Predicting master transcription factors from pan-cancer expression data

Jessica Reddy1,2,4†, Marcos A. S. Fonseca1,2,4†, Rosario I. Corona1,2,3,4†, Robbin Nameki1,2, Felipe Segato Dezen1,2,3, Isaac A. Klein4,5,5§, Heidi Chang1,2, Daniele Chaves-Moreira6, Lena K. Afeyan4,7, Tathiane M. Malta8,9, Xianzhi Lin1,2, Forough Abbasi1,2,3, Alba Font-Tello9, Thais Sabelot8, Paloma Cejas9, Norma Rodríguez-Malavé9, Ji-Heui Seo5,9, De-Chen Lin10, Ursula Matulonis11, Beth Y. Karlan1,2,12, Simon A. Gayther9, Bogdan Pasanic13,14,15,16, Alexander Gusev9,17, Houtan Noushmehr5, Henry Long9, Matthew L. Freedman5,9,18, Ronny Drapkin6, Richard A. Young4,19, Brian J. Abraham20,¶, Kate Lawrenson1,2,3,¶

Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is unavailable for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tumor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, including e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.

INTRODUCTION

Accumulating evidence indicates that tumor cells are driven by small sets of transcription factors (TFs) that control global gene expression programs (1–3). Often, tumor-driving master TFs (MTFs) are developmental regulators that are aberrantly expressed and functionally co-opted to regulate tumor cell states. For example, regulators of T cell development—TAL1, GATA3, RUNX1, and MYB—are highly expressed and coregulate oncogenic programs in T cell acute lymphoblastic leukemias (1, 2). In addition, development regulators MYCN, HAND2, ISL1, PHOX2B, GATA3, and TBX2 have been identified as MTFs in neuroblastoma (3). MTFs are typically only expressed in a limited number of cell types, consistent with their potent role in establishing gene expression programs driving distinctive cell identities (4, 5). MTFs are a class of promising therapeutic targets as they are selective essentialities in cancer cells because of a phenomenon termed transcriptional oncogene addiction (6).

Although TFs are notoriously difficult to directly target with small molecules, several MTFs have been shown to be highly sensitive to chemical inhibition of general transcriptional regulators, including those that target bromodomain (BRD)—containing proteins and transcriptional cyclin-dependent kinases 7/12/13 (CDK7/12/13) (7–9). The expression of tumor cell MTFs is often driven by large clusters of enhancers, termed superenhancers (SEs) or stretch enhancers (10, 11). The exquisite sensitivity of these factors to chemical perturbation of BRDs and transcriptional CDKs is hypothesized to result from disruption of continuous, high-level transcription driven by SEs, compounded by short TF transcript half-lives and autoregulation. Together, studies on MTFs and transcriptional inhibition in tumor cells demonstrate the importance of identifying these critical factors and studying their responses to small molecules targeting general regulators of transcription.

MTFs are thought to form core transcriptional regulatory circuitries by co-occupying genomic sites, particularly at SEs, and coordinating the expression of MTF genes and other genes critical for cell identity (1, 3, 12). Presently, the main approaches to identifying MTFs computationally model these circuitries by identifying autoregulatory, interconnected networks of TFs (13). These analyses require performing chromatin immunoprecipitation sequencing (ChIP-seq)
experiments to map enhancers and identifying SE-associated TFs whose predicted binding motifs are enriched at SEs, both upstream and regulating other MTFs (14). These approaches have been shown to recover experimentally validated MTFs in various tumor types but are limited to settings with large numbers of generally homogenous cells (12, 15, 16). Other approaches such as motif enrichment in accessible regions identified by assay for transposase-accessible chromatin using sequencing (ATAC-seq) are not only possible but also suffer from low dynamic ranges that render SE identification impracticable and the imprecision in motif occurrences between members of the same TF family.

Obtaining adequate amounts of primary tumor cells for ChIP-seq experiments can be technically challenging. RNA sequencing (RNA-seq) experiments, however, require less starting material, and, accordingly, RNA-seq data from primary tumor samples are currently more widely available, especially for rare tumor types and subtypes. We therefore developed an approach to predicting tumor MTFs using RNA-seq data from The Cancer Genome Atlas (TCGA). This approach is called the Cancer Core Transcription factor Specificity (CaCTS) algorithm, and it attempts to determine MTFs by identifying those TFs exhibiting high levels of absolute expression in combination with tumor-specific expression compared to a background dataset that contains a diverse set of cancer types. A conceptually similar approach has been previously applied to gene expression microarray profiles of normal tissues (3) and subtype determination in specific tumor types (17). We find that candidate MTFs identified through the CaCTS algorithm have many expected qualities of MTFs, such as SE association and high levels of essentiality, indicating that our approach is an orthogonal metric to existing attempts to predict MTFs. This unique resource represents a collection of candidate MTFs for 34 tumor types and 140 molecular and histologic subtypes that can be directly explored for therapeutic potential.

RESULTS
The CaCTS algorithm identifies factors with features attributed to tumor cell MTFs

Many known tumor cell MTFs are developmental regulators that exhibit cell type–specific expression (1–3). We hypothesized that similarly potent MTFs could be retrieved in poorly studied lineages by identifying sets of TFs that exhibit tumor type–specific RNA expression. We developed the CaCTS algorithm, which uses an entropy-based measure of Jensen-Shannon divergence (JSD) (5) to identify factors highly expressed in a given tumor type relative to a diverse collection of cancers, applying the approach to a pan-cancer RNA-seq dataset from TCGA. This dataset contains 9691 patient samples representing 34 tumor types (Fig. 1A and table S1) (18). We calculated the average expression levels of 1578 TFs in 34 tumor types/major subtypes (table S2). The specificity of expression of each TF, or “CaCTS score,” was calculated by comparing its expression level in the query tumor type to that in the remaining 33 tumor types. A high CaCTS score is therefore assigned to factors with high-level expression in the query tumor type as compared to the remaining background datasets (for example, TF1 depicted in Fig. 1A compared to TF2, which represents a factor that is ubiquitously expressed across the cohort). The output of the CaCTS algorithm is a list of all TFs ranked by CaCTS scores in each of the 34 tumor types (table S3).

Association with SEs is a feature of MTFs (8, 19–21). To provide a measure of confidence in our CaCTS predictions, we tested for SE association in a few systems where the relevant data were publicly available. We curated a list of 17 experimentally validated MTFs in B cell lymphoma [lymphoid neoplasm diffuse large B cell lymphoma (DLBC)] (8), melanoma [skin cutaneous melanoma (SKCM)] (20), esophageal squamous carcinoma (ESCC) (19), esophageal adenocarcinoma (ESAD) (22), and breast cancer (BCRA) (23, 24) (table S4), which served as positive controls in the development of our algorithm. By analyzing publicly available H3K27ac ChIP-seq data, we confirmed that 15 (of 17) positive controls are associated with SEs in the relevant tissue types (Fig. 1B and fig. S1, A and B). Fifteen (of 17) positive controls were scored highly by the CaCTS algorithm (within the top 5% in the relevant tumor type) (Fig. 1C, fig. S1C, and table S4). These findings demonstrate that the CaCTS algorithm efficiently recovers known MTFs and suggests a reasonable, empirical cutoff for determining high-confidence MTFs, i.e., top 5% in a given sample.

We next sought to determine whether SE-associated TFs are highly ranked by the CaCTS algorithm in general. We collected 92 publicly available and in-house H3K27ac ChIP-seq datasets, collecting an average of 4.5 (range 1 to 25) samples to represent 20 of the 34 tumor types (table S5). Fourteen of these were from primary tumors, while only cell line data were available for bladder urothelial carcinoma (BLCA), cervical squamous cell carcinoma (CESC), lung adenocarcinoma (LUAD), sarcoma (SARC), ESAD, and ESCC. We were unable to retrieve H3K27ac ChIP-seq datasets for adenocortical carcinoma (ACC), cholangiocarcinoma (CHOL), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal papillary cell carcinoma (KIRC), lung squamous cell carcinoma (LUSC), mesothelioma (MESO), stomach adenocarcinoma (STAD), testicular germ cell tumor (TGCT), pheochromocytoma and paraganglioma (PCPG), thyroid carcinoma (THCA), thymoma (THYM), uterine carcinosarcoma (UCS), and uveal melanoma (UVM), so these tumor types were not included in this analysis. In each dataset, we performed peak calling, SE identification, and gene set enrichment analysis (GSEA) to determine whether factors with high CaCTS scores tend to be enriched for SE-associated TFs. The majority (81 of 92, 88%) of comparisons between SE and CaCTS ranks showed significant enrichment (P_{GSEA} < 0.05) (Fig. 1D and fig. S1D), demonstrating that TFs with high CaCTS ranks are enriched for SE-associated factors in these 20 tumor types and suggesting that bona fide MTFs are among the high CaCTS scoring factors in the 14 tumor types where enhancer data were not available.

