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ABSTRACT
◥

Background: Ovarian clear cell carcinoma (OCCC) is a rare
ovarian cancer histotype that tends to be resistant to standard
platinum-based chemotherapeutics. We sought to better under-
stand the role of DNA methylation in clinical and biological
subclassification of OCCC.

Methods: We interrogated genome-wide methylation using
DNA from fresh frozen tumors from 271 cases, applied nonsmooth
nonnegative matrix factorization (nsNMF) clustering, and evalu-
ated clinical associations and biological pathways.

Results:Two approximately equally sized clusters that associated
with several clinical featureswere identified. ComparedwithCluster
2 (N¼ 137), Cluster 1 cases (N¼ 134) presented at amore advanced
stage, were less likely to be of Asian ancestry, and tended to have
poorer outcomes including macroscopic residual disease following
primary debulking surgery (P < 0.10). Subset analyses of targeted

tumor sequencing and IHC data revealed that Cluster 1 tumors
showed TP53 mutation and abnormal p53 expression, and
Cluster 2 tumors showed aneuploidy and ARID1A/PIK3CA muta-
tion (P< 0.05). Cluster-definingCpGs included 1,388CpGs residing
within 200 bp of the transcription start sites of 977 genes; 38% of
these genes (N ¼ 369 genes) were differentially expressed across
cluster in transcriptomic subset analysis (P < 10–4). Differentially
expressed genes were enriched for six immune-related pathways,
including IFNa and IFNg responses (P < 10–6).

Conclusions:DNAmethylation clusters in OCCC correlate with
disease features and gene expression patterns among immune
pathways.

Impact: This work serves as a foundation for integrative analyses
that better understand the complex biology of OCCC in an effort to
improve potential for development of targeted therapeutics.

Introduction
Ovarian clear cell carcinoma (OCCC) remains an enigmatic his-

totype of epithelial ovarian cancer (EOC; ref. 1).When diagnosed at an
advanced stage, it has a worse outcome than the more common high-
grade serous histotype (2–4), and it tends to present at a younger age,
showing a poorer response to platinum-based therapy, the mainstay

treatment for EOC. As reviewed previously (5, 6), relatively small
studies suggest that OCCC possesses some singularly unique features.
Like endometrioid EOC, it can arise from endometriotic lesions;
OCCC is generally TP53 wild-type with recurrent somatic mutations
in PIK3CA and ARID1A and with a relatively low frequency of
structural rearrangements (7–10). Althoughwe and others have shown
that tumor DNAmethylation profiles differ between OCCC and other
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histotypes (10–12), methylation profiles among OCCC tumors have
not been comprehensively evaluated.

OCCCwithARID1Amutations display dysregulation of chromatin
remodeling (9) and frequently overexpress HNF1B via hypomethyla-
tion which has been reported to be associated with a methylated
phenotype (12). Mismatch repair deficiency, resulting from DNA
mismatch repair gene mutation or hypermethylation has also been
reported in OCCC, albeit at a relatively low frequency and predom-
inantly in older patients (13). In addition to the paucity of studies on
methylation and OCCC, there have been few gene expression studies.
Upregulation of genes in the IL6–STAT3–HIF and glycogen pathways
suggest a response to persistent oxidative stress and inflamma-
tion (14, 15). Tan and colleagues (16) described two groups of OCCC:
a mesenchymal-like subtype, with increased proliferation, tumor-
infiltrating lymphocytes (TIL), and poorer outcome, and an epithe-
lial-like tumor subtype which presented earlier in stage and with
mutations in SWI/SNF genes. The tumor microenvironment may
also contribute to an immune-suppressive state, suggesting a role for
immunotherapeutics such as checkpoint inhibitors (17). Programmed
death ligand 1 (PD-L1) expression is common inOCCC (�45%) and is
more common in more advanced disease (18), supporting the tenet of
an immunosuppressive microenvironment. OCCCs are known to
express hypoxia-related genes (19) which also influence the tumor
microenvironment and potentially T-cell responses. Despite such
promising avenues, it has been challenging to find ideal molecular
targets (20).

