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C A N C E R

Predicting master transcription factors from pan-cancer 
expression data
Jessica Reddy1,2†‡, Marcos A. S. Fonseca1,2†, Rosario I. Corona1,2,3†, Robbin Nameki1,2, 
Felipe Segato Dezem1,2,3, Isaac A. Klein4,5§, Heidi Chang1,2, Daniele Chaves-Moreira6, 
Lena K. Afeyan4,7, Tathiane M. Malta8ǁ, Xianzhi Lin1,2, Forough Abbasi1,2,3, Alba Font-Tello9, 
Thais Sabedot8, Paloma Cejas9, Norma Rodríguez-Malavé3, Ji-Heui Seo5,9, De-Chen Lin10, 
Ursula Matulonis11, Beth Y. Karlan1,2,12, Simon A. Gayther3, Bogdan Pasaniuc13,14,15,16, 
Alexander Gusev9,17, Houtan Noushmehr8, Henry Long9, Matthew L. Freedman5,9,18, 
Ronny Drapkin6, Richard A. Young4,19, Brian J. Abraham20*¶, Kate Lawrenson1,2,3*¶

Critical developmental “master transcription factors” (MTFs) can be subverted during tumorigenesis to control 
oncogenic transcriptional programs. Current approaches to identifying MTFs rely on ChIP-seq data, which is un-
available for many cancers. We developed the CaCTS (Cancer Core Transcription factor Specificity) algorithm to 
prioritize candidate MTFs using pan-cancer RNA sequencing data. CaCTS identified candidate MTFs across 34 tu-
mor types and 140 subtypes including predictions for cancer types/subtypes for which MTFs are unknown, includ-
ing e.g. PAX8, SOX17, and MECOM as candidates in ovarian cancer (OvCa). In OvCa cells, consistent with known 
MTF properties, these factors are required for viability, lie proximal to superenhancers, co-occupy regulatory 
elements globally, co-bind loci encoding OvCa biomarkers, and are sensitive to pharmacologic inhibition of 
transcription. Our predictions of MTFs, especially for tumor types with limited understanding of transcriptional 
drivers, pave the way to therapeutic targeting of MTFs in a broad spectrum of cancers.

INTRODUCTION
Accumulating evidence indicates that tumor cells are driven by 
small sets of transcription factors (TFs) that control global gene ex-
pression programs (1–3). Often, tumor-driving master TFs (MTFs) 
are developmental regulators that are aberrantly expressed and 
functionally co-opted to regulate tumor cell states. For example, 

regulators of T cell development—TAL1, GATA3, RUNX1, and 
MYB—are highly expressed and coregulate oncogenic programs in 
T cell acute lymphoblastic leukemias (1, 2). In addition, develop-
mental regulators MYCN, HAND2, ISL1, PHOX2B, GATA3, and 
TBX2 have been identified as MTFs in neuroblastoma (3). MTFs 
are typically only expressed in a limited number of cell types, con-
sistent with their potent role in establishing gene expression pro-
grams driving distinctive cell identities (4, 5). MTFs are a class of 
promising therapeutic targets as they are selective essentialities in 
cancer cells because of a phenomenon termed transcriptional on-
cogene addiction (6).

Although TFs are notoriously difficult to directly target with 
small molecules, several MTFs have been shown to be highly sensitive 
to chemical inhibition of general transcriptional regulators, includ-
ing those that target bromodomain (BRD)–containing proteins and 
transcriptional cyclin-dependent kinases 7/12/13 (CDK7/12/13) (7–9). 
The expression of tumor cell MTFs is often driven by large clusters 
of enhancers, termed superenhancers (SEs) or stretch enhancers 
(10, 11). The exquisite sensitivity of these factors to chemical per-
turbation of BRDs and transcriptional CDKs is hypothesized to re-
sult from disruption of continuous, high-level transcription driven 
by SEs, compounded by short TF transcript half-lives and auto-
regulation. Together, studies on MTFs and transcriptional inhibi-
tion in tumor cells demonstrate the importance of identifying these 
critical factors and studying their responses to small molecules tar-
geting general regulators of transcription.

MTFs are thought to form core transcriptional regulatory cir-
cuitries by co-occupying genomic sites, particularly at SEs, and co-
regulating the expression of MTF genes and other genes critical for cell 
identity (1, 3, 12). Presently, the main approaches to identifying MTFs 
computationally model these circuitries by identifying autoregulatory, 
interconnected networks of TFs (13). These analyses require per-
forming chromatin immunoprecipitation sequencing (ChIP-seq) 
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experiments to map enhancers and identifying SE-associated TFs 
whose predicted binding motifs are enriched at SEs, both upstream 
and regulating other MTFs (14). These approaches have been shown 
to recover experimentally validated MTFs in various tumor types 
but are limited to settings with large numbers of generally homo-
genous cells (12, 15, 16). Other approaches such as motif enrichment 
in accessible regions identified by assay for transposase-accessible 
chromatin using sequencing (ATAC-seq) are not only possible but 
also suffer from low dynamic ranges that render SE identification 
impracticable and the imprecision in motif occurrences between 
members of the same TF family.

Obtaining adequate amounts of primary tumor cells for ChIP-
seq experiments can be technically challenging. RNA sequencing 
(RNA-seq) experiments, however, require less starting material, and, 
accordingly, RNA-seq data from primary tumor samples are cur-
rently more widely available, especially for rare tumor types and 
subtypes. We therefore developed an approach to predicting tumor 
MTFs using RNA-seq data from The Cancer Genome Atlas (TCGA). 
This approach is called the Cancer Core Transcription factor Speci-
ficity (CaCTS) algorithm, and it attempts to determine MTFs by 
identifying those TFs exhibiting high levels of absolute expression 
in combination with tumor-specific expression compared to a 
background dataset that contains a diverse set of cancer types. A 
conceptually similar approach has been previously applied to gene 
expression microarray profiles of normal tissues (5) and subtype 
determination in specific tumor types (17). We find that candidate 
MTFs identified through the CaCTS algorithm have many expected 
qualities of MTFs, such as SE association and high levels of essenti-
ality, indicating that our approach is an orthogonal metric to existing 
attempts to predict MTFs. This unique resource represents a collection 
of candidate MTFs for 34 tumor types and 140 molecular and histo-
logic subtypes that can be directly explored for therapeutic potential.

RESULTS
The CaCTS algorithm identifies factors with features 
attributed to tumor cell MTFs
Many known tumor cell MTFs are developmental regulators that 
exhibit cell type–specific expression (1–3). We hypothesized that 
similarly potent MTFs could be retrieved in poorly studied lineages 
by identifying sets of TFs that exhibit tumor type–specific RNA ex-
pression. We developed the CaCTS algorithm, which uses an entropy- 
based measure of Jensen-Shannon divergence (JSD) (5) to identify 
factors highly expressed in a given tumor type relative to a diverse 
collection of cancers, applying the approach to a pan-cancer RNA-
seq dataset from TCGA. This dataset contains 9691 patient samples 
representing 34 tumor types (Fig. 1A and table S1) (18). We calcu-
lated the average expression levels of 1578 TFs in 34 tumor types/
major subtypes (table S2). The specificity of expression of each TF, 
or “CaCTS score,” was calculated by comparing its expression level in 
the query tumor type to that in the remaining 33 tumor types. A high 
CaCTS score is therefore assigned to factors with high-level expres-
sion in the query tumor type as compared to the remaining back-
ground datasets (for example, TF1 depicted in Fig. 1A compared to 
TF2, which represents a factor that is ubiquitously expressed across 
the cohort). The output of the CaCTS algorithm is a list of all TFs 
ranked by CaCTS scores in each of the 34 tumor types (table S3).