Similar to the CaCTS score, most (13 of 17) known MTFs were among the top 5% of expressed factors in the relevant tumor type (table S4) (8, 19, 20). Therefore, to arrive at a collection of candidate MTFs, we retrieved factors with high CaCTS scores (top 5%; CaCTS rank ≤ 79) that were also highly expressed (within the top 5% of expression; expression rank ≤ 79) for each of the 34 tumor types (table S6 and fig. S1E). This filter removed 2170 instances of TFs with lower-level (outside of the 5% top-ranked TFs), tissue-restricted patterns of expression, as these factors are less likely to be master regulators. The final list contained a total of 273 candidate factors with an average of 8.0 candidate factors per tumor type (range 3 to 31). We note that 224 highly expressed factors with low specificity scores (outside of the top 5% JSD rank) represent candidate ubiquitous MTFs that may play vital roles across multiple cancer types (table S7). Similarly, highly specific but lowly expressed (outside of the top 5% by expression) genes may also be MTFs, but less is known of
Fig. 1. A multicancer compendium of candidate MTFs. (A) Schematic of the CaCTS algorithm. (B) Positive control factors—POU2AF1, MYC, and BCL6 in DLBC; SOX10 in SKCM and SOX2; KLF5 and TP63 in ESSC—coincide with large SEs in the relevant tumor tissues. (C) These factors are highly expressed and have high CaCTS scores. (D) Across 20 tumor types, candidate MTFs with high CaCTS scores are significantly enriched at SEs in the corresponding tumor types. Gene set enrichment P values are shown, and analyses were performed with 10,000 permutations of randomly selected factors. (E) Unsupervised hierarchical clustering based on candidate MTF CaCTS scores across 34 tumor types, using the Spearman method and complete distance parameters. A height cutoff equal to 0.63 defines 11 CaCTS clusters. TGCT, testicular germ cell tumor; GI, gastro-intestinal; NE, neuroendocrine. (F) Sankey plot showing 20 pan-cancer clusters that correspond to the 11 CaCTS clusters. We identified the TCGA cluster assigned in each CaCTS group. (G) Schematic of the CaCTS algorithm. (H) Candidate MTFs shared between squamous cancer types. (I) Candidate MTFs shared between breast and prostate cancer.

these TFs and their capacity to regulate the tens of thousands of genes within the overall expression program.

We asked how TFs were nominated by CaCTS compared to those identified by two alternative methods: first, a bootstrapping method to assess the statistical significance of the CaCTS scores of our nominated MTFs and, second, a classical differential expression test. First, for the bootstrapping approach, we generated 1000 permutations of cancer type assignments to each sample, breaking the relationship of TFs to cancer type. Then, we recalculated the average TF expression and CaCTS score for each randomized cancer type. Using these 1000 iterations, we generated an empirical distribution for the CaCTS scores for each TF for each cancer type and calculated the statistical significance (P value) of the observed TF CaCTS score for a given cancer type. The same absolute expression filter was applied (expression rank ≤ 79). We observed that most (514 of 516) CaCTS candidate MTFs have a CaCTS score with high statistical significance [false discovery rate (FDR) = 5%], while the remaining two (FOSB for Meso and ELF3 for CHOL) are marginally significant (FDR = 10%; fig. S1F). We also observed that the statistical significance is correlated with the CaCTS score, with high CaCTS scores corresponding to the lowest P values (fig. S1G). For the differential expression test, we contrasted the TF expression in each tumor type individually to the average expression across the other 33 tumor types, identifying a total of 2686 candidates (FDR ≤ 5%; table S8). As with the CaCTS score and bootstrapping, there are TFs with statistically significant P values but low average expression, and, so, a cutoff for high expression is still required to discriminate candidate MTFs with both high differential and absolute expression. Four hundred seventy-four CaCTS candidates were identified by this method (table S8). We noted that both the bootstrapping and differential expression analyses nominated around five times more candidates than CaCTS, indicating that a major advantage of the CaCTS approach comes from the more manageable number of credible candidates prioritized.

On average, an individual factor passed the significance thresholds for being a candidate MTF for 1.9 tumor types (fig. S2A), consistent with our expectation that cancer MTFs will be enriched for developmental regulators with tissue-specific patterns of expression. Unsupervised hierarchical clustering of tumors based on CaCTS scores of the 273 TFs ever nominated as a candidate MTF in our tumor collection identified 11 clusters (fig. 1E). MTFs identified in TGCTs exhibited the highest average CaCTS scores (TGCT average CaCTS score = 0.91 ± 0.73; compared to an average of 0.36 ± 0.25 across the whole cohort) and included known TGCT markers NANOG (ranked number 1; CaCTS score = 2.4) and POU5F1 (ranked number 5; CaCTS score = 1.51). Most tumors cluster by organ site, which is expected because the expression of lineage-specific factors should be similar among tumors originating from related sites. For example, we identified a cluster consisting of ectoderm-derived adenocarcinomas from the lung, pancreas, esophagus, stomach, colon, and rectum (fig. 1E). Our clusters were largely consistent with those defined by unsupervised consensus clustering based on the expression of ~15,000 genes in 10,165 tumor samples by TCGA (fig. 1F and fig. S2B) (25), suggesting that our predictions largely distill global expression programs and might thus contain key drivers of those expression programs.

There were some notable differences between TCGA pan-cancer clusters and our own. In our clustering, uterine BLCA clusters with squamous tumors, while lung adenocarcinoma (LUAD) and pancreatic adenocarcinoma (PAAD) now cluster with other gastrointestinal solid tumors. This argues that common factors or related factors may manifest in different expression programs depending on cellular context.

A subset of candidate MTFs are shared among tumors of similar anatomic or functional state

A subset of 62 MTFs was shared among three or more tumor types (fig. S2A), so we sought to further examine commonalities across the union set of candidate MTFs (fig. 1, E and G to I). In a cluster of predominantly squamous tumors, two factors, TP63 and KLF5, were common candidates among five tumors from diverse anatomic sites, bladder, cervix, lung, esophagus, and head and neck (fig. 1, E and H). Similarly, six factors were shared between breast and prostate cancer, both derived from hormone-responsive organs (FOXA1, XBP1, LTF, SPDEF, CREB3L4, and ZNF652) (fig. 1I). FOXA1 is a critical player in breast and prostate cancer risk and somatic development (26, 27); XBP1 is involved in the unfolded protein response and MYC signaling in both cancer types (28); and SPDEF may function not only as a tumor suppressor gene in prostate cancer but also as an oncogene in breast cancer, where it regulates expression of lineage-specific genes in mammary luminal epithelial cells (29, 30). LTF, CREB3L4, and ZNF652 have been less well studied and warrant further investigation as BRCA and prostate adenocarcinoma (PRAD) candidate MTFs. While breast and prostate cancer closely clustered with gynecologic tumors arising from other hormone-responsive organs, these tumor types shared more candidate factors with each other than with ovarian serous cystadenocarcinoma (OV), UCS, and uterine corpus endometrial carcinoma (UCEC). This is consistent with germline susceptibility studies that report greater pleiotropy between prostate and breast cancer risk than between prostate and ovary (31, 32). These functional groupings in the clustering (fig. 1E) were less expected and suggest that shared MTFs across diverse tissue types are responsible for specific cellular functions in different cell identity contexts and differentiation states.

Candidate MTFs represent tumor cell dependencies

Tumor cell MTFs are generally required for cellular viability (3, 6, 17), and, so, we determined the extent to which loss of function of our candidate factors affect tumor cell viability by examining CRISPR-Cas9 screening data from The Cancer Dependency Map Consortium (DepMap; depmap.org) (33). CRISPR knockout screening data were available for 20 of the 34 tumor types in our study, with a mean of 21.7 cell lines per tumor type (range 1 to 31), and 434 cell lines in total. Dependency scores (CERES) are normalized such that −1 corresponds to the median effects of pan-essential genes (33). Dependency scores for the candidate MTFs in relevant cell line models are depicted in Fig. 2 (A to T). Eighty-two percent of (14 of 17) positive-control MTFs show modest dependency (minimum CERES score ≤ −0.4) and 47% (8 of 17) show high levels of dependency (minimum CERES score ≤ −1.0) in the relevant cancer type (fig. S3A). In these 20 tumor types, we found that 38.6% (152 of 394) of candidate MTFs showed at least modest dependency (fig. 2U). Conversely, when we consider each factor individually, 63% (248 of 394) of candidate MTFs exhibit a minimum CERES score below the median CERES score across all tumor types (fig. S3B). This included previously unidentified factors such as FOXM1 in ESSC (minimum CERES score = −0.85), previously implicated in this cancer type (34) although not as an MTF, and PREG in liver hepatocellular carcinoma (LIHC) (minimum CERES score = −0.99), a factor that regulates
Fig. 2. Candidate MTFs are often essential genes. Dependency scores for MTF knockouts. Darker red color denotes higher levels of essentiality. Unsupervised hierarchical clustering was used to arrange cell lines (columns) and MTFs (rows). (A to T) Dependencies for MTF candidates across 20 tumor types. For nine tumor types (DLBC, SKCM, ESACC, BRCA, COAD, KIRC, LIHC, LUSC, and OV), lineage-specific dependency data were available. Factors that are lineage-specific dependencies in the relevant tumor type are indicated by bold fonts and an asterisk. Data were curated from depmap.org. (U) Cumulative number of CACTS candidate MTFs with minimum dependency (CERES) scores of <-2.0 to 0.4. (V) Expression rank for CACTS candidate MTFs stratified by dependency category: high effect, minimum CERES score <-0.4; medium effect, minimum CERES score between -0.4 and 0; no effect, minimum CERES score >0.

prolactin expression and glucose homeostasis in the liver (35). We note that \textit{PREB} has an average normalized expression level of 2907.3 (expression rank = 41), while \textit{CEBPG} or \textit{FOXA3} knockouts have more modest effect (minimum CERES scores of −0.162 and −0.144, respectively) and lower average normalized gene expression (2542.3 and 1860.6, expression ranks of 49 and 74, respectively) than \textit{PREB}. Overall, gene expression levels of candidate MTFs with high dependencies tended to be higher than those with medium or low dependency scores ($P = 0.002$ for both tests, one-sided \textit{t} test; Fig. 2V).