Epigenome-wide OCCC studies have generally been limited in
sample size, with the largest being less than 20 cases (10, 11, 21). To
date, none have had comparable statistical power for evaluation of
genome-wide DNA methylation in the context of other genomic and
clinical features on the scale of The Cancer Genome Atlas (TCGA)
high-grade serous EOC study (9, 22). In this article, we evaluate the
hypothesis that epigenomic profiling of a relatively large collection of
OCCC tumors can identify subclasses that may provide biological
insight and show distinct clinical behavior patterns.

Materials and Methods
Study participants

Clinical data and chemo-na€�ve fresh frozen tumor material were
examined from women diagnosed with invasive OCCC and enrolled
into research studies from the following sites: Memorial Sloan Ketter-
ing Cancer Center Gynecology Tissue Bank (New York, NY; ref. 23),
Mayo Clinic (Rochester, MN; ref. 10), University of Cambridge (Cam-
bridge, United Kingdom; ref. 24), Cedars-Sinai Medical Center (Los
Angeles, CA; ref. 25), University of Pittsburgh (Pittsburgh, PA),
Gynaecological Oncology Biobank (GynBiobank) at Westmead Hos-
pital (Sydney, Australia; ref. 26), University of Edinburgh (Edinburgh,
Scotland; ref. 27), Canadian Ovarian Experimental Unified Resource,
(COEUR, Vancouver, British Columbia, Canada; refs. 28, 29), Brig-
ham and Women’s Hospital (Boston, MA; ref. 30), and University of
Pennsylvania (Philadelphia, PA; ref. 31). Participants provided written
informed consent to Institutional review board–approved protocols.
To confirm histotype, tumor sections were reviewed by an expert
gynecological pathologist (M. Kobel) using Napsin A, p53, and WT1
IHC data (32).

DNA methylation arrays
Following bisulfitemodification, Illumina InfiniumMethylationEPIC

Beadchips were run on DNA samples arrayed on three 96-well plates
including extracted DNA from tissues containing >70% tumor from

239 participants, eight laboratory control DNAs (Human Methylated
and Non-Methylated Control DNA Set; catalog no. D5014, Zymo
Research), and four participant duplicates using a standard operating
procedure based on the Illumina protocol. Following scanning, inten-
sity data were imported into the Genome Studio Methylation Module
for analysis. Data were normalized, and detection p-values (reflecting
the likelihood that the signal is distinguishable from the internal
negative controls) were calculated for each CpG; call rate reflects the
percentage of CpGs detected (33, 34). Sample-independent controls
included those for bisulfite conversion allowing identification of those
with incomplete conversion; positive and negative controls were
included to determine whether any probes should be excluded due
to poor performance. The methylation status of the target CpG sites
was determined by comparing the ratio of fluorescent signal from the
methylated allele to the sum of the fluorescent signals from both
methylated and unmethylated alleles, the beta value. These values per
CpG range from 0 (unmethylated) to 1 (fully methylated). Laboratory
controls and participant duplicates indicated excellent assay perfor-
mance (e.g., r2 ¼ 0.99 for beta values of participant duplicates). Nine
participant samples showed poor performance and were excluded,
including eight with call rate <95% and one outlier for median
methylation intensity; no samples revealed sex error or mean or
median detection P > 0.05. For quality control (QC), CpGs probes
were excluded if they were located at a SNP location, failed in more
than 10% of samples, were located on the Y chromosome, were
determined to be cross-reactive, or overlap genetic variants (33, 34);
this resulted in 707,744 probes passing QC on the EPIC array. For an
additional 41 patients from the Mayo Clinic, published data derived
from the Illumina Infinium HumanMethylation450k Beadchip were
used (10), and CpG probes were analyzed which overlap the EPIC and
450K datasets after QC. In combination, the resulting analytical set
consisted of 344,914 CpG probes and 271 cases.