Association with SEs is a feature of MTFs (8, 19–21). To provide 
a measure of confidence in our CaCTS predictions, we tested for SE 

association in a few systems where the relevant data were publicly 
available. We curated a list of 17 experimentally validated MTFs in 
B cell lymphoma [lymphoid neoplasm diffuse large B cell lymphoma 
(DLBC)] (8), melanoma [skin cutaneous melanoma (SKCM)] (20), 
esophageal squamous carcinoma (ESSC) (19), esophageal adeno-
carcinoma (ESAD) (22), and breast cancer (BRCA) (23, 24) (table 
S4), which served as positive controls in the development of our 
algorithm. By analyzing publicly available H3K27ac ChIP-seq data, 
we confirmed that 15 (of 17) positive controls are associated with 
SEs in the relevant tissue types (Fig. 1B and fig. S1, A and B). Fifteen 
(of 17) positive controls were scored highly by the CaCTS algorithm 
(within the top 5% in the relevant tumor type) (Fig. 1C, fig. S1C, 
and table S4). These findings demonstrate that the CaCTS algorithm 
efficiently recovers known MTFs and suggests a reasonable, empir-
ical cutoff for determining high-confidence MTFs, i.e., top 5% in a 
given sample.

We next sought to determine whether SE-associated TFs are 
highly ranked by the CaCTS algorithm in general. We collected 
92 publicly available and in-house H3K27ac ChIP-seq datasets, 
collecting an average of 4.5 (range 1 to 25) samples to represent 
20 of the 34 tumor types (table S5). Fourteen of these were from 
primary tumors, while only cell line data were available for bladder 
urothelial carcinoma (BLCA), cervical squamous cell carcinoma 
(CESC), lung adenocarcinoma (LUAD), sarcoma (SARC), ESAD, 
and ESSC. We were unable to retrieve H3K27ac ChIP-seq datasets 
for adrenocortical carcinoma (ACC), cholangiocarcinoma (CHOL), 
head and neck squamous cell carcinoma (HNSC), kidney chromo-
phobe (KICH), kidney renal papillary cell carcinoma (KIRP), lung 
squamous cell carcinoma (LUSC), mesothelioma (MESO), stomach 
adenocarcinoma (STAD), testicular germ cell tumor (TGCT), pheo-
chromocytoma and paraganglioma (PCPG), thyroid carcinoma 
(THCA), thymoma (THYM), uterine carcinosarcoma (UCS), and 
uveal melanoma (UVM), so these tumor types were not included in 
this analysis. In each dataset, we performed peak calling, SE identi-
fication, and gene set enrichment analysis (GSEA) to determine 
whether factors with high CaCTS scores tend to be enriched for 
SE-associated TFs. The majority (81 of 92, 88%) of comparisons 
between SE and CaCTS ranks showed significant enrichment 
(PGSEA < 0.05) (Fig. 1D and fig. S1D), demonstrating that TFs with 
high CaCTS ranks are enriched for SE-associated factors in these 
20 tumor types and suggesting that bona fide MTFs are among the 
high CaCTS scoring factors in the 14 tumor types where enhancer 
data were not available.

Similar to the CaCTS score, most (13 of 17) known MTFs were 
among the top 5% of expressed factors in the relevant tumor type 
(table S4) (8, 19, 20). Therefore, to arrive at a collection of candidate 
MTFs, we retrieved factors with high CaCTS scores (top 5%; CaCTS 
rank ≤ 79) that were also highly expressed (within the top 5% of 
expression; expression rank ≤ 79) for each of the 34 tumor types 
(table S6 and fig. S1E). This filter removed 2170 instances of TFs 
with lower-level (outside of the 5% top-ranked TFs), tissue-restricted 
patterns of expression, as these factors are less likely to be master 
regulators. The final list contained a total of 273 candidate factors 
with an average of 8.0 candidate factors per tumor type (range 3 to 
31). We note that 224 highly expressed factors with low specificity 
scores (outside of the top 5% JSD rank) represent candidate ubiquitous 
MTFs that may play vital roles across multiple cancer types (table 
S7). Similarly, highly specific but lowly expressed (outside of the top 
5% by expression) genes may also be MTFs, but less is known of 
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Fig. 1. A multicancer compendium of candidate MTFs. (A) Schematic of the CaCTS algorithm. (B) Positive control factors—POU2AF1, MYC, and BCL6 in DLBC; SOX10 in 
SKCM and SOX2; KLF5 and TP63 in ESSC—coincide with large SEs in the relevant tumor tissues. (C) These factors are highly expressed and have high CaCTS scores. (D) Across 
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(H) Squamous tumors from diverse organ sites share keratinocyte differentiation TFs as candidates. (I) Breast and prostate adenocarcinomas share six candidate MTFs.
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these TFs and their capacity to regulate the tens of thousands of genes 
within the overall expression program.

We asked how TFs were nominated by CaCTS compared to 
those identified by two alternative methods: first, a bootstrapping 
method to assess the statistical significance of the CaCTS scores of 
our nominated MTFs and, second, a classical differential expression 
test. First, for the bootstrapping approach, we generated 1000 per-
mutations of cancer type assignments to each sample, breaking the 
relationship of TFs to cancer type. Then, we recalculated the average 
TF expression and CaCTS score for each randomized cancer type. 
Using these 1000 iterations, we generated an empirical distribution 
for the CaCTS scores for each TF for each cancer type and calculated 
the statistical significance (P value) of the observed TF CaCTS score 
for a given cancer type. The same absolute expression filter was ap-
plied (expression rank ≤ 79). We observed that most (514 of 516) 
CaCTS candidate MTFs have a CaCTS score with high statistical 
significance [false discovery rate (FDR) = 5%], while the remaining 
two (FOSB for MESO and ELF3 for CHOL) are marginally signifi-
cant (FDR = 10%; fig. S1F). We also observed that the statistical 
significance is correlated with the CaCTS score, with high CaCTS 
scores corresponding to the lowest P values (fig. S1G). For the dif-
ferential expression test, we contrasted the TF expression in each 
tumor type individually to the average expression across the other 
33 tumor types, identifying a total of 2686 candidates (FDR ≤ 5%; 
table S8). As with the CaCTS score and bootstrapping, there are TFs 
with statistically significant P values but low average expression, and, 
so, a cutoff for high expression is still required to discriminate can-
didate MTFs with both high differential and absolute expression. 
Four hundred seventy-four CaCTS candidates were identified by 
this method (table S8). We noted that both the bootstrapping and 
differential expression analyses nominated around five times more 
candidates than CaCTS, indicating that a major advantage of the 
CaCTS approach comes from the more manageable number of credible 
candidates prioritized.

On average, an individual factor passed the significance thresholds 
for being a candidate MTF for 1.9 tumor types (fig. S2A), consistent 
with our expectation that cancer MTFs will be enriched for devel-
opmental regulators with tissue-specific patterns of expression. Un-
supervised hierarchical clustering of tumors based on CaCTS scores 
of the 273 TFs ever nominated as a candidate MTF in our tumor 
collection identified 11 clusters (Fig. 1E). MTFs identified in TGCTs 
exhibited the highest average CaCTS scores (TGCT average CaCTS 
score = 0.91 ± 0.73; compared to an average of 0.36 ± 0.25 across the 
whole cohort) and included known TGCT markers NANOG (ranked 
number 1; CaCTS score = 2.4) and POU5F1 (ranked number 5; 
CaCTS score = 1.51). Most tumors cluster by organ site, which is ex-
pected because the expression of lineage-specific factors should be 
similar among tumors originating from related sites. For example, we 
identified a cluster consisting of ectoderm-derived adenocarcinomas 
from the lung, pancreas, esophagus, stomach, colon, and rectum (Fig. 1E). 
Our clusters were largely consistent with those defined by unsuper-
vised consensus clustering based on the expression of ~15,000 genes 
in 10,165 tumor samples by TCGA (Fig. 1F and fig. S2B) (25), sug-
gesting that our predictions largely distill global expression programs 
and might thus contain key drivers of those expression programs.