Lineage-specific dependency data were available for nine tumor types [DLBCL, SKCM, ESSC, BRCA, COAD (colon adenocarcinoma), KIRC (kidney renal clear cell carcinoma), LIHC, LUSC, and OV]; 4 to 53% of CaCTS candidates in each cancer type were also lineage-specific TF dependencies in the relevant tumor cell lines. This was particularly notable for BRCA, where 9 of 17 candidates (53%) were dependencies specifically enriched in breast cancer (Fig. 2B). In general, we found that CaCTS candidate MTFs have more impressive CERES scores than other TFs or non-TF genes in 44% (12 of 27; one-sided Mann-Whitney \textit{U} test, $P < 0.05$) of cancer types, where dependency data were available.

Candidate MTFs are targets of somatic mutations in cancer

We tested whether candidate MTFs were enriched in somatic mutations in cancer. We calculated the mutation rate across all coding exons and identified significantly frequently mutated genes ($P < 0.05$) in all available tumor types, using data for somatic single-nucleotide variants (SNVs) from the PanCancer Analysis of Whole Genomes (PCAWG) project (https://icgc.org). Data were available for 21 (of 34) cancer types represented in Fig. 1E. We compared the mutation frequencies of candidate MTFs to TFs with comparably high levels of expression (within the top 5% of all TFs; expression rank ≤ 79) but low CaCTS scores (CaCTS rank ≥ 79) (table S7). Overall, candidate MTFs were significantly more likely to be mutated than noncandidate MTFs that were highly expressed in the same tumor type ($P = 1.0 \times 10^{-3}$, Pearson’s chi-square test; Fig. 3A), with this effect particularly evident for nine tumor types, including BRCA, KICH, LUSC, and PAAD (fig. S4). Frequently mutated MTFs (Table 1) included factors previously known to be somatically mutated in a tumor-specific manner, \textit{FOXA1} in BRCA and PRAD (36, 37) and \textit{NFE2L2} in squamous lung tumors (38). \textit{TRPS1}, a known essential gene and lineage-specific factor in breast cancer, was mutated in 11 of 195 breast cancer cases ($P = 4.5 \times 10^{-3}$); other previously unidentified factors with significant mutation frequencies included \textit{TBX3} in bladder tumors (mutated in 5 of the 23 cases; $P = 1.8 \times 10^{-3}$) and \textit{PAX8} in UCEC (mutated in 4 of 44 cases; $P = 0.01$). Similarly, candidate MTFs are also more likely to coincide with regions of copy number gain than noncandidate, highly expressed TFs ($P = 8.8 \times 10^{-3}$, Pearson’s chi-square test) with 11% (32 of 292) of candidate MTFs with a median copy number gain [median copy number variation (CNV) > 0], compared to only 5.4% (69 of 1269) of noncandidate, highly expressed TFs with median copy number gain (Fig. 3B). \textit{TRPS1} shows high levels of copy number amplification (median CNV = 2), with 78% (42 of 54) breast cancer samples showing amplification (CNV = 1, $n = 12$) or high levels of amplification (CNV = 2, $n = 30$). \textit{ZNFB217} is also amplified in breast cancer, with 51.85% (28 of 54) samples showing amplification (CNV = 1, $n = 20$) or high amplification (CNV = 2, $n = 8$). This suggests that our predicted MTFs might become genetically overexpressed and establish oncogenic regulatory circuits.

Subtype-specific MTF predictions reveal subtype-specific regulators

Many tumors characterized by a shared anatomic origin can be stratified into molecular and/or histologic subtypes with markedly different prognoses and responses to therapy using standard diagnostic tools and practices. Subtype annotation was available for 7115 of the 9691 tumors in our original dataset (tables S1 and S9). CaCTS scores were consistent when we used 9691 samples or the subset of 7115 with subtype annotation (fig. S5A). We stratified tumors into subtypes based on molecular features (expression, methylation, coding mutations, or copy number alterations) except in three instances where we used histologic classifications: KICH, SARC, and UCS, as no alternative subclassification strategy has been proposed for these tumor types. To select the most clinically relevant subtype classifications for the remaining tumors, we used TCGA-biolinks (39) and primary publications from TCGA (40–53). Subtype annotations were not available for DLBCL and ESSC. Table S9 details how the 34 tumor groups were stratified into a total of 140 molecular and histologic subtypes.

To use the CaCTS algorithm for the identification of subtype-specific MTFs, we queried the average expression of 1578 TFs in each subtype (table S10) against a background dataset that contained the distribution of TF expression in the other tumor subtypes. To prevent redundancy in the dataset diminishing our sensitivity, samples of the same major tumor type were excluded from the background dataset (see Methods). The CaCTS algorithm identified a total of 439 different candidates across the 140 tumor subtypes; this included all candidates identified in our initial analyses and 166 (38%) factors that were only identified in the subtype-stratified analyses (table S11). For each tumor subtype, we calculated the Jaccard distance to determine how much the candidate MTFs for subtypes deviated from the parent tumor type (mean Jaccard distance = 0.47, SD = 0.22, range = [0.00, 1.00]) (table S12). Subtype stratification had a major impact on the candidates identified for several tumor subtypes, with malignant peripheral nerve sheath tumors ($n = 5$) having the most divergent collection of candidates compared to the parent tumor type (SARC), with zero factors in common. Other subtypes with
large Jaccard distances compared to the parent tumor group included basal-type breast cancers \((n = 189, \text{Jaccard distance} = 0.93)\) (Fig. 4A), BLCA subgroup 3 (squamous enriched; \(n = 31, \text{Jaccard distance} = 0.79\)) and 4 \((n = 15, \text{Jaccard distance} = 0.95)\) (Fig. 4B), and the adenocarcinoma-enriched CESC group 3 \((n = 41, \text{Jaccard distance} = 0.81)\) (Fig. 4C). We compared candidate MTFs for the two predominant subtypes of breast cancer, luminal A (55% of BRCA cases) and basal (30% of cases). Only two factors \((TRPS1\) and \(LTF)\) were shared among other squamous tumor types (LUSC, ESSC, and HNSC), likely because these subtypes have squamous differentiation TFs as candidates \((9)\). When we stratified molecular groups in bladder and cervical cancer, we found that squamous-enriched group BLCA.3 and CESC “keratin” groups CESC.C1 and CESC.C2 now cluster together with squamous subgroups of bladder and cervix tumors cluster with squamous types from distant organs, adenocarcinomas share greater similarities with tumors derived from a similar developmental lineage.

Table 1. Somatic mutations of candidate MTFs. MTFs with a significant burden of SNVs across coding exons, compared to all coding exons in the genome (listed in order of significance).

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>TF</th>
<th>Sample size ((n))</th>
<th>Mutated samples ((n))</th>
<th>SNVs ((n))</th>
<th>(P) value</th>
<th>Adjusted (P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LUSC</td>
<td>NFE2L2</td>
<td>47</td>
<td>22</td>
<td>25</td>
<td>(3.33 \times 10^{-16})</td>
<td>(2.00 \times 10^{-15})</td>
</tr>
<tr>
<td>PRAD</td>
<td>FOXA1</td>
<td>275</td>
<td>11</td>
<td>11</td>
<td>(5.13 \times 10^{-9})</td>
<td>(9.74 \times 10^{-8})</td>
</tr>
<tr>
<td>KIRC</td>
<td>MAF</td>
<td>143</td>
<td>8</td>
<td>8</td>
<td>(8.25 \times 10^{-4})</td>
<td>0.01</td>
</tr>
<tr>
<td>KICH</td>
<td>FOXI1</td>
<td>43</td>
<td>2</td>
<td>2</td>
<td>(1.46 \times 10^{-3})</td>
<td>0.02</td>
</tr>
<tr>
<td>BLCA</td>
<td>TBX3</td>
<td>23</td>
<td>5</td>
<td>5</td>
<td>(1.82 \times 10^{-3})</td>
<td>0.03</td>
</tr>
<tr>
<td>BRCA</td>
<td>TRPS1</td>
<td>195</td>
<td>13</td>
<td>13</td>
<td>(4.48 \times 10^{-3})</td>
<td>0.04</td>
</tr>
<tr>
<td>BRCA</td>
<td>FOXA1</td>
<td>195</td>
<td>6</td>
<td>6</td>
<td>(5.08 \times 10^{-3})</td>
<td>0.04</td>
</tr>
<tr>
<td>READ</td>
<td>SOX9</td>
<td>52</td>
<td>9</td>
<td>11</td>
<td>(6.15 \times 10^{-3})</td>
<td>0.11</td>
</tr>
<tr>
<td>COAD</td>
<td>SOX9</td>
<td>52</td>
<td>9</td>
<td>11</td>
<td>(6.15 \times 10^{-3})</td>
<td>0.14</td>
</tr>
<tr>
<td>UCEC</td>
<td>MSX1</td>
<td>44</td>
<td>3</td>
<td>3</td>
<td>(8.61 \times 10^{-3})</td>
<td>0.09</td>
</tr>
<tr>
<td>PAAD</td>
<td>CREB3L1</td>
<td>234</td>
<td>5</td>
<td>5</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>PAAD</td>
<td>BHLHE40</td>
<td>234</td>
<td>5</td>
<td>5</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td>KICH</td>
<td>MECOM</td>
<td>43</td>
<td>2</td>
<td>2</td>
<td>0.01</td>
<td>0.11</td>
</tr>
<tr>
<td>UCEC</td>
<td>PAX8</td>
<td>44</td>
<td>4</td>
<td>5</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>BLCA</td>
<td>ELF3</td>
<td>23</td>
<td>4</td>
<td>5</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>BLCA</td>
<td>ID1</td>
<td>23</td>
<td>2</td>
<td>2</td>
<td>0.01</td>
<td>0.09</td>
</tr>
<tr>
<td>READ</td>
<td>MYC</td>
<td>52</td>
<td>7</td>
<td>10</td>
<td>0.01</td>
<td>0.19</td>
</tr>
<tr>
<td>COAD</td>
<td>MYC</td>
<td>52</td>
<td>7</td>
<td>10</td>
<td>0.01</td>
<td>0.23</td>
</tr>
<tr>
<td>ESAD</td>
<td>AHR</td>
<td>97</td>
<td>7</td>
<td>7</td>
<td>0.01</td>
<td>0.32</td>
</tr>
<tr>
<td>BRCA</td>
<td>XBP1</td>
<td>195</td>
<td>4</td>
<td>7</td>
<td>0.01</td>
<td>0.18</td>
</tr>
<tr>
<td>LIHC</td>
<td>XBP1</td>
<td>324</td>
<td>6</td>
<td>6</td>
<td>0.01</td>
<td>0.47</td>
</tr>
<tr>
<td>LIHC</td>
<td>RORC</td>
<td>324</td>
<td>7</td>
<td>8</td>
<td>0.01</td>
<td>0.47</td>
</tr>
<tr>
<td>BRCA</td>
<td>GATA3</td>
<td>195</td>
<td>4</td>
<td>4</td>
<td>0.01</td>
<td>0.20</td>
</tr>
</tbody>
</table>