Methylation clusters and annotation
We analyzed 344,914 CpGs representing the intersection of CpG

sites included on the Illumina Infinium HumanMethylation450k and
MethylationEPIC Beadchips. Data were normalized separately for the
two platforms, and batch correction across the two platforms were
performed via COMBAT (33). On the 1% most variable CpGs as
defined by median absolute deviation (3,450 probes), we evaluated
three clustering methods (Brunet (35), Lee (36), and nonsmooth
nonnegative matrix factorization, nsNMF (37), as implemented in
the R package “NMF” (https://cran.r-project.org/web/packages/NMF/
index.html). Consensus clustering with 100 runs was performed, and
nsNMF resulted in the most stable cluster assignment and was chosen
as the most appropriate method. The optimal number of clusters was
determined by cophenetic correlation coefficient assessment (35)
which showed the largest drop at two clusters over the span of two
to seven clusters.We implemented 2,000 bootstrap samples to estimate
confidence intervals (CI) for the cophenetic coefficient for k ¼ 2
through k ¼ 7 clusters (38). As shown in the cophenetic correlation
plots along with the consensus map, estimates were highly reproduc-
ible with k¼ 2 (with narrowCI) and highly variable for k>2 (wide CIs),
emphasizing the reasoning of k¼ 2 as the optimal number of clusters
for subsequent analysis (Fig. 1). Feature extraction was used to
determine which CpGs had the greatest impact on the derived clusters
(2,437 CpGs). Cluster 1 CpGs were hyper-methylated in Cluster 1
versus Cluster 2 and vice versa. We characterized CpGs with anno-
tation derived from lllumina Corporation and Ensembl (v78,
GRCh38), limiting to CpGs in loci likely to be cis regulatory regions,
defined as within 50 UTR and 200 base pairs (bp) of a transcriptional
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start site (TSS). Gene set enrichment analysis (GSEA) of methylation
data (differentially methylated genes) was used to assess the extent of
enrichment of cluster-defining CpGs within cancer hallmark gene
sets (39) using the Bioconductor package ‘missMethyl’, which was
designed specifically for methylation data (40).

Association testing
For the clinical characteristics, somatic mutation, and IHC features

described below, association testing used a Kruskal–Wallis test for
quantitative measures and Pearson x2 test for categorical variables,
unless any cell count was less than five, in which case Fisher exact
testing with simulated P value based on 2,000 replicates was used.
Exploratory analyses examined larger number of clusters and excluded
Illumina Infinium HumanMethylation450k Beadchip data.

Clinical characteristics
We examined associations between cluster and baseline clinical

features including age at diagnosis (continuous), stage (early,
advanced), study continent (North America, Europe, Australia),
self-reported race (white non-Hispanic, Asian, other), extent of resid-
ual disease following primary debulking surgery (no macroscopic,
macroscopic), presence of adjacent endometriosis (yes, no), meno-
pause status (postmenopausal, pre/perimenopausal), and prior endo-
metriosis (yes, no).

Somatic mutation data
We also examined the association between cluster and somatic

mutation derived from targeted DNA screening on a subset of 234
(87%) OCCC tumors across study sites with adequate tissue. DNA
sequencing used a custom Nimblegen capture-based panel which of
166 putative OCCC driver genes based on pilot studies and COSMIC
Cancer Gene Census (5). Median coverage was 539x. Raw sequence
data were aligned to the human genome (NCBI build 37) using BWA
with variant calling for single nucleotide variants via Mutect2, Strelka,

and Caveman and insertions/deletions using Pindel, Mutect2, and
Strelka. Mutations were classified as pathogenic based upon their
annotation in OncoKB (8), frequency of occurrence in COSMIC and
our combined OCCC database of previously published sequencing
data, predicted pathogenicity based on PolyPhen (9) and SIFT (10),
and literature review. Analyzed features included aneuploidies (con-
tinuous number of chromosomal or chromosomal arm level events),
microsatellite instability (MSI) score (continuous; ref. 41), single gene
somatic mutation status (for ARID1A, TP53, PIK3CA, BRCA1,
BRCA2), paired gene somatic mutation status (for ARID1A/PIK3CA),
and a hierarchical somatic mutation classification [ARID1Amutation
with one other mutation in PIK3CA, PIK3R1, KRAS, PPP2R1A, SPOP,
or TERT (Group A); multiple ARID1A mutations with one other
mutation in PIK3CA or PIK3R1 (Group B); single ARID1A mutation
(GroupC);multipleARID1Amutations withoutmutations inPIK3CA
orPIK3R1 (GroupD);mutation inPIK3CA,PIK3R1,KRAS,PPP2R1A,
SPOP, or TERT (Group E); TP53 mutation without mutations in
ARID1A or SMARCA4 (Group F); SMARCA4 mutation not in com-
bination with a mutation described above (Group G); and remaining
tumors (GroupH)). Tumormutation burden ormutation number was
calculated as the sum of the presence or absence of a mutation in all
targeted genes.

