labeled neurons of lumbar DRG (L4 spinal 
segment) following tracer injection into subcutaneous tumor in hind limb. (D) Labeling in a thoracic DRG following ip. 
injection of WGA into non-tumor bearing animal. Scale bar, 250 µm. 

As an additional control, non-tumor bearing animals were injected intra-peritoneally 
with the same amount of WGA and tissues similarly harvested five days later. Since the 
peritoneal cavity is normally innervated by sensory and autonomic fibers, tracer labeling 
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This was in stark contrast to the ipsilateral labeling that occurs following intra-tumoral 
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Figure 5. (A) Representative 4× confocal image of Trp53 -/- Pten -/- tumor at the site of WGA-A568
(red) injection. (B) Tracer positive (red) intra-tumoral neuronal twigs distal to the injection site. Scale
bar, 500 µm.

In addition, retrograde transport of WGA also resulted in tracer fluorescence of
ipsilateral neuronal somata within thoracic DRG and jugular–nodose ganglia identifying
them as a source of intra-tumoral twigs (Figure 6A,B). There was some scattered labeling
throughout the thoracic DRG with a precipitous increase concentrated on one spinal
segment depending upon the location of the tumor in the peritoneal cavity (Figure 7). DRG
from cervical, lumbar, and sacral spinal segments were unlabeled. In control animals in
which tumors grew subcutaneously in the hindlimb, WGA fluorescence was exclusively
present in lumbar DRG, L3-4 in particular (Figure 6C). Labeled cells were dispersed
throughout each labeled ganglion.
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Figure 6. Representative 10× confocal images of whole mount DRG containing labeled neurons innervating HGSOC.
(A) Labeled thoracic DRG neurons following WGA injections into abdominal HGSOC. (B) Labeled neurons of the jugular–
nodose ganglia containing sensory peripheral neurons of the vagus nerve. (C) Labeled neurons of lumbar DRG (L4 spinal
segment) following tracer injection into subcutaneous tumor in hind limb. (D) Labeling in a thoracic DRG following ip.
injection of WGA into non-tumor bearing animal. Scale bar, 250 µm.
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Figure 7. Cartoon of spinal cord and associated DRG. Panels (A–K) contain fluorescent images of WGA positive DRG from
each of the thoracic segments (Scale bar = 250 µm, Cartoon was created using Motifolio Illustration Neuroscience Toolkit,
https://www.motifolio.com. accessed on 1 September 2021).

As an additional control, non-tumor bearing animals were injected intra-peritoneally
with the same amount of WGA and tissues similarly harvested five days later. Since
the peritoneal cavity is normally innervated by sensory and autonomic fibers, tracer
labeling was expected. Interestingly, in these controls WGA labeling was widespread and
bilateral. This was in stark contrast to the ipsilateral labeling that occurs following intra-
tumoral tracer injections. Moreover, tracer positive neurons from tumor-bearing animals
were restricted to specific segments of the thoracic ganglia with one segment harboring
the strongest labeling. In addition, within tracer positive ganglia from tumor-bearing
animals, somata were intensely bright suggesting a high density of their terminals present
at the tumor bed (the site of tracer injection). In contrast, in control non-tumor bearing
animals, tracer labeling was not focused to specific ganglia and positive somata harbored
a weak tracer signal suggesting widespread uptake and, thus, dilution of WGA from
the peritoneum (Figure 6D). Taken together, these data indicate that abdominal HGSOCs
are specifically innervated by loco-regional sensory nerves that originate from peripheral
ganglia. Moreover, the stark contrast in the location of tracer (bilateral vs. ipsilateral) and
the robustness of its signal (diffuse vs. strong) between non-tumor bearing and tumor-
bearing animals indicates that ganglionic labeling following intra-tumoral WGA injections
does not occur due to diffusion of the tracer into the peritoneal cavity. Instead, the labeling
occurs from the retrograde uptake of WGA from nerve terminals concentrated within the
tumor bed.

To define what type of neurons (sensory, sympathetic, parasympathetic) innervate
murine HGSOCs, tracer positive DRG were immunofluorescently stained as follows.
TRPV1 was used as a sensory marker, tyrosine hydroxylase (TH) was used as a sym-
pathetic marker and vasoactive intestinal polypeptide (VIP) was used as a parasympathetic
marker. Approximately 30% of tracer positive DRG neurons from tumor-bearing animals
co-labeled with TRPV1 (Figure 8A), the majority were TRPV1 negative (Figure 8B,C).

https://www.motifolio.com
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Moreover, intra-tumoral neurons do not co-label with TH or VIP suggesting they are
not sympathetic or parasympathetic in nature (Figure 8D–I). Future studies will focus on
utilizing additional markers to further define innervation in HGSOC.
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Figure 8. Representative confocal images of whole mount DRG containing WGA labeled (red) neurons innervating HGSOC
tumor with TRPV1 (green, (A–C)), VIP (green, (D–F)) or TH (green, (G–I)) staining. Expression of TRPV1 was observed in
tracer labeled thoracic DRG neurons (A, arrows) whereas no TH or VIP staining was observed in tracer labeled neurons
(D,G). Scale bar = 100 µm.

4. Discussion

Our data support the literature demonstrating that innervation is a common feature
for multiple cancers [13,17,18,54–59]. Recent findings of neural activity recorded in vivo
from murine breast cancer further attest not only to the presence of neurons in tumors but
to their function within the tumor bed [54]. Here, we show that, similar to head and neck
and cervical cancers, breast, prostate, pancreatic, lung, liver, ovarian and colon cancers
contain β-III tubulin positive nerve twigs. The IHC staining of patient tumors show that, in
contrast to the sympathetic innervation of the fallopian tubes and ovaries, HGSOC tumors
are innervated by sensory (TRPV1 positive) nerves.