and FOXJ1. PAX8, MECOM, and SOX17 were the top three shared candidate MTFs among this set of tumors (Fig. 4E). Molecular subgroups of ovarian and uterine carcinoma exhibited the greatest similarities, with CESC.C3, uterine leiomyosarcoma, and uterine endometrioid-like SARCcs sharing 3, 2, and 2 candidate MTFs in common with the uterine/ovarian carcinoma metagroup, respectively. For molecular subtypes of OV, MTF candidates largely mirrored those identified for OV as a whole, with a few differences, the mesenchymal molecular subtypes of OV, MTF candidates largely mirrored those among this set of tumors (Fig. 4E). Molecular subgroups of ovarian and uterine carcinoma exhibited the greatest similarities, with CESC.C3, uterine leiomyosarcoma, and uterine endometrioid-like SARCcs sharing 3, 2, and 2 candidate MTFs in common with the uterine/ovarian carcinoma metagroup, respectively. For molecular subtypes of OV, MTF candidates largely mirrored those identified for OV as a whole, with a few differences, the mesenchymal molecular subgroup of ovarian tumors uniquely lacked SOX17 and MECOM, both present in the other OV subtypes; FOXJ1, BCL6, EHF, and RARG were candidates for differentiated tumors, but not the other subtypes; ELF3 was a candidate MTF for the differentiated and immunoreactive OV subtypes only; and proliferative-type tumors had four unique candidates, HMGA2, SOX12, TEAD2, and PLAGL2. HMGA2 is a known, subtype-specific marker for the proliferative subgroup of OV (58), and transcriptional enhanced associate domain (TEAD) family proteins likely cooperate with paired box 8 (PAX8) to regulate gene expression in models of ovarian cancer (59, 60).

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa. To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa.

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa.

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa.

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa.

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa.

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa.

Using candidate MTFs to build core regulatory circuitry models in ovarian cancers

To validate the CaCTS algorithm, we tested our success at identifying MTFs for OvCa. The TCGA OV study consists exclusively of high-grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare tumors for which MTFs are currently unknown, and novel therapeutic targets are urgently needed because of the frequent late-stage diagnoses and high rates of recurrence. We identified 14 candidate MTFs for OvCa.
Fig. 5. PAX8, SOX17, and MECOM are candidate MTFs in HGSOC. (A) PAX8, SOX17, and MECOM coincide with SEs in primary ovarian tumors. H3K27ac ChIP-seq data were generated in 12 primary tumors, and data were normalized to counts per million (CPM) mapped reads. (B) SEs were identified in 12 primary HGSOCs; PAX8, SOX17, and MECOM are associated with SEs in most tumors. Stitched enhancers were ranked by H3K27ac ChIP-seq signal. (C) PAX8, SOX17, and MECOM occupy their own and each other’s SEs. Enhancers are indicated as black bars. (D) Proposed core regulatory circuit for HGSOC based on TF co-occupancy. (E) PAX8, SOX17, and MECOM ChIP-seq peaks were ranked by CPM-normalized signal. Strong binding sites for each factor are detected proximal to their own and each other’s gene loci. (F) PAX8, SOX17, and MECOM bind to enhancers of HGSOC clinical biomarkers. (G) Global cobinding of PAX8, SOX17, and MECOM. Each row is a PAX8 ChIP-seq peak. CPM-normalized ChIP-seq reads were plotted for a 4-kb window centered on each binding site. Rows are ordered by decreasing PAX8 signal. (H) PLA performed in Kuramochi cells. Each red dot represents a single interaction. Nuclei were counterstained blue with 4’,6-diamidino-2-phenylindole (blue). Scale bar, 100 μm. Image magnification, ×40. (I) Quantified PLA signal per cell. In (C) and (E) to (G), ChIP-seq data were generated in Kuramochi cells and normalized to CPM mapped reads. ***P < 0.001; Student’s paired t test. Error bars indicate SD of the mean values from three independent experiments (performed with technical triplicates).
and PBX1—were all associated with SEs in at least 11 of the 12 tumors. Notably, PAX8, SOX17, and MECOM are marked by SEs in primary ovarian tumors (minimum SE rank for PAX8 = 3, range = 3 to 294; minimum SE rank for SRY-box transcription factor 17 (SOX17); italicize SOX17 as a gene = 6, range = 6 to 65; minimum SE rank for MDS1 and EVI1 complex locus (MECOM); italicize MECOM as a gene = 17, range = 17 to 636) (fig. S6). We therefore performed TF ChIP-seq for these three factors in a HGSOC cell line (Kuramochi). PAX8, SOX17, and MECOM proteins occupy regulatory elements at the PAX8, SOX17, and MECOM gene loci, consistent with their formation of a core regulatory circuit (Fig. 5, C and D). The 2nd and 31st top-ranked PAX8 binding peaks were at the SOX17 gene locus (Fig. 5E). In addition, PAX8, SOX17, and MECOM bind at three clinical biomarkers of the disease: WT1, MUC16 (CA125), and HE4 (Fig. 5F) (62). Core regulatory circuit factors are expected to drive expression programs by co-occupying enhancers across the genome, and we observed a consistent colocalization of these factors genome wide (Fig. 5G). Proximity ligation assays (PLAs) detect protein-protein interactions in situ (63) and were performed to test whether PAX8, SOX17, and MECOM physically interact in the nucleus. PLAs performed in human ovarian cancer cells confirmed that these proteins can be part of the same complex (Fig. 5, H and I).

To study the collaboration between PAX8, SOX17, and MECOM in driving tumor cell survival, we analyzed tumor cell survival in their absence. Overall, 5 (of 14; 36%) OV MTF candidates showed moderate to high levels of essentiality in at least one HGSOC cell line (minimum CERES score of −0.4 or less) (Fig. 2R), particularly for PAX8 and MECOM where minimum CERES scores were −1.3 and −0.7, respectively. These two factors are also selective dependencies for OvCa (61). PAX8, SOX17, and MECOM dependency correlates with level of expression (Fig. 6A), consistent with a model in which these factors are playing oncogenic roles. In addition, PAX8, SOX17, and MECOM gene loci are amplified in 6, 11, and 36% HGSOCs, respectively, indicative of an oncogenic role for these genes (Fig. 6B).

Using RNA interference, we depleted PAX8, SOX17, or MECOM and quantified protein abundance by Western blotting to identify evidence of cross-regulation. For each TF, RNA expression was reduced by 80 to 95% following treatment with the corresponding small interfering RNA (siRNA) pool (Fig. 6C and fig. S7A). PAX8 knockdown resulted in a 60 to 90% reduction of SOX17 and MECOM expression, SOX17 knockdown down-regulated MECOM by 90% but did not affect PAX8 expression, and MECOM knockdown did not affect PAX8 expression but did induce a 90% increase in SOX17 (Fig. 6C). These trends were consistent with gene expression patterns quantified at the RNA level (fig. S7B). These data suggest a transcriptional circuitry that involves both negative and positive cross-regulation (Fig. 6D). Following PAX8, SOX17, and MECOM knockdown, colony formation of HGSOC cells was reduced by 76% (SD = 3.1%; P < 0.001), 44% (SD = 30%; P = 0.013), and 51% (SD = 17.9%; P = 0.004), respectively, in comparison to cells treated with nontargeting siRNA (siNT1; Tukey’s multiple comparison test, n = 4) (Fig. 6E). Comparisons of a second control (siNT2) showed growth patterns similar to those induced by siNT1 (Fig. 6E); therefore, we found a requirement for maintained PAX8, SOX17, and MECOM expression for HGSOC cell viability.

Targeting an MTF-driven oncogenic expression program in HGSOC

General transcription inhibitors are showing remarkable anticancer effects across multiple cancer types, which are thought to be largely because of their preferential activity toward MTFs (3, 9). OVCAR4 HGSOC cells exhibit notably low median inhibitory concentration (IC50) values of 45 nM for THZ1, 1.3 μM for JQ1, and 97 nM for THZ531, a covalent inhibitor of CDK12 and CDK13 (Fig. 6F) (64). Expression of PAX8, SOX17, and MECOM was strongly inhibited by these molecules (Fig. 6G and fig. S7C). PAX8 and SOX17 were among the 10% most-sensitive highly expressed transcripts in low-dose (50 nM) treatment with THZ21 (Fig. 6H). The potent inhibition of these factors with low-dose treatment is most relevant in terms of target engagement and the concentration range that selectivity is observed (7).