Tumor IHC
On small subsets of up to 38 cases, IHC data was used to evaluate

association of tumor methylation cluster with levels of CD8þ TILs
[negative (none), low (1–2 per field), moderate (3–19 per field), high
(≥20 per field); ref. 42) and protein expression categories for ARID1A
[absent (internal control retained), present, subclonal loss (distinct
area of absence with internal control and presence in the same core)],
HNF1b [absent, any score less than score 2, diffuse (>50%) at least
moderate intensity] and p53 [complete absence with internal control,
wild-type pattern (variable intensity 1%–90% of nuclei), overexpres-
sion (strong intensity >90% of nuclei); ref. 32).

Figure 1.

nsNMFDNAmethylation clustering based on 271 OCCC Tumors.A, The estimated cophenetic correlation coefficient is plotted against the number of clusters (Rank),
for k¼ 2 through k¼ 7, alongwith the corresponding 95% confidence interval that is empiricially calculated from2,000bootstrap samples.B, For k¼ 2 through k¼ 7,
the plot of the consensus matrix displays the agreement in cluster group across 100 clustering runs (red indicates 1¼ agreement, blue indicates 0¼ disagreement).
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Outcome analyses
Overall survival analyses were restricted to a subset of 253 cases with

vital status and survival time data from date of diagnosis and allowed
for left truncation with censoring at five years from diagnosis. As
covariates, we included race (white non-Hispanic, Asian, other), study
continent (North America, Europe, Australia), and age at diagnosis
(continuous and quadratic, assigned as site median for three cases),
andwe stratified by disease stage (FIGO stage IþII, IIIþIV, unknown),
and extent of residual disease (no macroscopic, macroscopic,
unknown). Proportionality of hazards was examined using Schoenfeld
residuals. In addition, contingency analysis was done on cluster with
primary treatment response (complete response, partial response,
stable disease, progressive disease) and vital status at five years using
chi-square testing. Analyses were also conducted for progression-free
survival available on a subset of 248 cases.

Gene expression analyses
To further understand CpGs of interest, we used tumor RNA-

sequencing (RNA-seq) data on a subset of N ¼ 116 patients with
OCCCacrossmultiple contributing siteswith sufficient tissue available
for total RNA extraction. RNA-seq libraries were prepared using poly
(A) enrichment with sequencing of 100 bp paired-end libraries on
Illumina’s HiSeq at a targeted depth of 40 million reads per sample.
Alignment using STAR (version STAR_2.5.1b) against the reference
genome hg38 (GENCODE v26). Reads were summarized using fea-
tureCounts (version 1.5.0-p1). Because gene expression data can often
be skewed, a van der Waerden rank transformation (43) was applied.
We assessed the differential gene expression between tumor methyl-
ation clusters using amoderated t test as implemented in the R package
“limma”, with a false discovery rate (FDR) threshold of 0.05 to correct
for multiple testing. To assess pathway enrichment of genes differen-
tially expressed by feature cluster, GSEA was performed with cancer
hallmark gene sets (39) using “goseq” R Bioconductor package (44).
For CpGs driving feature clusters and within likely cis-regulatory
regions as defined above, we assessed the correlation between tumor
methylation and cis gene expression using a generalized linear model,
with gene expression as the response variable and CpG methylation
beta value as the predictor variable.

Results
Study participants and methylation clustering

A total of 271 women from ten study sites were included in
this large-scale analysis of genome-wide OCCC tumor DNA methyl-
ation data (Table 1); key characteristics did not vary by study site
other than race; Asian ancestry was more common in participants
from GynBiobank at Westmead Hospital (31%) and Memorial Sloan
Kettering Cancer Center Gynecology Tissue Bank (23%) than other
study sites. Thirty-five percent of participants were diagnosed at
advanced stage (FIGO III, IV), 23% reported prior endometriosis,
and, following primary therapy, 37% were deceased at last follow-up
within five years.