There were some notable differences between TCGA pan-cancer 
clusters and our own. In our clustering, urothelial BLCA clusters with 
squamous tumors, while lung adenocarcinoma (LUAD) and pancreatic 
adenocarcinoma (PAAD) now cluster with other gastrointestinal 

solid tumors. This argues that common factors or related factors 
may manifest in different expression programs depending on cellu-
lar context.

A subset of candidate MTFs are shared among tumors 
of similar anatomic or functional state
A subset of 62 MTFs was shared among three or more tumor types 
(fig. S2A), so we sought to further examine commonalities across 
the union set of candidate MTFs (Fig. 1, E and G to I). In a cluster 
of predominantly squamous tumors, two factors, TP63 and KLF5, 
were common candidates among five tumors from diverse ana-
tomic sites, bladder, cervix, lung, esophagus, and head and neck 
(Fig. 1, E and H). Similarly, six factors were shared between breast 
and prostate cancer, both derived from hormone-responsive organs 
(FOXA1, XBP1, LTF, SPDEF, CREB3L4, and ZNF652) (Fig. 1I). 
FOXA1 is a critical player in breast and prostate cancer risk and 
somatic development (26, 27); XBP1 is involved in the unfolded 
protein response and MYC signaling in both cancer types (28); and 
SPDEF may function not only as a tumor suppressor gene in prostate 
cancer but also as an oncogene in breast cancer, where it regulates 
expression of lineage-specific genes in mammary luminal epithelial 
cells (29, 30). LTF, CREB3L4, and ZNF652 have been less well studied 
and warrant further investigation as BRCA and prostate adeno-
carcinoma (PRAD) candidate MTFs. While breast and prostate 
cancer closely clustered with gynecologic tumors arising from other 
hormone-responsive organs, these tumor types shared more candi-
date factors with each other than with ovarian serous cystadeno-
carcinoma (OV), UCS, and uterine corpus endometrial carcinoma 
(UCEC). This is consistent with germline susceptibility studies that 
report greater pleiotropy between prostate and breast cancer risk than 
between prostate and ovary (31, 32). These functional groupings in 
the clustering (Fig. 1E) were less expected and suggest that shared 
MTFs across diverse tissue types are responsible for specific cellular 
functions in different cell identity contexts and differentiation states.

Candidate MTFs represent tumor cell dependencies
Tumor cell MTFs are generally required for cellular viability (3, 6, 17), 
and, so, we determined the extent to which loss of function of our 
candidate factors affect tumor cell viability by examining CRISPR- 
Cas9 screening data from The Cancer Dependency Map Consortium 
(DepMap; depmap.org) (33). CRISPR knockout screening data were 
available for 20 of the 34 tumor types in our study, with a mean of 
21.7 cell lines per tumor type (range 1 to 31), and 434 cell lines in 
total. Dependency scores (CERES) are normalized such that −1 cor-
responds to the median effects of pan-essential genes (33). Depen-
dency scores for the candidate MTFs in relevant cell line models are 
depicted in Fig. 2 (A to T). Eighty-two percent of (14 of 17) positive- 
control MTFs show modest dependency (minimum CERES 
score ≤ −0.4) and 47% (8 of 17) show high levels of dependency 
(minimum CERES score ≤ −1.0) in the relevant cancer type (fig. S3A). 
In these 20 tumor types, we found that 38.6% (152 of 394) of candi-
date MTFs showed at least modest dependency (Fig. 2U). Con-
versely, when we consider each factor individually, 63% (248 of 394) 
of candidate MTFs exhibit a minimum CERES score below the 
median CERES score across all tumor types (fig. S3B). This included 
previously unidentified factors such as FOXM1 in ESSC (minimum 
CERES score = −0.85), previously implicated in this cancer type (34) 
although not as an MTF, and PREB in liver hepatocellular carcinoma 
(LIHC) (minimum CERES score = −0.99), a factor that regulates 
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Fig. 2. Candidate MTFs are often essential genes. Dependency scores for MTF knockouts. Darker red color denotes higher levels of essentiality. Unsupervised hierarchical 
clustering was used to arrange cell lines (columns) and MTFs (rows). (A to T) Dependencies for MTF candidates across 20 tumor types. For nine tumor types (DLBC, SKCM, 
ESSC, BRCA, COAD, KIRC, LIHC, LUSC, and OV), lineage-specific dependency data were available. Factors that are lineage-specific dependencies in the relevant tumor type 
are indicated by bold fonts and an asterisk. Data were curated from depmap.org. (U) Cumulative number of CaCTS candidate MTFs with minimum dependency (CERES) 
scores of ≤−2.0 to 0.4. (V) Expression rank for CaCTS candidate MTFs stratified by dependency category: high effect, minimum CERES score < −0.4; medium effect, minimum 
CERES score between −0.4 and 0; no effect, minimum CERES score > 0.
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prolactin expression and glucose homeostasis in the liver (35). We 
note that PREB has an average normalized expression level of 2907.3 
(expression rank = 41), while CEBPG or FOXA3 knockouts have more 
modest effect (minimum CERES scores of −0.162 and −0.144, respec-
tively) and lower average normalized gene expression (2542.3 and 1860.6, 
expression ranks of 49 and 74, respectively) than PREB. Overall, gene 
expression levels of candidate MTFs with high dependencies tended 
to be higher than those with medium or low dependency scores 
(P = 0.002 for both tests, one-sided t test; Fig. 2V).

Lineage-specific dependency data were available for nine tumor 
types [DLBC, SKCM, ESSC, BRCA, COAD (colon adenocarcinoma), 
KIRC (kidney renal clear cell carcinoma), LIHC, LUSC, and OV]; 4 to 
53% of CaCTS candidates in each cancer type were also lineage- 
specific TF dependencies in the relevant tumor cell lines. This was 
particularly notable for BRCA, where 9 of 17 candidates (53%) were 
dependencies specifically enriched in breast cancer (Fig. 2B). In 
general, we found that CaCTS candidate MTFs have more impres-
sive CERES scores than other TFs or non-TF genes in 44% (12 of 27; 
one-sided Mann-Whitney U test, P < 0.05) of cancer types, where 
dependency data were available.

Candidate MTFs are targets of somatic mutations in cancer
We tested whether candidate MTFs were enriched in somatic muta-
tions in cancer. We calculated the mutation rate across all coding 
exons and identified significantly frequently mutated genes (P < 0.05) 
in all available tumor types, using data for somatic single-nucleotide 
variants (SNVs) from the PanCancer Analysis of Whole Genomes 
(PCAWG) project (https://icgc.org). Data were available for 21 (of 34) 
cancer types represented in Fig. 1E. We compared the mutation fre-
quencies of candidate MTFs to TFs with comparably high levels of 
expression (within the top 5% of all TFs; expression rank ≤ 79) but 
low CaCTS scores (CaCTS rank > 79) (table S7). Overall, candidate 
MTFs were significantly more likely to be mutated than noncandi-
date MTFs that were highly expressed in the same tumor type (P = 
1.0 × 10−4, Pearson’s chi-square test; Fig. 3A), with this effect partic-
ularly evident for nine tumor types, including BRCA, KICH, LUSC, 
and PAAD (fig. S4). Frequently mutated MTFs (Table 1) included 
factors previously known to be somatically mutated in a tumor- 
specific manner, FOXA1 in BRCA and PRAD (36, 37) and NFE2L2 
in squamous lung tumors (38). TRPS1, a known essential gene and 
lineage-specific factor in breast cancer, was mutated in 11 of 195 
breast cancer cases (P = 4.5 × 10−3); other previously unidentified 
factors with significant mutation frequencies included TBX3 in 
bladder tumors (mutated in 5 of the 23 cases; P = 1.8 × 10−3) and 
PAX8 in UCEC (mutated in 4 of 44 cases; P = 0.01). Similarly, can-
didate MTFs are also more likely to coincide with regions of copy 
number gain than noncandidate, highly expressed TFs (P = 8.8 × 
10−4, Pearson’s chi-square test) with 11% (32 of 292) of candidate 
MTFs with a median copy number gain [median copy number 
variation (CNV) > 0], compared to only 5.4% (69 of 1269) of non-
candidate, highly expressed TFs with median copy number gain 
(Fig. 3B). TRPS1 shows high levels of copy number amplification 
(median CNV = 2), with 78% (42 of 54) breast cancer samples 
showing amplification (CNV = 1, n = 12) or high levels of amplifi-
cation (CNV = 2, n = 30). ZNF217 is also amplified in breast cancer, 
with 51.85% (28 of 54) samples showing amplification (CNV = 1, 
n = 20) or high amplification (CNV = 2, n = 8). This suggests that 
our predicted MTFs might become genetically overexpressed and 
establish oncogenic regulatory circuits.