To catalog the genes regulated by our MTFs, we knocked down PAX8, SOX17, and MECOM and performed RNA-seq. PAX8 and SOX17 target genes were largely overlapping, with the most down-regulated genes enriched in pathways associated with cell cycle progression (Fig. 6I), including cell cycle regulators in the retinoblastoma (Rb) pathway such as known ovarian cancer oncogene CCNE1 (Fig. 6J) (58). MECOM, on the other hand, did not regulate the same cell cycle pathways but converged with PAX8 and SOX17 to regulate extracellular organization. MECOM also independently down-regulated genes involved in regulation of insulin-like growth factor, posttranslational protein phosphorylation, and phase 2 conjugation of compounds. Last, we found that target genes of PAX8 and SOX17 phenocopy effects of low-dose THZ1 treatment, suggesting that these factors, at least in part, explain the anticancer effect of this drug in ovarian cancer cells (Fig. 6K).

DISCUSSION

Core regulatory circuitries potentially represent a universal vulnerability in tumor cells, and, consequently, they are likely to represent critical therapeutic opportunities for many cancer types. Given recent developments in targeting core regulatory circuitries through the use of general transcription inhibitors and targeted protein degradation strategies, this approach to nominating candidate master regulators based solely on RNA-seq data is timely, particularly for tumor types where limited access to tumor specimens prohibits the generation of the ChIP-seq data typically required to identify candidate MTFs. The candidate MTFs recovered by the CaCTS algorithm include both known and previously unknown MTFs, which are especially valuable for tumor types in which transcriptional circuits are poorly characterized. As a proof of concept, we performed functional validation and confirmed MTF features for PAX8, SOX17, and MECOM in HGSOC cells, demonstrating that the CaCTS predictions recover previously unidentified critical regulators. In the DepMap cell line dependency data, we observed notable clustering patterns within each tumor type, with factors and cell lines clustering by codependencies for many tumor types, demonstrating the success of the CaCTS approach to identifying transcriptional circuitries. Cell lines that show the greatest dependence on tumor-specific MTFs may be the models that most faithfully maintain the critical features of primary tumors and are therefore superior models to use for translational studies. For example, in HGSOC, Kuramochi, OAW28, and ONCODG1 exhibited similar dependencies on candidate MTFs and have all been prioritized as cell lines models that faithfully recapitulate molecular hallmarks of HGSOC (65).
PAX8 Amplification

No alterations 6%

following a 6-hour drug treatment. (H) TF expression response curves for THZ1, THZ531, and JQ1 treatment. Nonlinear fit curves are shown. Data are representative of three independent experiments. (P) down-regulation (flat ends). Solid lines (**P < 0.05), dashed lines (not significant) (four independent experiments). (K) GSEA of the top 500 down-regulated genes following PAX8 and SOX17 knockdown, compared to a ranked list of THZ1-responsive genes. (C to G) *P < 0.05, **P < 0.01, and ***P < 0.001; Student’s paired t test; ns, not significant. Error bars indicate one SD of the mean values from three independent experiments (performed with technical triplicates).

Fig. 6. PAX8, SOX17, and MECOM are functional dependencies in HGSOC. (A) PAX8, SOX17, and MECOM are selective dependencies and [their gene loci] are commonly amplified in HGSOC tumors (B). (C) Western blot, with quantification, to confirm knockdown of PAX8, SOX17, and MECOM in OVCAR4 cells. (D) PAX8, SOX17, and MECOM coregulation based on normalized quantification of Western blot signal intensities after knockdown. Linewidths denote the percentage of up-regulation (arrows) or down-regulation (flat ends). Solid lines (P < 0.05), dashed lines (not significant) (four independent experiments). (E) Anchorage-independent growth assays. (F) Dose response curves for THZ1, THZ531, and JQ1 treatment. Nonlinear fit curves are shown. Data are representative of three independent experiments. (G) TF expression following a 6-hour drug treatment. (H) PAX8 and SOX17 are among the most sensitive genes in THZ1-treated Kuramochi cells. (I) Ontology analyses for transcripts down-regulated following siPAX8, siSOX17, and siMECOM treatment. IGF, insulin-like growth factor. (J) Retinoblastoma (Rb) pathway genes are among the most signifi- cantly down-regulated transcripts following PAX8, SOX17, or MECOM knockdown. (K) GSEA of the top 500 down-regulated genes following PAX8 and SOX17 knockdown, compared to a ranked list of THZ1-responsive genes. (C to G) *P < 0.05, **P < 0.01, and ***P < 0.001; Student’s paired t test; ns, not significant. Error bars indicate one SD of the mean values from three independent experiments (performed with technical triplicates).
We predicted candidate factors for major tumor groups, as well as clinically relevant molecular and histologic subtypes. This analysis revealed some common factors across diverse origins, a phenomenon most clearly illustrated by squamous tumors, where tumors across diverse anatomic sites shared three common factors (TP63, KLF5, and IFRF6). A further three factors were shared by three sites, RARG (BLCA, CESC, and HNSC), PITX1 (CESC, ESSC, and HNSC), and NFE2L2 (ESSC, HNSC, and LUSC). In some instances, squamous tumors have both squamous and organ-specific candidate MTFs, such as ID1 and KLF5 in cervix and AHR and KLF5 in esophageal tumors, suggestive of dual circuitries with cooperating factors dictating lineage-specific and functional programs.

Using CaCTS, we were able to make MTF predictions for rare and common tumor types that lack publicly available SE or functional dependency data. H3K27ac ChIP-seq data from cell lines, which may not closely recapitulate the epigenetic signatures of disease, are generally more available than from primary tumors, adding an obstacle to existing approaches. Dependency data are limited or absent for 10 tumor types and also generally rely on lines. Overall, around half of the tumor types represented in our study currently have limited publicly available data to predict MTFs, and, for six tumor types, neither H3K27ac ChIP-seq nor dependency data are available—ACCs, KICH tumors, KIRPs, TGCTs, THYM, and UCSS—and so, MTF prediction is not possible on the basis of current methods. Discussion of the MTFs identified for these tumor types are included as Supplementary Note.

Cancer MTFs represent attractive therapeutic targets, given their essential role in governing cell state and the tendency for cancer cells to become highly dependent on maintained high-level expression of a select handful of MTFs (6). Consistent with this, many candidate MTFs identified by CaCTS were lineage-specific essentialities in the relevant tumor type. General transcriptional inhibitors, which show preferential activity toward MTFs, offer an efficient approach to anticancer treatment, rather than developing drugs to target each individual MTF; several such agents are now in clinical trials. Another approach to targeting MTFs is more directly with protein degradation strategies, which are currently in preclinical stages of development. Functional validation of the OvCa candidate MTFs—PAX8, SOX17, and MECOM—revealed that each was sensitive to general transcription inhibition, with PAX8 and SOX17 particularly vulnerable to CDK7 inhibition with THZ1. This suggests that PAX8 and SOX17 contribute to the antiproliferative effects of this drug, in addition to its previously studied effects on MYC and MCL1 (66).

MTFs evince multiple characteristics, including selective dependency and association with SEs. We leveraged high, lineage-restricted expression to identify candidate MTFs, as this is another known characteristic of some known MTFs. While much previous work has shown the roles of MTFs in activating cell type–specific gene expression patterns, other work illustrates that MTFs can both activate genes and/or suppress them in collaboration with coactivators or repressive protein complexes. While MECOM exhibited some properties of MTFs, including functional dependency, genome-wide cobinding, and sensitivity to transcription inhibitors, MECOM was revealed as a negative regulator of SOX17 expression. Further work is needed to determine whether this is a direct result of loss of MECOM expression, given the time needed to achieve sufficient down-regulation in our system, whether MECOM depletion results in a selection of a subpopulation of high SOX17 expressors, or whether MECOM loss induces an alternate cell identity program.

As PAX8, SOX17, and MECOM are predicted to be MTFs in other tumor types and subtypes, the results in HGSOc models may be applicable to these other tumor types, including gynecologic tumors most similar to OV (UCEC and CESC.C) and some non-gynecologic tumors, thyroid and kidney carcinomas, ESADs, KICH tumors, and STADs. Early down-regulated genes following MTF depletion included members of the Rb pathway, indicating a mechanism of action for anticancer activity of THZ1 in ovarian cancer models. Critically, the known ovarian cancer oncogene CCNE1 was down-regulated following MTF depletion. Rb pathway alterations predict responses of patient-derived xenograft models to SY-1365 (67), a covalent CDK7 inhibitor currently in clinical trials for advanced breast and ovarian cancer (NCT03134638). While we validated three factors in OvCa, additional MTFs may contribute to the transcriptional circuitry of HGSOc. One such factor is WT1, an ovarian cancer biomarker, whose SE was cobound by PAX8, SOX17, and MECOM. Another candidate, MEIS1, was the highest-ranking SE-associated MTF for this tumor type. Cells dependent on PAX8 also tended to be dependent on ZNF217, a factor implicated in breast cancer (23). We noted for OV and most tumor types we examined that the tumor MTF predictions were very similar to those previously predicted for normal tissues of the same organ (5), suggesting that a major mechanism of tumorigenesis involves aberrant reinforcement of developmental transcriptional programs (20) or that normal MTF activities become perturbed to acquire oncogenic properties during cancer development (59). MTFs predicted by CaCTS are more likely to contain coding somatic mutations or coincide with copy number gain than TFs with comparably high levels of expression but lacking lineage-restricted patterns of expression, suggesting that somatic mutations that bestow pro-oncogenic properties on developmental MTFs are selected for during cancer development. Multicancer MTFs, which can cooperate with lineage-specific factors during tumorigenesis, may be dysregulated by different mechanisms in different systems.