nsNMF clustering of the 1% most variable CpGs (3,450 CpGs)
intersecting Illumina Infinium HumanMethylation450k and Methy-
lationEPIC Beadchips resulted in 134 (49%) OCCC cases in methyl-
ation Cluster 1 and 137 (51%) OCCC in Cluster 2. A heat map using
the 2,437 CpGs contributing most significantly to the clustering
(as determined by the feature extraction) is shown in Supplementary
Fig. S1A, and the basis matrix (matrix W or the metagenes) heat
map is shown in Supplementary Fig. S1B. Among the CpGs contrib-
uting to clustering, a total of 1,388 reside within 200 bp of TSS of a gene

Table 1. Characteristics of 271 participants with invasive OCCC.

N (%)

Study site (country)
Memorial Sloan Kettering Cancer Center (USA) 64 (24%)
Mayo Clinic (USA) 56 (21%)
Cedars Sinai Medical Center (USA) 31 (11%)
University of Cambridge (United Kingdom) 27 (10%)
University of Pittsburgh (USA) 23 (9%)
Westmead Hospital (Australia) 22 (8%)
Edinburgh (United Kingdom) 20 (7%)
COEUR (Canada) 13 (5%)
Brigham and Women’s Hospital (USA) 9 (3%)
University of Pennsylvania (USA) 6 (2%)

Race, self-reported
White non-Hispanic 180 (86%)
Asian 25 (12%)

Black 4 (2%)
Other/Unknown 62

Age at diagnosis
Mean (range), N 58.1 (31–88), 268

FIGO stage
Early (I, II) 166 (65%)
Advanced (III, IV) 91 (35%)
Unknown 14

Tumor primary site
Ovary 209 (88%)
Omentum 4 (2%)
Pelvis 4 (2%)
Peritoneum 3 (1%)
Fallopian tube 1 (<1%)
Other 17 (7%)
Unknown 33

Residual disease
No macroscopic disease 181 (76%)
Macroscopic disease 57 (24%)
Unknown 33

Prior endometriosis, self-reported
Yes 33 (23%)
No 108 (77%)
Unknown 130

Primary therapy outcome
Complete response 157 (80%)
Partial response 7 (4%)
Stable disease 9 (5%)
Progressive disease 23 (12%)
Unknown 75

Progression within five years
Yes 137 (55%)
No 111 (45%)
Unknown 23

Time to progression among progressors,
months
Mean (range), n 18.8 (0.03–59.7), 137

Time to last follow-up among nonprogressors,
months
Mean (arange), n 51.0 (0.40–60.0), 111

Vital status at five years
Alive 159 (63%)
Deceased 94 (37%)
Unknown 18

Time to last follow-up among living, months
Mean (range), n 45.7 (0.40–60.0), 159

Note: Residual disease following primary debulking surgery.
Abbreviations: COEUR, Canadian Ovarian Experimental Unified Resource;
FIGO, International Federation of Gynecology and Obstetrics.
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(N ¼ 977 genes); these genes that did not fall into particular cancer
hallmark pathways (39). Clustering was consistent when excluding
Illumina Infinium HumanMethylation450k Beadchip data.

Clinical, tumor mutation, and IHC associations
Table 2 shows clinical, molecular, and pathologic covariates that

differed by methylation cluster at P < 0.10 (full results in Supplemen-
tary Table S1). Cluster 1 included OCCC that tended to be TP53
mutation positive (P < 0.001), have abnormal p53 protein expression
(P < 0.013), be of advanced FIGO stage (P ¼ 0.022), and have
macroscopic residual disease. Cluster 2 tumors were more likely to
be ARID1A mutation positive (P < 0.001), PIK3CA (P < 0.001)
mutation positive, of Asian race, and early stage (P ¼ 0.022) with
increased total aneuploidy (P < 0.001). While ARID1A and PIK3CA
mutations were common in these OCCC tumors (47%, 43%,
respectively, in this study), we expected TP53 mutations to be less
common (�11%–13%), yet found them in 20% of cases overall and
significantly more in Cluster 1 cases (31%). These particular cases
were re-reviewed to confirm their histology. Supplementary
Figure S2 shows the distribution across tumors of the presence of
mutations in the five genes that define the mutation clusters
(ARID1A, PIK3CA, TP53, BRCA1, BRCA2).