Subtype-specific MTF predictions reveal  
subtype-specific regulators
Many tumors characterized by a shared anatomic origin can be 
stratified into molecular and/or histologic subtypes with markedly 
different prognoses and responses to therapy using standard diag-
nostic tools and practices. Subtype annotation was available for 
7115 of the 9691 tumors in our original dataset (tables S1 and S9). 
CaCTS scores were consistent when we used 9691 samples or the 
subset of 7115 with subtype annotation (fig. S5A). We stratified 
tumors into subtypes based on molecular features (expression, 
methylation, coding mutations, or copy number alterations) except 
in three instances where we used histologic classifications: KICH, 
SARC, and UCS, as no alternative subclassification strategy has been 
proposed for these tumor types. To select the most clinically rele-
vant subtype classifications for the remaining tumors, we used 
TCGAbiolinks (39) and primary publications from TCGA (40–53). 
Subtype annotations were not available for DLBC and ESSC. Table 
S9 details on how the 34 tumor groups were stratified into a total of 
140 molecular and histologic subtypes.

To use the CaCTS algorithm for the identification of subtype- 
specific MTFs, we queried the average expression of 1578 TFs in each 
subtype (table S10) against a background dataset that contained the 
distribution of TF expression in the other tumor subtypes. To pre-
vent redundancy in the dataset diminishing our sensitivity, samples 
of the same major tumor type were excluded from the background 
dataset (see Methods). The CaCTS algorithm identified a total of 
439 different candidates across the 140 tumor subtypes; this included 
all candidates identified in our initial analyses and 166 (38%) factors 
that were only identified in the subtype-stratified analyses (table S11). 
For each tumor subtype, we calculated the Jaccard distance to deter-
mine how much the candidate MTFs for subtypes deviated from 
the parent tumor type (mean Jaccard distance = 0.47, SD = 0.22, 
range = [0.00, 1.00]) (table S12). Subtype stratification had a major 
impact on the candidates identified for several tumor subtypes, with 
malignant peripheral nerve sheath tumors (n = 5) having the most 
divergent collection of candidates compared to the parent tumor 
type (SARC), with zero factors in common. Other subtypes with 
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large Jaccard distances compared to the parent tumor group included 
basal-type breast cancers (n = 189, Jaccard distance = 0.93) (Fig. 4A), 
BLCA subgroup 3 (squamous enriched; n = 31, Jaccard distance = 
0.79) and 4 (n = 15, Jaccard distance = 0.95) (Fig. 4B), and the 
adenocarcinoma-enriched CESC group 3 (n = 41, Jaccard distance = 
0.81) (Fig. 4C). We compared candidate MTFs for the two predom-
inant subtypes of breast cancer, luminal A (55% of BRCA cases) and 
basal (30% of cases). Only two factors (TRPS1 and LTF) were shared 
between these two subtypes, reinforcing existing evidence that these 
two tumor types represent different cell states and cells of origin 
(54). Hierarchical clustering of predicted MTFs based on dependency 
scores across a union set of luminal A and basal BRCA candidate 
factors clearly divided cell lines by subtype (Fig. 4D). Luminal A–
specific candidates were not dependencies in basal-type cell lines, 
and vice versa. We detected known subtype-specific factors includ-
ing GATA3 in the luminal A subtype (27) and FOXC1 and SOX9 in 
triple-negative breast cancer (TNBC) (which is enriched in the basal 
subtype) (9). Luminal A candidates largely overlapped with the can-
didates identified in the initial CaCTS analyses, which is to be ex-
pected as this comprised more than 50% of the BRCA cohort. We 
identified four additional candidates for luminal A breast cancer, 
AEBP1, MYB, SREBF1, and TBX3. TBX3 is recurrently mutated in 
luminal A tumors (27) but has not been implicated as an MTF, and 

the other factors also represent previously unknown candidate MTFs 
for this tumor type. Previously unidentified candidates for basal 
BRCA included NFIB (55), which has been implicated in epigenetic 
reprogramming during small cell lung cancer metastasis (56), and 
CREB3L2, which is commonly fused to FUS in low-grade fibro-
myxoid SARCs (57), but has not been studied in the context of 
basal- type breast cancer.

When we stratified molecular groups in bladder and cervical 
cancer, we found that squamous-enriched group BLCA.3 and CESC 
“keratin” groups CESC.C1 and CESC.C2 now cluster together with 
other squamous tumor types (LUSC, ESSC, and HNSC), likely because 
these subtypes have squamous differentiation TFs as candidates (TP63, 
IRF6, and PITX1). In contrast, adenocarcinoma subgroups from the 
same organs cluster more distantly (for example, CESC.C3 clusters 
with uterine and ovarian adenocarcinoma) (fig. S5B) and have dis-
tinct MTF candidates (Fig. 4C). Therefore, while squamous subgroups 
of bladder and cervix tumors cluster with squamous types from distant 
organs, adenocarcinomas share greater similarities with tumors de-
rived from a similar developmental lineage.

PAX8 and MECOM were candidates in CESC.C3 and OV, so 
we hypothesized that there may be additional factors shared across 
gynecologic tumor subtypes. Six factors were common across two or 
more gynecologic tumor types, PAX8, MECOM, SOX17, ESR1, MEIS1, 

Table 1. Somatic mutations of candidate MTFs. MTFs with a significant burden of SNVs across coding exons, compared to all coding exons in the genome 
(listed in order of significance). 

Tumor type TF Sample size (n) Mutated samples (n) SNVs (n) P value Adjusted P value

LUSC NFE2L2 47 22 25 3.33 × 10−16 2.00 × 10−15

PRAD FOXA1 275 11 11 5.13 × 10−9 9.74 × 10−8

KIRC MAF 143 8 8 8.25 × 10−4 0.01

KICH FOXI1 43 2 2 1.46 × 10−3 0.02

BLCA TBX3 23 5 5 1.82 × 10−3 0.03

BRCA TRPS1 195 11 13 4.48 × 10−3 0.04

BRCA FOXA1 195 6 6 5.08 × 10−3 0.04

READ SOX9 52 9 11 6.15 × 10−3 0.11

COAD SOX9 52 9 11 6.15 × 10−3 0.14

UCEC MSX1 44 3 3 8.61 × 10−3 0.09

PAAD CREB3L1 234 5 5 0.01 0.07

PAAD BHLHE40 234 5 5 0.01 0.07

KICH MECOM 43 2 2 0.01 0.11

UCEC PAX8 44 4 5 0.01 0.09

BLCA ELF3 23 4 5 0.01 0.09

BLCA ID1 23 2 2 0.01 0.09

READ MYC 52 7 10 0.01 0.19

COAD MYC 52 7 10 0.01 0.23

ESAD AHR 97 7 7 0.01 0.32

BRCA XBP1 195 4 7 0.01 0.18

LIHC XBP1 324 6 6 0.01 0.47

LIHC RORC 324 7 8 0.01 0.47

BRCA GATA3 195 4 4 0.01 0.20
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and FOXJ1. PAX8, MECOM, and SOX17 were the top three shared 
candidate MTFs among this set of tumors (Fig. 4E). Molecular sub-
groups of ovarian and uterine carcinoma exhibited the greatest 
similarities, with CESC.C3, uterine leiomyosarcoma, and uterine 
endometrioid-like SARCs sharing 3, 2, and 2 candidate MTFs in com-
mon with the uterine/ovarian carcinoma metagroup, respectively. For 
molecular subtypes of OV, MTF candidates largely mirrored those 
identified for OV as a whole, with a few differences, the mesenchymal 
molecular subgroup of ovarian tumors uniquely lacked SOX17 and 
MECOM, both present in the other OV subtypes; FOXJ1, BCL6, 
EHF, and RARG were candidates for differentiated tumors, but not 
the other subtypes; ELF3 was a candidate MTF for the differentiated 
and immunoreactive OV subtypes only; and proliferative-type 
tumors had four unique candidates, HMGA2, SOX12, TEAD2, and 
PLAGL2. HMGA2 is a known, subtype-specific marker for the pro-
liferative subgroup of OV (58), and transcriptional enhanced asso-
ciate domain (TEAD) family proteins likely cooperate with paired 
box 8 (PAX8) to regulate gene expression in models of ovarian 
cancer (59, 60).