We present a prioritized collection of candidate MTFs for 34 major tumor types and 140 tumor subtypes, which will be enriched for bone fide MTFs. We note that the tumor specificity metric provided by JSD statistic within the CaCTS workflow served to reduce the number of candidate factors to around fivefold compared to approaches based on differential expression of TFs in one tumor type compared to all other tumor types grouped together. Nonetheless, the prioritized candidates likely contain false positive, and so, for users of this resource, we recommend integration of complementary data, where available, such as dependency data and SE landscapes, based on H3K27ac ChIP-seq and other epigenetic data, dependency data, and motif-based circuitry mapping (14) to inform the design of functional validation experiments. We caution that not all cancer MTFs will fulfill all the canonical MTF criteria, for example, ZNF217 has lower levels of expression in basal-type breast tumors (expression rank = 232; 15th percentile) but high levels of dependency (minimum dependency in basal BRCA cell lines = −1.12). Similarly, the androgen receptor was not prioritized as a candidate for prostate cancer because of its expression rank (rank = 371 of 1578 TFs; 24th percentile), although it is known that this factor plays a critical role in transcriptional regulation and development of prostate cancers (26). This could be due to poor correlation of transcript expression with functional protein for some factors or by confounding factors, in this case, a signal-responsive ligand. An additional caveat to this approach is that nomination of candidates is directly related to the
composition of the background dataset. TF expression across several of the tumor types was quite similar (for example, in the kidney tumor types), so it is possible that additional tumor type–specific factors exist but were lowly ranked. Despite this, known regulators of kidney tumor types were efficiently retrieved with this analysis, suggesting that our background dataset was sufficiently heterogeneous to minimize this issue. In addition, our analyses were restricted to the pan-cancer dataset compiled by TCGA, so some tumor types are not represented. Metastatic and treatment-resistant tumor states, where new therapies are most urgently needed, are largely absent. Last, because of the limited availability of bone fide positive and negative controls, we were unable to statistically test the positive and negative predictive values for the method. In closing, we present a timely and valuable resource of candidate MTFs for tumor types where transcriptional circuitries are currently unknown and leverage this resource to identify PAX8, SOX17, and MECOM as master regulators for aggressive HGSOCs.

METHODS

Computational methods

Identification of positive-control MTFs

We curated a list of positive-control MTFs using the following criteria: (i) SE association; (ii) co-binding to the genome with another MTF; (iii) MTF gene expression is highly sensitive to treatment with general transcriptional inhibitors JQ1, THZ1, or THZ531; (iv) evidence of cell death or decrease in proliferation upon MTF depletion; and (v) convergence of MTF target genes and genes regulated by general transcription inhibitors. We searched for criteria related to these terms to identify positive-control MTFs for any of the 34 major tumor types published since 2010.

The CaCTS algorithm

PanCancer TCGA RNA sequence level 3 normalized data were downloaded from the Genomic Data Commons (GDC) Data Portal using TCGAbiolinks functions GDCquery, GDCdownload, and GDCprepare and imported into R (www.r-project.org) for analysis (39). Table S1 contains the tumor IDs for all the samples included in our analysis. After exclusion of recurrent, metastatic, and non-malignant tumors, a total of 9691 samples across 34 tumor types were available. Sample annotations were curated from TCGA publications (40, 42–53, 68) and TCGAbiolinks (39) (www.bioconductor.org/packages/devel/bioc/vignettes/TCGAbiolinks/inst/doc/subtypes.html). Tumor types/subtypes included were ACC, BLCA, BRCA, CESC, CHOL, COAD, DBLC, ESCA (esophageal carcinoma), GBM (glioblastoma multiforme), HNSC, KICH, KIRC, KIRP, LAML (acute myeloid leukemia), LGG (brain lower-grade glioma), LIHC, LUAD, LUSC, MESO, OV, PAAD, PCPG, PRAD, READ (rectum adenocarcinoma), SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, UCS, and UVM. For the main analyses, we preserved all grouping defined by TCGA, apart from for ESCA, which we divided into ESAD and ESSC.

Published lists of TF were retrieved from Saint-André et al. (13) (1253 TFs) and Lambert et al. (69) (1639 TFs). Merging both lists created a catalog of 1671 unique TFs, of which 1578 were expressed in the pan-cancer dataset. The 93 TFs not detected in this dataset are listed in table S13. To calculate a JSD score for each TF for each tumor type, we shifted the normalized expression values such that the new minimum normalized expression value is equal to 0.

The CaCTS score (CaCTS_{ij}) of gene i in cancer type j is a measure of gene expression specificity. It is calculated as follows

\[
\text{CaCTS}_{ij} = -\log_{10}(\text{JSD}(\hat{x}_{i}, \hat{u}_j))
\]

where

\[
\hat{x}_{i} = \frac{x_{i}}{|x_{i}|}
\]

\[
x_{i} = (x_{i,k}) \text{ is the ordered vector of normalized gene expression of gene } i \text{ and length } n \text{ (n is the number of cancer types, } k \in \{1, n\}), \hat{u}_j = (u_{i,k}) \text{ is the idealized cancer type–specific gene expression for cancer type } j \text{ represented by unit vector of length } n \text{ such that } u_{i,k} = 1, \text{ if } k = j, \text{ and } u_{i,k} = 0 \text{ otherwise.}
\]

The JSD measures the similarity between two probability distributions, here used to measure the similarity between two unit vectors \(\hat{x}_i\) and \(\hat{u}_j\). The JSD was calculated using the R package jsd (version 0.1). Practically, none of the values in vectors \(\hat{x}_i\) and \(\hat{u}_j\) should be equal to zero; therefore, we substituted any zeros for 0.1^{17} in vectors \(x_i\) and \(u_j\) and then get the unit vectors \(\hat{x}_i\) and \(\hat{u}_j\) by dividing over \(|x_i|\) and \(|u_j|\), respectively. The final candidate MTF list for a given cancer type was defined by considering the intersection of the 5% most highly expressed TFs (expression rank \(\leq 79\)) in said tumor type and the TFs in the top 5% when ranked by the CaCTS score.

Bootstrapping and t test methods for the statistical assessment of the CaCTS score

To estimate the statistical significance of the CaCTS score for a particular cancer type, we generated 1000 permutations of sample/cancer type associations. With these random permutations, we then calculated the average expression per cancer type and the CaCTS scores. Using these CaCTS scores, we obtained the parameters of the normal distribution (sample mean and sample SD) to then calculate the statistical significance (P value) of the observed CaCTS score (i.e., the real calculated CaCTS score). We observed that the CaCTS score distributions are likely normal and somewhat smooth; therefore, we can reasonably assume normality and that our high number of randomizations (10,000) generates a representative approximation of the null distributions. To perform differential expression tests, TF expression in each tumor type was contrasted to the average expression of each TF across the remaining 33 tumor types. One-sided t tests were used to derive P values for each contrast.

Identification of SE-associated genes

We collected publicly available H3K27ac ChIP-seq data from the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) using search term “H3K27ac,” “TCGA study abbreviation,” or “tumor type,” e.g., “BRCA” or “breast cancer.” We prioritized data generated for primary tumor tissues and only included data for cell lines when primary tumor data were not available. For OV, ESAD, PRAD, KIRC, and GBM, we used in-house tumor tissue H3K27ac ChIP-seq data. Data were processed using ENCODE pipeline version v1.2.0 and v1.1.7. ENCODE performed the alignment using bwa (version bwa-0.7.15-r1140) (70) and peak calling the Model-based Analysis of ChIP-Seq (MACS) (version 2.2.4, MACS2) (71). We used the total IP reads, “Normalized Strand Cross-correlation coefficient” (NSC), “Relative Strand Cross-correlation coefficient” (RSC), and “Fraction of reads in peaks” (FRIP) quality metrics to select the samples with high quality. Higher values of NSC indicate more enrichment, values less than 1.5 are relatively low NSC scores, and the minimum
possible value is 1 (no enrichment); for RSC, the minimum possible value is 0 (no signal), highly enriched experiments have values greater than 1, and values much less than 1 may indicate low quality; and FRIP is the fraction of mapped reads that fall into the called peak regions. Adjusted from ENCODE guidelines, we only included samples that passed the following quality control thresholds: total IP reads > 15 million, NSC > 1.05, RSC > 0.8, and FRIP > 0.1. The full curated list of H3K27ac ChIP-seq datasets used in this study can be found in table S5. SE calls were obtained using the rank ordering of SE2 (ROSE2) algorithm for all tumor types, except prostate and kidney, where ROSE was used (4). For ROSE2, we aligned to genome build hg19, with the following parameters: stitching distance -s 12500 and distance from TSS to exclude -t 2500. We selected SEs assigned to known TFs (13, 69).

Assessing enrichment of SE-associated genes in CaCTS ranked lists

We implemented the GSEA using the R package fgsea (version 1.10) (72) to evaluate the enrichment of SE-associated genes with the list of TFs ranked by CaCTS scores for each tumor type. We applied the fgsea function with the parameter nperm equal to 10,000. Numbers of SEs detected in each tumor are listed in table S5. Some samples did not have SE-defining datasets available; so, given the biological similarities of GBM and LGG, GBM SEs were used as a proxy to evaluate LGG MTFS predicted by CaCTS. Similarly, GSEA was performed on the READ candidates using COAD SEs.

Hierarchical clustering using CaCTS score

Clustering was performed using the Spearman method and complete distance parameters. We selected a height cutoff equal to 0.63 to define the clusters, which resulted in 11 groups (in the 34 tumor group analyses). To compare our clusters with groups defined by TCGA (25), CaCTS clusters were matched to the TCGA cluster to which 50% (or more) of the samples were assigned.