Consistent with single gene mutation results, multi-gene mutation
groups were found to associate with methylation clusters (P <
0.001; Table 2). Cluster 1 tumors tended to be mutation Group F
(TP53mutation positive with no mutation in ARID1A or SMARCA4),
mutation Group C (have a single ARID1A mutation,) or mutation
GroupG (SMARCA4mutations). Cluster 2 tumors weremore likely to
be mutation Group B (multipleARID1Amutations with a mutation in
PIK3CA, PIK3RA1, KRAS, PPP2R1A, SPOP, or TERT), or mutation
Group D (multiple ARID1Amutations without mutations in PIK3CA
or PIK3RA1). No association was seen between Clusters and study
continent, age at diagnosis, menopause status, history of or presence of
endometriosis, MSI score, extent of whole genome duplication or
tumor mutation burden (Supplementary Table S1). The distributions
of the clinical andmolecular features significantly differing inCluster 1
and Cluster 2 are shown in Fig. 2 and an overview of these character-
istics for each methylation cluster is provided in Fig. 3.

Clinical outcomes
Vital status at five years was also associated with methylation

clusters, with 55% of Cluster 1 cases and 70% of Cluster 2 cases alive
at time of follow-up (Table 2, P ¼ 0.01); similarly, time to disease
progression was shorter on average by 4.3 months in Cluster 1 cases
compared to Cluster 2 cases (Table 2, P¼ 0.07). Consistent with these
observations and published literature on ARID1A- and PIK3CA-
mutant OCCC, univariate analysis of overall survival time revealed
an apparent association with Cluster 2 having longer survival (Sup-
plementary Fig. S3; cluster 1 vs. Cluster 2: HR, 1.70; 95%CI, 1.13–2.57;
P ¼ 0.015). However, the proportional hazard assumption for the
cluster association was violated with an attenuation of risk difference
toward five years (P¼ 0.037). Covariate adjustment for age, continent,
and race with stratification by stage and residual disease attenuated the
estimated cluster-associated risk (Cluster 1 vs. Cluster 2; HR, 1.48; 95%
CI, 0.97–2.27; P¼ 0.067); proportional hazards remained in violation
(P ¼ 0.027). Subset analyses of cases by disease stage, suggested that
methylation cluster may associate with overall survival time only
among women diagnosed at advanced stage. However, as proportional
hazards again were violated, survival analysis results should be con-
sidered suggestive at most and larger studies with time-dependent
analyses are needed. There was no association between methylation

cluster and primary therapy outcome (partial, stable disease, progres-
sive disease, no evidence of disease).

Transcriptomic analyses
From among the 1,388 cluster-defining CpGs that lie within 200 bp

of transcription start sites (N¼ 977 genes, frommethylation clustering
above), we further analyzed 971 CpGs mapped to 700 genes in RNA
sequence data. At the CpG level, among the cluster-driving CpGs
determined from the feature extraction, we observed cis correlations
between methylation and gene expression at 113 CpGs (46 CpGs for
Cluster 1 and 67 for Cluster 2; Q value < 10–4, Supplementary
Table S2). Among the top cluster-driving CpGs (top 100 from feature
extraction), the most statistically significant were 13 CpGs associated
with decreased expression in twelve genes (AP2A2, ACKR2, RXFP1,
CTH, CEP44, R11–141M3.5, ANKS4B, FAM149A, LMF1, TNS2,
WIPF1, ATOH8; Supplementary Fig. S4).

In a subset of 116 cases with RNA-seq data, we also evaluated
differential RNA expression by methylation cluster (Supplementary
Table S2) and expression at 5,854 genes had an FDR <0.05. At the gene
level, among 977 genes with 1,388 cluster-defining CpGs residing
within 200 bp of transcription start sites, we found that 369 genes
(38%) were differentially expressed across methylation clusters (P <
10–4, Supplementary Table S3). ThroughGSEA,we observed that these
369 differentially expressed genes were significantly overrepresented
in nine of the 50 hallmark gene sets (39). Six of the pathways (67%) are
categorized as immune-related including inflammation, and IFNa and
IFNg responses (Table 3). Genes contributing to these pathways that
were significantly differently expressed across clusters are provided in
Supplementary Table S4 and include the non-receptor tyrosine kinase
JAK2, complement factorH, and toll-like receptor 2.No enrichment of
differentially expressed genes was seen in gene sets related to other
pathways, cellular components, or functions (39).