Using candidate MTFs to build core regulatory circuitry 
models in ovarian cancers
To validate the CaCTS algorithm, we tested our success at identifying 
MTFs for OvCa. The TCGA OV study consists exclusively of high-
grade serous ovarian cancers (HGSOCs). HGSOCs are relatively rare 
tumors for which MTFs are currently unknown, and novel thera-
peutic targets are urgently needed because of the frequent late-stage 
diagnoses and high rates of recurrence. We identified 14 candidate 
MTFs for OV (listed in order of ranked CaCTS score): WT1, EMX2, 
SOX17, MEIS1, BHLHE41, PAX8, ESR1, ZNF503, MECOM, TGIF2, 
NR2F6, PBX1, ZNF217, and PLSCR1 (Fig. 2R). PAX8 has not previ-
ously been characterized as an OvCa MTF but is a known lineage- 
specific dependency in this tumor type (61), and both PAX8 and 
WT1 are used as clinical biomarkers for serous ovarian carcinomas. 
We tested whether these factors show orthogonal characteristics of 
MTFs using ChIP-seq experiments and in vitro knockdown studies.

Ten of these factors were associated with SEs in at least 4 (of 12) 
primary HGSOC samples (Fig. 5, A and B, and fig. S6), and eight 
factors—MEIS1, SOX17, PAX8, WT1, ZNF217, BHLHE41, MECOM, 
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and PBX1—were all associated with SEs in at least 11 of the 12 tumors. 
Notably, PAX8, SOX17, and MECOM are marked by SEs in primary 
ovarian tumors (minimum SE rank for PAX8 = 3, range = 3 to 294; 
minimum SE rank for SRY-box transcription factor 17 (SOX17); 
italicize SOX17 as a gene = 6, range = 6 to 65; minimum SE rank 
for MDS1 and EVI1 complex locus (MECOM); italicize MECOM as 
a gene = 17, range = 17 to 636) (fig. S6). We therefore performed TF 
ChIP-seq for these three factors in a HGSOC cell line (Kuramochi). 
PAX8, SOX17, and MECOM proteins occupy regulatory elements at 
the PAX8, SOX17, and MECOM gene loci, consistent with their for-
mation of a core regulatory circuit (Fig. 5, C and D). The 2nd and 
31st top-ranked PAX8 binding peaks were at the SOX17 gene locus 
(Fig. 5E). In addition, PAX8, SOX17, and MECOM bind at three 
clinical biomarkers of the disease: WT1, MUC16 (CA125), and HE4 
(Fig. 5F) (62). Core regulatory circuit factors are expected to drive 
expression programs by co-occupying enhancers across the genome, 
and we observed a consistent colocalization of these factors genome 
wide (Fig. 5G). Proximity ligation assays (PLAs) detect protein- 
protein interactions in situ (63) and were performed to test whether 
PAX8, SOX17, and MECOM physically interact in the nucleus. 
PLAs performed in human ovarian cancer cells confirmed that these 
proteins can be part of the same complex (Fig. 5, H and I).

To study the collaboration between PAX8, SOX17, and MECOM 
in driving tumor cell survival, we analyzed tumor cell survival in 
their absence. Overall, 5 (of 14; 36%) OV MTF candidates showed 
moderate to high levels of essentiality in at least one HGSOC cell line 
(minimum CERES score of −0.4 or less) (Fig. 2R), particularly for 
PAX8 and MECOM where minimum CERES scores were −1.3 
and −0.7, respectively. These two factors are also selective depen-
dencies for OvCa (61). PAX8, SOX17, and MECOM dependency 
correlates with level of expression (Fig. 6A), consistent with a model 
in which these factors are playing oncogenic roles. In addition, PAX8, 
SOX17, and MECOM gene loci are amplified in 6, 11, and 36% HGSOCs, 
respectively, indicative of an oncogenic role for these genes (Fig. 6B). 
Using RNA interference, we depleted PAX8, SOX17, or MECOM 
and quantified protein abundance by Western blotting to identify 
evidence of cross-regulation. For each TF, RNA expression was re-
duced by 80 to 95% following treatment with the corresponding small 
interfering RNA (siRNA) pool (Fig. 6C and fig. S7A). PAX8 knock-
down resulted in a 60 to 90% reduction of SOX17 and MECOM 
expression, SOX17 knockdown down-regulated MECOM by 90% but 
did not affect PAX8 expression, and MECOM knockdown did not af-
fect PAX8 expression but did induce a 90% increase in SOX17 (Fig. 6C). 
These trends were consistent with gene expression patterns quanti-
fied at the RNA level (fig. S7B). These data suggest a transcriptional 
circuitry that involves both negative and positive cross-regulation 
(Fig. 6D). Following PAX8, SOX17, and MECOM knockdown, colony 
formation of HGSOC cells was reduced by 76% (SD = 3.1%; P < 
0.001), 44% (SD = 30%; P = 0.013), and 51% (SD = 17.9%; P = 0.004), 
respectively, in comparison to cells treated with nontargeting siRNA 
(siNT1; Tukey’s multiple comparison test, n = 4) (Fig. 6E). Comparisons 
to a second control (siNT2) showed growth patterns similar to those in-
duced by siNT1 (Fig. 6E); therefore, we found a requirement for main-
tained PAX8, SOX17, and MECOM expression for HGSOC cell viability.

Targeting an MTF-driven oncogenic expression 
program in HGSOC
General transcription inhibitors are showing remarkable anticancer 
effects across multiple cancer types, which are thought to be largely 

because of their preferential activity toward MTFs (3, 9). OVCAR4 
HGSOC cells exhibit notably low median inhibitory concentration 
(IC50) values of 45 nM for THZ1, 1.3 M for JQ1, and 97 nM for 
THZ531, a covalent inhibitor of CDK12 and CDK13 (Fig. 6F) (64). 
Expression of PAX8, SOX17, and MECOM was strongly inhibited 
by these molecules (Fig. 6G and fig. S7C). PAX8 and SOX17 were 
among the 10% most-sensitive highly expressed transcripts in low-
dose (50 nM) treatment with THZ1 (Fig. 6H). The potent inhibition 
of these factors with low-dose treatment is most relevant in terms of 
target engagement and the concentration range that selectivity is 
observed (7).