Analyses of CaCTS TF dependencies

For the dependency analysis, we manually searched the Cancer Dependency Map project database (DepMap Achilles 19Q1 public release; https://figshare.com/articles/DepMap_Achilles_19Q1_Public/7655150) (33) for cell lines that rightfully correspond to the 34 tumor types. We found dependency data for 20 of 34 (58.8%) tumor types and retrieved 434 cell lines across these, with LUAD having the largest number of lines (n = 31) and CHOL having the lowest (n = 1). We performed hierarchical clustering of cell lines and the CaCTS TFs for the corresponding tumor type (method = ward.d2, distance = euclidean). We also calculated the percentage of tumor types with at least one predicted candidate with a CERES score of <−0.4, <−0.6, <−0.8, or <−1 in at least 50% of the cell lines for that tumor type. Search terms used for each tumor type (for primary disease and subtype) were as follows: ACC: “Adrenal Cancer”; BLCA: “Bladder Cancer”; LGG: “Brain Cancer”, and then filtered by “Astrocytoma,” “Astrocytoma, anaplastic,” “Glioma, Neuroglioma,” “Oligodendroglioma,” and “Oligodendroglial, anaplastic”; BRCA: “Breast Cancer”; CESC: “Cervical Cancer”; COAD: “Colon/Colorectal Cancer”; ESAD: “Esophageal Cancer” and then filtered by “Adenocarcinoma”; ESCC: “Esophageal Cancer” and then filtered by “Squamous Cell Carcinoma”; GBM: “Brain Cancer” and then filtered by “Glioblastoma”; HNSC: “Head and Neck Cancer”; KIRC: “Kidney Cancer” then filtered by “Renal Carcinoma, clear cell” and “Renal Adenocarcinoma, clear cell”; LIHC: “Liver Cancer”; LUAD: “Lung Cancer” and then filtered by “Non-Small Cell Lung Cancer (NSCLCL), Adenocarcinoma”; LUSC: “Lung Cancer” and then filtered by “Non-Small Cell Lung Cancer (NSCLCL), Squamous Cell Carcinoma”; DLBC: “Lymphoma” and then filtered by “Diffuse Large B-cell Lymphoma (DLBCL)”; MESO: “Lung Cancer” and then filtered by “Mesotheioma”; LAML: “Leukemia” and then filtered by “AML”; PAAD: “Pancreatic Cancer”; PRAD: “Prostate Cancer”; COAD: “Colon/Colorectal Cancer”; SARC: “Sarcoma” and then filtered by “Liposarcoma”; SKCM: “Skin Cancer” and then filtered by “Melanoma” and “Melanoma, amelanotic”; STAD: “Gastric Cancer”; TGCT: “Embryonal Cancer”; THCA: “Thyroid Cancer”; UCEC: “Endometrial/Uterine Cancer” and then filtered by “Endometrial Stromal Sarcoma”; UCEG: “Endometrial/Uterine Cancer” and then filtered by “Uterine/Endometrial Adenocarcinoma,” “Endometrial Carcinoma,” and “Endometrial Adenocarcinoma”; UVM: “Eye Cancer”; and PCPG: “Neuroblastoma”. For OV and BRCA subtypes, we manually curated cell lines for inclusion as follows: OV (OAW28, COV318, KURAMOCHI, SNU8, ONCODG, JHOS4, JHOS2, OVCAR8, COV504, COV362, OV90, X59M, OVCAR5, CAOV3, EFO21, and A2780); BRCA (luminal A) (EFM19, HCC1428, CAMA1, HCC1419, MCF7, MDAMB415, SKBR3, ZR751, KPL1, HCC202, and HMC18); BRCA (luminal B) (EFM19, HCC1428, CAMA1, HCC1419, MCF7, MDAMB415, SKBR3, ZR751, KPL1, HCC202, and HMC18); BRCA (basal/TNBC) (MDAMB468, HCC1806, HCC1395, MDAMB436, MDAMB231, SUM159PT, BT549, HCC1937, MDAMB157, CAL51, HS578T, HCC1143, DU4475, and HMC18); and BRCA (HER2) (AU565, MDAMB453, JIMT1, and HCC1954).

Tumor subtype MTF predictions

To predict candidate MTFs specific for each of the 140 tumor subtypes (table S9), we implemented the same workflow developed for the 34 TCGA cancer types; however, instead of adding all samples for a query cancer type, we selected one subtype at once to be the query group and all other cancer subtypes to be the background. For example, considering the four molecular subgroups for ovarian cancer, we select “proliferative” samples as query and all other 136 cancer subtypes as background, selecting from other molecular subgroups for OV, i.e., mesenchymal, differentiated, and immunoreactive.

Somatic mutation analyses

We used coding SNVs from 2715 tumors from the PCAWG project (https://icgc.org). We removed all SNVs that fall into regions of low mappability (wgEncodeDacMapabilityConsensusExcludable.bed). To identify frequently mutated genes, we calculated a background mutation rate for each sample. Let X_i ($i \in [0, n]$) be a random variable that represents the number of samples with at least one mutation in the ith gene (where n is the total number of samples of a given tumor type), and then X_i follows a Poisson binomial distribution with a vector of probabilities $p = [1 - (1 - p_k)^{n_i}]_i$, where n_i is the size of the coding sequence of the ith gene in base pairs and p_k is the global background rate of sample k ($k \in [1, n]$) empirically estimated by the ratio of the total number of SNVs in sample k (n_k) over the total coverage of all exons (in base pairs) (n_{cov})

$$p_k = \frac{n_k}{n_{cov}}$$

To determine the statistical significance of the observed number of mutated samples in the ith gene, we calculated the probability of having at least s_i samples mutated, i.e., $P(\text{value}) = P(X_i \geq s_i)$. P values were adjusted using the Benjamini-Hochberg method.

Oncoplots of PAX8, SOX17, and MECOM genetic aberrations

Data were obtained from cbioPortal (73). Data included 579 patients/samples with OV, from the study TCGA Provisional.
Experimental methods

H3K27ac ChIP-seq of primary HGSOC tissues

All tissues were collected with informed consent and the approval of the institutional review boards of the University of Southern California, Cedars-Sinai Medical Center (CSMC), the Whitehead Institute for Biomedical Research (WIBR), and the Dana-Farber Cancer Institute. All specimens profiled were primary, chemotherapy-naïve HGSOCs. Tumors 1 to 4 were profiled at CSMC and have been previously described (74). Briefly, 5-mm punches of optimal cutting temperature compound (OCT)–embedded, pathology-reviewed tumor specimens were taken from epithelial enriched regions. Tissues were subjected to ChIP-seq using an anti-H3K27ac antibody (C15410196, Diagenode, Denville, NJ). Tumors 5 to 12 were profiled at WIBR. Thirty-micrometer sections of frozen tissues, with a >90% tumor enrichment, were washed with phosphate-buffered saline (PBS) and cross-linked with 1% formaldehyde for 10 min and quenched with 0.125 M glycine for 5 min at room temperature. Cross-linked material was resuspended in 1 ml of lysis buffer [0.1%SDS, 1× Triton X-100, 10 mM tris-HCl (pH 8), 1 mM EDTA (pH 8), 0.1% sodium deoxycholate, 0.25% sarkosyl, 0.3 mM NaCl, 1× protease inhibitor cocktail, and 5 mM sodium butyrate] and sonicated for 20 min with a Covaris E220 instrument (10% duty cycle, 175 peak incident power, 200 cycles per burst, and 1 ml of AFA Fiber milliTUBE®). Eight micrograms of soluble chromatin was immunoprecipitated with 10 µg of H3K27ac (C15410196, lot #a1723-0041d, Diagenode) antibody. ChiP-seq libraries were constructed using an Accel-NGS 2S DNA library kit from Swift BioSciences. Fragments of the desired size were enriched using AMPure XP beads (Beckman Coulter). Thirty-six–base pair (bp) paired-end reads were sequenced on a NextSeq instrument (Illumina). Data were processed using the ENCODE pipeline, as described above, with SEs identified using ROSE.

Cell culture

OVCAR4 and Kuramochi cell line models were selected as they closely recapitulate the molecular features of human HGSOC (65). Cells were cultured in RPMI 1640 supplemented with 10% fetal bovine serum, 1× nonessential amino acid (NEAA) cell culture supplement, insulin (11.4 µg/ml), and 1× penicillin/streptomycin and maintained at 37°C with 5% CO2. Cells were passaged with 0.05% trypsin using standard cell culture procedures. Cells were confirmed to be negative for Mycoplasma and were authenticated by profiling of short tandem repeats using the Promega PowerPlex 16HS assay, performed at the University of Arizona Genomics Core (table S14).

RNA interference and colony formation assays

OVCAR4 cells were reverse transfected with nontargeting [Dharmacon ON-TARGETplus Non-Targeting Control Pool (NT1) and a second custom control pool containing the following: D-0012-03, D-001210-04, and D-001210-05 (NT2)] or pooled PAX8, SOX17, and MECOM oligonucleotides (L-003778-00-0005, L-013028-01-0010, and L-006530-02-0005, Dharmacon) by incubating 120 nM of each siRNA pool in Opti-MEM I (Thermo Fisher Scientific) for 5 min, which was then combined with a mix of Opti-MEM I and Lipofectamine RNAiMAX (Thermo Fisher Scientific) and incubated for 20 min at room temperature. The transfection reagent mix was then combined with 300,000 cells and seeded in a 60-mm dish. Medium was replenished after 24 hours, and transfected cells were used for analysis or assays 48 hours later. For colony formation assays, transfected cells were trypsinized and counted, and 1000 cells per condition were seeded in six-well plates, in triplicate. Media were replenished once per week, and after 14 days, the cells were washed with 1× PBS (Thermo Fisher Scientific) three times and fixed with 10% formalin (McKesson) for 20 min. Plates were then washed with water and stained with 0.1% crystal violet for 30 min. Excess crystal violet was washed with water, and colonies were counted manually.