Discussion
We report on examination of genome-wide tumor methylation in

271 women with OCCC, a collaborative effort involving ten institu-
tions across five countries. Clustering algorithms were applied to
discern whether there existed methylation subgroups with distinct
clinical, molecular, or prognostic characteristics. Quantitative molec-
ular analyses sought to highlight pathways thatmay bridge epigenomic
and clinical associations.

Comparing diagnostic results of three clustering approaches
revealed nsMNF with rank k ¼ 2 to be the most stable method.
Subsequent nsNMF methylation clustering of tumors produced two
broad groups: Cluster 1 with ARID1A/PIK3CAmutations, early stage
and aneuploidy, and Cluster 2 with TP53 mutations, later stage and
residual disease. Mutational cluster analysis revealed that ARID1A
multiple mutations were almost exclusively in Cluster 2. ARID1A
deficiency impairs DNA double strand break repair (21) and limits
chromatin access, impairing IFN expression and promoting an immu-
nosuppressive environment (45).

While OCCC tumors are thought to have low levels of genomic
instability, a recent study (11) reported moderate levels of chromo-
somal gains and losses in OCCC. In this study, we note that those
OCCC with ARID1A/PIK3CA mutations had higher levels of chro-
mosomal aneuploidy, while TP53mutations were more common than
previously reported and at more advanced stages of disease (22). That
Cluster 2 with multiple ARID1A mutations appears to be ARID1A
deficient may explain the greater genomic instability associated with
this cluster, as assessed by aneuploidies.
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Table 2. Distributions of selected demographic, clinical, and molecular characteristics by DNA methylation cluster (P < 0.10).

Cluster 1
(n ¼ 134)

Cluster 2
(n ¼ 137) P

Illumina Infinium Methylation BeadChip 0.042
MethylationEPIC 120 (90%) 110 (80%)
HumanMethylation450k 14 (10%) 27 (20%)

Self-reported race 0.012
White non-Hispanic 95 (92%) 85 (80%)
Asian 6 (6%) 19 (18%)
Black 2 (2%) 2 (2%)
Missing/other 31 31

FIGO stage 0.022
Early (I, II) 73 (57%) 93 (72%)
Advanced (III, IV) 54 (42%) 37 (28%)
Unknown 7 7

Residual disease 0.065
No macroscopic 85 (71%) 96 (81%)
Macroscopic 35 (29%) 22 (19%)
Unknown 14 19

p53 expression 0.013
Wild-type pattern: variable intensity 1–90% of nuclei 13 (72%) 22 (100%)
Complete absence with internal control 2 (11%) 0
Overexpression, strong intensity >90% of nuclei 3 (17%) 0
Unknown 116 115

TP53 mutation <0.001
Yes 37 (31%) 10 (9%)
No 82 (69%) 105 (91%)
Unknown 15 22

ARID1A mutation <0.001
Yes 38 (32%) 73 (63%)
No 81 (68%) 42 (37%)
Unknown 15 22

PIK3CA mutation 0.002
Yes 39 (33%) 62 (54%)
No 80 (67%) 53 (46%)
Unknown 15 22

ARID1A/PIK3CA mutation <0.001
Yes/yes 18 (15%) 48 (42%)
Yes/no 20 (17%) 25 (22%)
No/yes 21 (18%) 14 (12%)
No/no 60 (50%) 28 (24%)
Unknown 15 22

Total aneuploidy <0.001
Mean (range) 7.1 (0–27) 11.1 (0–28)
Unknown 15 22

Somatic mutation group <0.001
ARID1A mutation with one other mutation in PIK3CA, PIK3R1, KRAS, PPP2R1A,
SPOP, or TERT (Group A)

21 (18%) 24 (21%)

Multiple ARID1A mutations with one other mutation in in PIK3CA or
PIK3R (Group B)

7 (6%) 33 (28%)