To catalog the genes regulated by our MTFs, we knocked down 
PAX8, SOX17, and MECOM and performed RNA-seq. PAX8 and 
SOX17 target genes were largely overlapping, with the most down- 
regulated genes enriched in pathways associated with cell cycle 
progression (Fig. 6I), including cell cycle regulators in the retino-
blastoma (Rb) pathway such as known ovarian cancer oncogene 
CCNE1 (Fig. 6J) (58). MECOM, on the other hand, did not regulate 
the same cell cycle pathways but converged with PAX8 and SOX17 
to regulate extracellular organization. MECOM also independently 
down-regulated genes involved in regulation of insulin-like growth 
factor, posttranslational protein phosphorylation, and phase 2 con-
jugation of compounds. Last, we found that target genes of PAX8 
and SOX17 phenocopy effects of low-dose THZ1 treatment, sug-
gesting that these factors, at least in part, explain the anticancer effect 
of this drug in ovarian cancer cells (Fig. 6K). MECOM, however, did 
not show the same effect. Together, these results indicate that the 
efficacy of transcriptional inhibitors might be explained by their pref-
erential targeting of the OvCa MTFs PAX8, SOX17, and MECOM.

DISCUSSION
Core regulatory circuitries potentially represent a universal vulner-
ability in tumor cells, and, consequently, they are likely to represent 
critical therapeutic opportunities for many cancer types. Given recent 
developments in targeting core regulatory circuitries through the use 
of general transcription inhibitors and targeted protein degradation 
strategies, this approach to nominating candidate master regulators 
based solely on RNA-seq data is timely, particularly for tumor types 
where limited access to tumor specimens prohibits the generation 
of the ChIP-seq data typically required to identify candidate MTFs. 
The candidate MTFs recovered by the CaCTS algorithm include both 
known and previously unkown MTFs, which are especially valu-
able for tumor types in which transcriptional circuits are poorly 
characterized. As a proof of concept, we performed functional valida-
tion and confirmed MTF features for PAX8, SOX17, and MECOM 
in HGSOC cells, demonstrating that the CaCTS predictions recover 
previously unidentified critical regulators. In the DepMap cell line de-
pendency data, we observed notable clustering patterns within each 
tumor type, with factors and cell lines clustering by codependencies 
for many tumor types, demonstrating the success of the CaCTS ap-
proach to identifying transcriptional circuitries. Cell lines that show 
the greatest dependence on tumor-specific MTFs may be the models 
that most faithfully maintain the critical features of primary tumors 
and are therefore superior models to use for translational studies. 
For example, in HGSOC, Kuramochi, OAW28, and ONCODG1 
exhibited similar dependencies on candidate MTFs and have all been 
prioritized as cell lines models that faithfully recapitulate molecular 
hallmarks of HGSOC (65).
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Fig. 6. PAX8, SOX17, and MECOM are functional dependencies in HGSOC. (A) PAX8, SOX17, and MECOM are selective dependencies and [their gene loci] are commonly 
amplified in HGSOC tumors (B). (C) Western blot, with quantification, to confirm knockdown of PAX8, SOX17, and MECOM in OVCAR4 cells. (D) PAX8, SOX17, and MECOM 
coregulation based on normalized quantification of Western blot signal intensities after knockdown. Linewidths denote the percentage of up-regulation (arrows) or 
down-regulation (flat ends). Solid lines (P < 0.05), dashed lines (not significant) (four independent experiments). (E) Anchorage-independent growth assays. (F) Dose 
response curves for THZ1, THZ531, and JQ1 treatment. Nonlinear fit curves are shown. Data are representative of three independent experiments. (G) TF expression 
following a 6-hour drug treatment. (H) PAX8 and SOX17 are among the most sensitive genes in THZ1-treated Kuramochi cells. (I) Ontology analyses for transcripts 
down-regulated following siPAX8, siSOX17, and siMECOM treatment. IGF, insulin-like growth factor. (J) Retinoblastoma (Rb) pathway genes are among the most signifi-
cantly down-regulated transcripts following PAX8, SOX17, or MECOM knockdown. (K) GSEA of the top 500 down-regulated genes following PAX8 and SOX17 knockdown, 
compared to a ranked list of THZ1-responsive genes. (C to G) *P < 0.05, **P < 0.01, and ***P < 0.001; Student’s paired t test; ns, not significant. Error bars indicate one SD of 
the mean values from three independent experiments (performed with technical triplicates).
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We predicted candidate factors for major tumor groups, as well 
as clinically relevant molecular and histologic subtypes. This analysis 
revealed some common factors across diverse origins, a phenomenon 
most clearly illustrated by squamous tumors, where tumors across 
diverse anatomic sites shared three common factors (TP63, KLF5, 
and IRF6). A further three factors were shared by three sites, RARG 
(BLCA, CESC, and HNSC), PITX1 (CESC, ESSC, and HNSC), and 
NFE2L2 (ESSC, HNSC, and LUSC). In some instances, squamous 
tumors have both squamous and organ-specific candidate MTFs, 
such as ID1 and KLF5 in cervix and AHR and KLF5 in esophageal 
tumors, suggestive of dual circuitries with cooperating factors dic-
tating lineage-specific and functional programs.

Using CaCTS, we were able to make MTF predictions for rare 
and common tumor types that lack publicly available SE or functional 
dependency data. H3K27ac ChIP-seq data from cell lines, which may 
not closely recapitulate the epigenetic signatures of disease, are gen-
erally more available than from primary tumors, adding an obstacle 
to existing approaches. Dependency data are limited or absent for 
10 tumor types and also generally rely on lines. Overall, around half 
of the tumor types represented in our study currently have limited 
publicly available data to predict MTFs, and, for six tumor types, 
neither H3K27ac ChIP-seq nor dependency data are available—
ACCs, KICH tumors, KIRPs, TGCTs, THYM, and UCSs—and so, 
MTF prediction is not possible on the basis of current methods. 
Discussion of the MTFs identified for these tumor types are included 
as Supplementary Note.

Cancer MTFs represent attractive therapeutic targets, given their 
essential role in governing cell state and the tendency for cancer cells 
to become highly dependent on maintained high-level expression 
of a select handful of MTFs (6). Consistent with this, many candi-
date MTFs identified by CaCTS were lineage-specific essentialities 
in the relevant tumor type. General transcriptional inhibitors, which 
show preferential activity toward MTFs, offer an efficient approach 
to anticancer treatment, rather than developing drugs to target each 
individual MTF; several such agents are now in clinical trials. 
Another approach to targeting MTFs is more directly with protein 
degradation strategies, which are currently in preclinical stages of 
development. Functional validation of the OvCa candidate MTFs—
PAX8, SOX17, and MECOM—revealed that each was sensitive to 
general transcription inhibition, with PAX8 and SOX17 particularly 
vulnerable to CDK7 inhibition with THZ1. This suggests that PAX8 
and SOX17 contribute to the antiproliferative effects of this drug, in 
addition to its previously studied effects on MYC and MCL1 (66).

MTFs evince multiple characteristics, including selective depen-
dency and association with SEs. We leveraged high, lineage-restricted 
expression to identify candidate MTFs, as this is another known 
characteristic of some known MTFs. While much previous work has 
shown the roles of MTFs in activating cell type–specific gene expres-
sion patterns, other work illustrates that MTFs can both activate genes 
and/or suppress them in collaboration with coactivators or repres-
sive protein complexes. While MECOM exhibited some properties 
of MTFs, including functional dependency, genome-wide cobinding, 
and sensitivity to transcription inhibitors, MECOM was revealed as 
a negative regulator of SOX17 expression. Further work is needed to 
determine whether this is a direct result of loss of MECOM expres-
sion, given the time needed to achieve sufficient down-regulation in 
our system, whether MECOM depletion results in a selection of a 
subpopulation of high SOX17 expressors, or whether MECOM loss 
induces an alternate cell identity program.