To further assess innervation of HGSOC, we developed a syngeneic mouse model of
the disease and investigate the source of these tumor-infiltrating nerves. Our tracing of
intra-tumoral nerve terminals to peripheral ganglia clarifies the innervation of HGSOC via
recruitment and sprouting from existing local peripheral nerves. Several neurites sprout
from each peripheral process resulting in extensive tumor innervation. These sprouted
twigs retrogradely transport the WGA tracer and label a relatively smaller number of
DRG and vagus somata. The induction of twig sprouting from existing fibers is similar to
axonal sprouting associated with nerve injury [60]. We hypothesize that the TME mimics
an injury environment. These signals, together with those released from the tumor cells,
likely signal loco-regional axons to sprout and innervate the tumor. While this hypothesis
remains to be fully tested, our data support such a mechanism. This finding further
indicates that the sensory nerves detected within the tumor tissue arise from extrinsic
innervation from dorsal root ganglia and the vagus nerve. The site of implantation and
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tumor formation dictates the recruitment of regional nerves along spinal segments. For
example, injection of tracer into hind limb tumors preferentially labels lumbar segments,
whereas intraperitoneal injection into abdominal tumors labels thoracic segments, with
different thoracic levels demonstrating tracer uptake depending upon the tumor location
within the abdomen. Tracer-labeled perikarya were present throughout the ipsilateral
DRG and nodose ganglia with no topographical localization of labeled cells within any
ganglia. Interestingly, immunofluorescent staining for TRPV1 shows that approximately
30% of tracer positive twigs also express TRPV1. This is in contrast to the IHC data from
patient samples which supports that the majority of the intra-tumoral twigs are TRPV1
expressing. While this disparity may reflect differences in antibody binding between FFPE
and perfusion-fixed tissue or differences between mouse and human tumors, an alternative
possibility is more likely. A recent study analyzing mouse and human DRG shows that
approximately 32% of neurons in murine DRG are TRPV1 positive while in humans, TRPV1
expressing somas make up 74% of the DRG [58]. Regardless of the reason for the difference
we see in TRPV1 positivity of intra-tumoral nerves, our analysis of patient and mouse
tumor samples indicates that HGSOCs are innervated and that at least one third of this
innervation is sensory in nature.

The majority of the nerve fibers in the vagus nerve are afferent sensory nerves commu-
nicating the state of the periphery to the brain. Vagal stimulation has recently been shown
to drive intra-tumoral electrical activity [54]. In addition, vagotomy has been shown to
decrease tumor growth in a mouse model of intestinal cancer suggesting this input could
act to promote carcinogenesis [55]. However, pharmacological inactivation of the vagus or
vagotomy enhances metastasis in an orthotopic model of breast cancer [56,57]. This may
be due to differences in surgery (mid-neck versus sub-diaphragmatic vagotomy), cancer
cell types, and/or tumor location. Together, these data demonstrate that vagal afferents
provide input to the TME, although the role of this active vagal sensory input to the TME
remains unclear. Future studies will define whether modulation of vagal input to HGSOC
influences disease progression.

Following intra-tumoral injection of axonal tracer, we found labeling within regional
DRG neurons (which reside along the spinal cord) which contain the somata of primary
sensory neurons that are critical structures in sensory transduction. Pain is a common
problem among those with advanced ovarian cancer, suggesting that sensory innervation
may occur at later stages of growth and contribute to this pain signaling. In the present
study, tracer injection occurred four weeks following implantation, when tumors are
relatively large. However, innervation may occur at earlier stages and may change during
disease progression or occur at a specific growth point. Future studies will examine earlier
time points in tumor growth to characterize the timeline of innervation in HGSOC. It is
important to note that labeled DRG neurons may not be the direct source of innervation as
it remains possible that intermediary neurons within the tumor contact these DRG fibers.

We noticed that twigs were generally found near blood vessels. This is not entirely
surprising as, during development, axons and blood vessels travel together. We hypothe-
size that signals released from the tumor diffuse loco-regionally. Once these signals are
received by nearby axons, they respond by sprouting twigs that extend into the tumor
bed. Since axons track near vessels, tumor-induced twig sprouting occurs at these sites.
While some patients are treated with VEGF inhibitors to block tumor angiogenesis, based
on our current findings, it is unclear whether such treated tumors would demonstrate less
innervation. Additional studies would need to address this possibility.

In the present study we did not assess whether there are alterations in DRG neuron
activity as a consequence of their terminals invading the TME. Changes to the activity of
even just a few DRG could broadly impact sensory-sympathetic activity. In preclinical pain
models, sympathetic sprouting in DRG has been observed and sympathetic stimulation
modulates DRG neuronal activity [59]. Moreover, DRG stimulation can also influence the
activity of sympathetic nerves [61]. In addition, the majority of DRG neurons undergo
depolarization when the axon of a neighboring DRG neuron within the same ganglion is
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stimulated [62]. Taken together, these studies suggest that altered signaling within DRG
innervating the TME could have broad impact on regional neuronal activity through signal
amplification or sympathetic and sensory interactions. Whether this impacts tumor growth
or, alternatively, whether the tumor itself modulates this neuronal activity, remains to be
defined. Future studies will investigate this neuronal plasticity associated with tumor
innervation and identify molecular adaptations within tumor-projecting sensory neurons.
As we gain an increased molecular understanding of intra-tumoral nerves and the neural
circuits they impact, we will be better equipped to identify and therapeutically target these
novel components of the TME.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10123491/s1, Figure S1: Twigs and blood vessels; Figure S2: Tumor expression of β-III
tubulin; Figure S3: HGSOC innervation. Figure S4: Positive controls for IHC and additional neuronal
marker; Figure S5: Innervation in solid tumors.
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