Western blotting

Cells were lysed with 100 µl of cell lysis buffer per 1 million cells [10 mM Hepes (pH 7.5) by KOH, 300 mM NaCl, 0.1% NP-40, 5 mM EGTA, with aprotinin (10 µg/ml), leupeptin (10 µg/ml), 1× protease inhibitor cocktail (Roche), 1× PhosSTOP Protease Inhibitor Cocktail (Roche), 1× phenylmethylsulfonyl fluoride (Sigma-Aldrich), and Suprapein-in (Ambion)] at 4°C for 1 hour. Lysed samples were then centrifuged at 12,000g for 10 min at 4°C, and supernatants were collected. Thirty micrograms of whole-cell extracts were treated with sample buffer and boiled at 95°C for 5 min. Samples were separated via SDS–polyacrylamide gel electrophoresis (Bio-Rad) and transferred to a nitrocellulose membrane with the Trans-Blot Turbo system (Bio-Rad) per the manufacturer’s instructions. Membranes were blocked with StartingBlock (Thermo Fisher Scientific) blocking buffer for 60 min at room temperature, followed by incubation with primary antibodies to detect PAX8 (1:1000 dilution; 32440, Novus), SOX17 (1:2000; ab224637, Abcam), MECOM (1:1000; C50E12, Cell Signaling Technology), or β-tubulin (1:2000; D3U1W, Cell Signaling Technology). Primary antibody incubations were performed in blocking buffer overnight at 4°C. Samples were then washed with tris-buffered saline with 0.1% Tween® 20 Detergent (TBT-T) three times for 10 min each and incubated in secondary antibody (1:10,000; ab6721 or ab6789, Abcam) for 1 hour, followed by three 10-min TBS-T washes. Membranes were developed using the Pierce ECL Western Substrate (Thermo Fisher Scientific) following the manufacturer’s protocol.

RNA-seq and data analysis

OVCAR4 cells were transfected in triplicate with the two siRNA control pools and target gene siRNA pools described above. RNA and protein were harvested 72 hours after transfection. Protein lysates were used to verify knockdown using Western blotting, as described above. Cells were washed with cold PBS, collected by scraping, and RNA extraction was performed using the NucleoSpin RNA Plus Kit (Macherey-Nagel) per the manufacturer’s protocol. Extracted RNA samples were used for polyadenylate nonstranded library preparation and 150-bp paired-end sequencing at 40 million reads using the DNBseq next-generation sequencing platform (RNA-seq performed by BGI). Reads were filtered and aligned using STAR-2.5.1b (ref_genome hg38.gencodev26), and a gene-level read count matrix was generated using featureCounts (subread-1.6.3-source). Differential gene expression analyses were then performed using the R package DESeq2 (version 1.24.0). Differentially expressed genes were selected using an absolute log2 fold change of ≥1 and an adjusted P value of ≤0.01. Pathway analyses were performed using the R package ReactomePA (75).

Proximity ligation assay

To perform the PLA, we used the Duolink Technology (DUO92101, Sigma-Aldrich). Kuramochi cells were grown for 24 hours on a 96-well imaging plate (0030741030, Eppendorf). Cells were fixed in 4% paraformaldehyde for 15 min, permeabilized with 0.25% Triton X-100 for 15 min, and blocked with 1% bovine serum albumin in PBS containing 0.1% Tween 20 for 30 min. Primary antibodies against PAX8 (1:250 dilution; NBP2-29903, Novus), SOX17 (1:250 dilution; 81778S, Cell Signaling Technology), and MECOM (1:250 dilution; 23201-1-AP, ProteinTech) were incubated overnight.
at 4°C. After three 5-min washes with TBS-T, PLA probes were incubated overnight at 4°C. Detection was performed using Duolink RED detection reagents as recommended by the manufacturer. Samples were air-dried and covered with Duolink mounting medium with 4',6-diamidino-2-phenylindole and then imaged using a Nikon Eclipse Ti inverted microscope under ×40 magnification. ChIP-seq of PAX8, SOX17, MECOM, and CTCF in Kuramochi cells

Kuramochi cells were grown to 80% confluence, cross-linked with 1% formaldehyde in PBS for 15 min, pelleted, and flash-frozen. One hundred million cells were used per ChIP with 10 μg of each antibody, PAX8 (catalog number 59019, lot 1, Cell Signaling Technology), SOX17 (catalog number AF1924, lot KG0818071, R&D Systems), and MECOM (catalog number 2593, lot 4, Cell Signaling Technology). Sonication was performed with a Qsonica microtip sonicator with 4 min of total time (30-s on, 1-min off) with 18 to 21 W. The supernatant of the sonicated lysates was incubated overnight at 4°C with the antibody and Invitrogen Dynal magnetic bead mix. After extensive washing, enriched chromatin was purified as follows: for PAX8, using a phenol:chloroform:isoamyl alcohol extraction (76), and for SOX17 and MECOM, bead:antibody:chromatin complexes were resuspended in elution buffer, placed at 65°C for 45 min with intermittent vortexing and spun down. Ribonuclease A (RNase A) was added to the supernatant, and samples were incubated at 65°C for 3.5 hours before a proteinase K digest at 42°C for 1 hour. DNA was then purified using polymerase chain reaction (PCR) column purification. CCCTC-binding factor (CTCF) ChIP-seq was performed as previously described (77) using 25 μg of chromatin and 5 μg of anti-CTCF antibody (catalog number 61311, Active Motif), and chromatin was sheared to 100- to 300-bp fragments using a Covaris E220 evolution focused sonicator. ChIP libraries were constructed using the KAPA Hyper Library Preparation kit, quantified, and sequenced on an Illumina NextSeq 500 sequencer. Reads were aligned to the hg19 version of the human reference genome using bowtie v1.2 (78) with parameters -k 2 -m 2 –best -l to set the read length. WIG files for display were made using MACS v1.4 (71) with parameters -w -S –space = 50 –nomodel –shiftsize = 200. Regions statistically enriched in reads were identified using MACS v1.4 with corresponding input control and parameters -p 1e-9 –keep-dup = auto. Regions for the colocalization heatmap were constructed by collapsing regions enriched in PAX8, SOX17, and MECOM using bedtools merge (79) and creating 4-kb regions centered on the center of the collapsed regions. Read coverage was quantified for heatmap analysis using bamToGFF (https://github.com/BradnerLab/linepipe) with parameters -m 1 -r -using a mapped read map with non-PCR duplicate reads created with samtools rmdup (80). Heatmaps were ranked using read coverage quantified in 1-kb windows centered on the middle of each collapsed region using bamToGFF with parameters -m 1 -r.

THZ531, THZ1, and JQ1 dose response curves

OVCAR4 cells were plated in 96-well plates at 5000 cells per well. After 24 hours, THZ531 (ApexBio), THZ1 (Selleck Chemicals), and JQ1 (Tocris) or vehicle (dimethyl sulfoxide (DMSO)) were added in 1:3 dilutions starting from 10,000 to 1.5 nM in triplicate and incubated for 72 hours at 37°C. Cell numbers were quantified using the Promega Cell Titer Glo reagent. Signals were then normalized to the lowest dose, and IC_{50} values were calculated with GraphPad Prism.

THZ531, THZ1, and JQ1 treatment for RNA

OVCAR4 cells (400,000) were seeded in 60-mm dishes 24 hours before experiment. Cells were treated with either low-dose THZ1 (50 nM), high-dose THZ1 (250 nM), low-dose THZ531 (100 nM), high-dose THZ531 (500 nM), JQ1 (500 nM), or DMSO (500 nM) for 6 hours. Plates were then washed with ice-cold PBS once, followed by RNA extraction with the NucleoSpin RNA Mini Kit (Macherey-Nagel), followed by quantitative PCR. Relative expression was measured and normalized using the average expression of GAPDH and ACTB and then normalized to DMSO control.

THZ531, THZ1, and JQ1 global transcriptome data

RNA-seq data from THZ1-treated Kuramochi cells were obtained from GSE116282 (66). Data were filtered to remove lowly transcripts [Reads Rer Kilobase of transcript, per Million mapped reads (RPKM) > 1] to select protein-coding genes, and expression of the top 10% of genes, at 50 and 250 nM, was plotted. Gene set enrichment was conducted using an ascending-ordered ranked list of log2FC after target gene knockdown and gene sets of THZ1 differentially expressed genes.

Quantitative PCR

Total RNA was converted to complementary DNA (cDNA) using random primers (Promega) and the Moloney Murine Leukemia Virus (M-MLV) Reverse Transcriptase RNase H (Promega) as per the manufacturer’s instructions. cDNA was then amplified by the QuantStudio 12K Flex Real-Time PCR system (Thermo Fisher Scientific) with the Taqman Universal Master Mix with UNG (Applied Biosystems) along with the following probes: GAPDH, TUBB, and/or ACTB as housekeeping genes (Hs02786624_g1, Hs00742828_s1, and/or Hs01060665_g1), as well as PAX8, SOX17, and MECOM (Hs00247586_m1, Hs00715752_s1, and Hs00602795_m1).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.sciencemag.org/content/10.1126/sciadv.abc6123.

View/request a protocol for this paper from Bio-protocol.

REFERENCES AND NOTES

genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).
Predicting master transcription factors from pan-cancer expression data

Sci. Adv., 7 (48), eabf6123. • DOI: 10.1126/sciadv.abf6123

View the article online
https://www.science.org/doi/10.1126/sciadv.abf6123

Permissions
https://www.science.org/help/reprints-and-permissions