As PAX8, SOX17, and MECOM are predicted to be MTFs in 
other tumor types and subtypes, the results in HGSOC models may 
be applicable to these other tumor types, including gynecologic tu-
mors most similar to OV (UCEC and CESC.C3) and some non-
gynecologic tumors, thyroid and kidney carcinomas, ESADs, KICH 
tumors, and STADs. Early down-regulated genes following MTF 
depletion included members of the Rb pathway, indicating a mech-
anism of action for anticancer activity of THZ1 in ovarian cancer 
models. Critically, the known ovarian cancer oncogene CCNE1 was 
down-regulated following MTF depletion. Rb pathway alterations 
predict responses of patient-derived xenograft models to SY-1365 
(67), a covalent CDK7 inhibitor currently in clinical trials for ad-
vanced breast and ovarian cancer (NCT03134638). While we vali-
dated three factors in OvCa, additional MTFs may contribute to the 
transcriptional circuitry of HGSOC. One such factor is WT1, an 
ovarian cancer biomarker, whose SE was cobound by PAX8, SOX17, 
and MECOM. Another candidate, MEIS1, was the highest-ranking 
SE-associated MTF for this tumor type. Cells dependent on PAX8 
also tended to be dependent on ZNF217, a factor implicated in 
breast cancer (23). We noted for OV and most tumor types we ex-
amined that the tumor MTF predictions were very similar to those 
previously predicted for normal tissues of the same organ (5), sug-
gesting that a major mechanism of tumorigenesis involves aberrant 
reinforcement of developmental transcriptional programs (20) or 
that normal MTF activities become perturbed to acquire oncogenic 
properties during cancer development (59). MTFs predicted by 
CaCTS are more likely to contain coding somatic mutations or 
coincide with copy number gain than TFs with comparably high levels 
of expression but lacking lineage-restricted patterns of expression, 
suggesting that somatic mutations that bestow pro-oncogenic 
properties on developmental MTFs are selected for during cancer 
development. Multicancer MTFs, which can cooperate with lineage- 
specific factors during tumorigenesis, may be dysregulated by dif-
ferent mechanisms in different systems.

We present a prioritized collection of candidate MTFs for 34 major 
tumor types and 140 tumor subtypes, which will be enriched for 
bone fide MTFs. We note that the tumor specificity metric provided 
by JSD statistic within the CaCTS workflow served to reduce the 
number of candidate factors to around fivefold compared to ap-
proaches based on differential expression of TFs in one tumor type 
compared to all other tumor types grouped together. Nonetheless, 
the prioritized candidates likely contain false positive, and so, for 
users of this resource, we recommend integration of complementary 
data, where available, such as dependency data and SE landscapes, 
based on H3K27ac ChIP-seq and other epigenetic data, dependency 
data, and motif-based circuitry mapping (14) to inform the design 
of functional validation experiments. We caution that not all cancer 
MTFs will fulfill all the canonical MTF criteria, for example, ZNF217 
has lower levels of expression in basal-type breast tumors (expres-
sion rank = 232; 15th percentile) but high levels of dependency 
(minimum dependency in basal BRCA cell lines = −1.12). Similarly, 
the androgen receptor was not prioritized as a candidate for pros-
tate cancer because of its expression rank (rank = 371 of 1578 TFs; 
24th percentile), although it is known that this factor plays a critical 
role in transcriptional regulation and development of prostate cancers 
(26). This could be due to poor correlation of transcript expression 
with functional protein for some factors or by confounding factors, 
in this case, a signal-responsive ligand. An additional caveat to this 
approach is that nomination of candidates is directly related to the 

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 15, 2021



Reddy et al., Sci. Adv. 7, eabf6123 (2021)     24 November 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

13 of 20

composition of the background dataset. TF expression across several 
of the tumor types was quite similar (for example, in the kidney 
tumor types), so it is possible that additional tumor type–specific 
factors exist but were lowly ranked. Despite this, known regulators 
of kidney tumor types were efficiently retrieved with this analysis, 
suggesting that our background dataset was sufficiently heterogeneous 
to minimize this issue. In addition, our analyses were restricted to 
the pan-cancer dataset compiled by TCGA, so some tumor types are 
not represented. Metastatic and treatment-resistant tumor states, 
where new therapies are most urgently needed, are largely absent. 
Last, because of the limited availability of bone fide positive and 
negative controls, we were unable to statistically test the positive and 
negative predictive values for the method. In closing, we present a 
timely and valuable resource of candidate MTFs for tumor types 
where transcriptional circuitries are currently unknown and leverage 
this resource to identify PAX8, SOX17, and MECOM as master 
regulators for aggressive HGSOCs.

METHODS
Computational methods
Identification of positive-control MTFs
We curated a list of positive-control MTFs using the following cri-
teria: (i) SE association; (ii) cobinding to the genome with another 
MTF; (iii) MTF gene expression is highly sensitive to treatment with 
general transcriptional inhibitors JQ1, THZ1, or THZ531; (iv) evi-
dence of cell death or decrease in proliferation upon MTF depletion; 
and (v) convergence of MTF target genes and genes regulated by 
general transcription inhibitors. We searched for criteria related to 
these terms to identify positive-control MTFs for any of the 34 major 
tumor types published since 2010.
The CaCTS algorithm
PanCancer TCGA RNA sequence level 3 normalized data were 
downloaded from the Genomic Data Commons (GDC) Data Portal 
using TCGAbiolinks functions GDCquery, GDCdownload, and 
GDCprepare and imported into R (www.r-project.org) for analysis 
(39). Table S1 contains the tumor IDs for all the samples included 
in our analysis. After exclusion of recurrent, metastatic, and non-
tumor tissues, a total of 9691 samples across 34 tumor types were 
available. Sample annotations were curated from TCGA publica-
tions (40, 42–53, 68) and TCGAbiolinks (39) (www.bioconductor.org/
packages/devel/bioc/vignettes/TCGAbiolinks/inst/doc/subtypes.
html). Tumor types/subtypes included were ACC, BLCA, BRCA, 
CESC, CHOL, COAD, DLBC, ESCA (esophageal carcinoma), GBM 
(glioblastoma multiforme), HNSC, KICH, KIRC, KIRP, LAML (acute 
myeloid leukemia), LGG (brain lower-grade glioma), LIHC, LUAD, 
LUSC, MESO, OV, PAAD, PCPG, PRAD, READ (rectum adeno-
carcinoma), SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC, 
UCS, and UVM. For the main analyses, we preserved all grouping 
defined by TCGA, apart from for ESCA, which we divided into 
ESAD and ESSC.

Published lists of TF were retrieved from Saint-André et al. 
(13) (1253 TFs) and Lambert et al. (69) (1639 TFs). Merging 
both lists created a catalog of 1671 unique TFs, of which 1578 were 
expressed in the pan-cancer dataset. The 93 TFs not detected in 
this dataset are listed in table S13. To calculate a JSD score for each 
TF for each tumor type, we shifted the normalized expression 
values such that the new minimum normalized expression value is 
equal to 0.

The CaCTS score (CaCTSi,j) of gene i in cancer type j is a mea-
sure of gene expression specificity. It is calculated as follows

   CaCTS  i,j   = −  log  10   JSD(   ̂  x    i  ,  ̂   u  j   )  

where

     ̂  x    i   =    x  i   ─ ∣ x  i  ∣
    

xi = (xi, k) is the ordered vector of normalized gene expression of 
gene i and length n [n is the number of cancer types, k ∈ {1, n}], 
  ̂   u  j    = ( u  j,k  )  is the idealized cancer type–specific gene expression for 
cancer type j represented by unit vector of length n such as uj, k = 1, 
if k = j, and uj, k = 0 otherwise.