Single ARID1A mutation (Group C) 8 (7%) 3 (3%)
Multiple ARID1A mutations without mutations in PIK3CA or PIK3R1 (Group D) 2 (2%) 13 (11%)
Mutation in PIK3CA, PIK3R1, KRAS, PPP2R1A, SPOP, or TERT (Group E) 29 (24%) 27 (23%)
TP53 mutation without mutations in ARID1A or SMARCA4 (Group F) 28 (24%) 4 (4%)
SMARCA4 mutation (Group G) 6 (5%) 2 (2%)
Undefined (Group H) 18 (15%) 9 (8%)
Unknown 15 22

Vital status 0.01
Alive 69 (55%) 90 (70%)
Deceased 56 (45%) 38 (30%)
Unknown 9 9

Median survival, months 58.7 NA 0.01
Time to progression among progressors, months; mean (range), N 16.6 (0.03–50.3), 68 20.9 (0.16–59.7), 69 0.07

Note: Kruskal–Wallis sum testwas used for categorical tests, unless any cell less thanfive, then Pearsonx2 testwith simulatedP value based on 2,000 replicates used;
Fisher exact test used for quantitative measures. Total aneuploidy: number of chromosomal or chromosomal arm level events.
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Figure 2.

Alignment of tumor and clinical features byDNAmethylation clusters in 271OCCCTumors.A,Columns represent sampleswith those on the left indicatingMethylation
Cluster 1 tumors and those on the right Methylation Cluster 2 tumors. B,Mutation group (seeMaterials andMethods section). C,ARID1A/PIK3CAmutations (yes/yes,
yes/no, no/yes, no/no, missing). D, PIK3CAmutation (yes, no, missing). E, ARID1Amutation (yes, no, missing). F, TP53mutation (yes, no, missing). G,WGD, whole-
genome duplication (yes, no, missing). H, Total aneuploidy (none, 1–10, 11–20, 21–29, missing). I, Stage (early, advanced, missing). J, Residual disease (macroscopic,
nomacroscopic,missing).K,Race (White non-Hispanic, Asian, Black,missing. L, Illumina InfiniumBeadchip (HumanMethylation450, Methylation EPIC).M,Continent
(North America, Europe, Australia). Samples are ordered on the basis of hierarchical clustering which used nsNMF two-cluster analysis, although the dendrogram is
suppressed.

Figure 3.

Overview of characteristics of DNA methylation clusters. Methylated genes with decreased gene expression are shown, along with molecular and clinical
characteristics of OCCC samples within each methylation-based cluster.
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Pathway analyses provide support for a role of immune related
pathways in OCCC, from the tumor microenvironment or tumor
cells themselves. Looking at genes identified by clustering analyses
based on gene expression in OCCC previously (14–16), little
overlap was seen in genes significantly associated with methylation
clusters with those reported in the Anglelsio and colleagues (15)
study, nor with the cytokine genes examined in Yanajhara and
colleagues (15), although the number of OCCC were relatively small
in these two studies. Tan and colleagues (16), reported gene
expression in 222 ovarian clear cell carcinomas, noting two clusters,
epithelial-like and mesenchymal-like. However, there was little
overlap between those genes and those in our gene expression
associated with methylation clustering.

Strengths of this study include utilization of the largest OCCC
sample size to date, use of multiple study sites, consideration of
genome-wide epigenomics, and incorporation of tumor molecular
results where possible. Analysis of outcome differences between the
methylation clusters suggested improved prognosis in Cluster 2, but
this was complicated by potential changes in survival relationships
over time. Althoughmodeling prognostic analyses will require further
consideration of potentially time-dependent survival patterns in
larger patient collections, current results suggest that immune-
related methylation factors may provide an avenue for focused
development of potential future therapeutics. A potential weakness
of this report is the difference in resolution between the two
methylation arrays. However, we found that results were consistent
when analyses restricted to Illumina Infinium MethylationEPIC
BeadChip (85% of cases). Because sample size was limited in subset
analyses presented here, more complete somatic data is needed to
further clarify relationships between tumor mutations, DNA meth-
ylation, gene expression, and proteomics in OCCC. Greater overall
sample size with follow-up data will allow also enable appropriate
statistical evaluation of a variety of interactions and improved
assessment of overall and progression-free survival. As the most
extensive OCCC methylation study to date, this study represents a
foundation on which to build upon for future clinical, molecular,
and epidemiologic investigation.
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