The JSD measures the similarity between two probability distri-
butions, here used to measure the similarity between two unit vec-
tors     ̂  x    i    and   ̂   u  j    . The JSD was calculated using the R package jsd 
(version 0.1). Practically, none of the values in vectors     ̂  x    i    and   ̂   u  j     
should be equal to zero; therefore, we substituted any zeros for 
0.1−17 in vectors xi and uj and then get the unit vectors     ̂  x    i    and   ̂   u  j     by 
dividing over ∣xi∣ and ∣uj∣, respectively. The final candidate MTF 
list for a given cancer type was defined by considering the intersec-
tion of the 5% most highly expressed TFs (expression rank ≤ 79) 
in said tumor type and the TFs in the top 5% when ranked by the 
CaCTS score.
Bootstrapping and t test methods for the statistical assessment 
of the CaCTS score
To estimate the statistical significance of the CaCTS score for a par-
ticular cancer type, we generated 1000 permutations of sample/
cancer type associations. With these random permutations, we then 
calculated the average expression per cancer type and the CaCTS 
scores. Using these CaCTS scores, we obtained the parameters of 
the normal distribution (sample mean and sample SD) to then 
calculate the statistical significance (P value) of the observed CaCTS 
score (i.e., the real calculated CaCTS score). We observed that the 
CaCTS score distributions are likely normal and somewhat smooth; 
therefore, we can reasonably assume normality and that our high 
number of randomizations (10,000) generates a representative 
approximation of the null distributions. To perform differential ex-
pression tests, TF expression in each tumor type was contrasted to 
the average expression of each TF across the remaining 33 tumor 
types. One-sided t tests were used to derive P values for each contrast.
Identification of SE-associated genes
We collected publicly available H3K27ac ChIP-seq data from the 
Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) using search 
term “H3K27ac,” “TCGA study abbreviation,” or “tumor type,” e.g., 
“BRCA” or “breast cancer.” We prioritized data generated for pri-
mary tumor tissues and only included data for cell lines when pri-
mary tumor data were not available. For OV, ESAD, PRAD, KIRC, 
and GBM, we used in-house tumor tissue H3K27ac ChIP-seq data. 
Data were processed using ENCODE pipeline version v1.2.0 and 
v1.1.7. ENCODE performed the alignment using bwa (version bwa-
0.7.15-r1140) (70) and peak calling the Model-based Analysis of 
ChIP-Seq (MACS) (version 2.2.4, MACS2) (71). We used the total 
IP reads, “Normalized Strand Cross-correlation coefficient” (NSC), 
“Relative Strand Cross-correlation coefficient” (RSC), and “Fraction 
of reads in peaks” (FRiP) quality metrics to select the samples with 
high quality. Higher values of NSC indicate more enrichment, values 
less than 1.5 are relatively low NSC scores, and the minimum 

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 15, 2021

http://www.r-project.org
http://www.bioconductor.org/packages/devel/bioc/vignettes/TCGAbiolinks/inst/doc/subtypes.html
http://www.bioconductor.org/packages/devel/bioc/vignettes/TCGAbiolinks/inst/doc/subtypes.html
http://www.bioconductor.org/packages/devel/bioc/vignettes/TCGAbiolinks/inst/doc/subtypes.html
http://www.ncbi.nlm.nih.gov/geo/


Reddy et al., Sci. Adv. 7, eabf6123 (2021)     24 November 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

14 of 20

possible value is 1 (no enrichment); for RSC, the minimum possible 
value is 0 (no signal), highly enriched experiments have values greater 
than 1, and values much less than 1 may indicate low quality; and 
FRiP is the fraction of mapped reads that fall into the called peak 
regions. Adjusted from ENCODE guidelines, we only included 
samples that passed the following quality control thresholds: to-
tal IP reads > 15 million, NSC > 1.05, RSC > 0.8, and FRiP > 0.1. The 
full curated list of H3K27ac ChIP-seq datasets used in this study can 
be found in table S5. SE calls were obtained using the rank ordering 
of SE2 (ROSE2) algorithm for all tumor types, except prostate and 
kidney, where ROSE was used (4). For ROSE2, we aligned to ge-
nome build hg19, with the following parameters: stitching distance -s 
12500 and distance from TSS to exclude -t 2500. We selected SEs 
assigned to known TFs (13, 69).
Assessing enrichment of SE-associated genes in CaCTS ranked lists
We implemented the GSEA using the R package fgsea (version 1.10) 
(72) to evaluate the enrichment of SE-associated genes with the list 
of TFs ranked by CaCTS scores for each tumor type. We applied the 
fgsea function with the parameter nperm equal to 10,000. Numbers 
of SEs detected in each tumor are listed in table S5. Some samples 
did not have SE-defining datasets available; so, given the biological 
similarities of GBM and LGG, GBM SEs were used as a proxy to 
evaluate LGG MTFs predicted by CaCTS. Similarly, GSEA was per-
formed on the READ candidates using COAD SEs.
Hierarchical clustering using CaCTS score
Clustering was performed using the Spearman method and com-
plete distance parameters. We selected a height cutoff equal to 0.63 
to define the clusters, which resulted in 11 groups (in the 34 tumor 
group analyses). To compare our clusters with groups defined by 
TCGA (25), CaCTS clusters were matched to the TCGA cluster to 
which 50% (or more) of the samples were assigned.
Analyses of CaCTS TF dependencies
For the dependency analysis, we manually searched the Cancer 
Dependency Map Project database (DepMap Achilles 19Q1 public 
release; https://figshare.com/articles/DepMap_Achilles_19Q1_
Public/7655150) (33) for cell lines that rightfully correspond to the 
34 tumor types. We found dependency data for 20 of 34 (58.8%) 
cancer types and retrieved 434 cell lines across these, with LUAD 
having the largest number of lines (n = 31) and CHOL having the 
lowest (n = 1). We performed hierarchical clustering of cell lines 
and the CaCTS TFs for the corresponding tumor type (method = 
ward.d2, distance = euclidean). We also calculated the percentage of 
tumor types with at least one predicted candidate with a CERES 
score of <−0.4, <−0.6, <−0.8, or <−1 in at least 50% of the cell lines 
for that tumor type. Search terms used for each tumor type (for pri-
mary disease and subtype) were as follows: ACC: “Adrenal Cancer”; 
BLCA: “Bladder Cancer”; LGG: “Brain Cancer”, and then filtered by 
“Astrocytoma,” Astrocytoma, anaplastic,” “Glioma, Neuroglioma,” 
“Oligodendroglioma,” and “Oligodendroglioma, anaplastic”; BRCA: 
“Breast Cancer”; CESC: “Cervical Cancer”; CHOL: “Bile Duct Cancer”; 
COAD: “Colon/Colorectal Cancer”; ESAD: “Esophageal Cancer” 
and then filtered by “Adenocarcinoma”; ESSC: “Esophageal Cancer” 
and then filtered by “Squamous Cell Carcinoma”; GBM: “Brain 
Cancer” and then filtered by “Glioblastoma”; HNSC: “Head and 
Neck Cancer”; KIRC: “Kidney Cancer” then filtered by “Renal 
Carcinoma, clear cell” and “Renal Adenocarcinoma, clear cell”; LIHC: 
“Liver Cancer”; LUAD: “Lung Cancer” and then filtered by “Non-
Small Cell Lung Cancer (NSCLCL), Adenocarcinoma”; LUSC: 
“Lung Cancer” and then filtered by “Non-Small Cell Lung Cancer 

(NSCLCL), Squamous Cell Carcinoma”; DLBC: “Lymphoma” and 
then filtered by “Diffuse Large B-cell Lymphoma (DLBCL)”; MESO: 
“Lung Cancer” and then filtered by “Mesothelioma”; LAML: 
“Leukemia” and then filtered by “AML”; PAAD: “Pancreatic Cancer”; 
PRAD: “Prostate Cancer”; COAD: “Colon/Colorectal Cancer”; SARC: 
“Sarcoma” and then filtered by “Liposarcoma”; SKCM: “Skin Cancer” 
and then filtered by “Melanoma” and “Melanoma, amelanotic”; STAD: 
“Gastric Cancer”; TGCT: “Embryonal Cancer”; THCA: “Thyroid Cancer”; 
UCS: “Endometrial/Uterine Cancer” and then filtered by “Endometrial 
Stromal Sarcoma”; UCEC: “Endometrial/Uterine Cancer” and then 
filtered by “Uterine/Endometrial Adenocarcinoma,” “Endometrial 
Carcinoma,” and “Endometrial Adenocarcinoma”; UVM: “Eye Cancer”; 
and PCPG: “Neuroblastoma”. For OV and BRCA subtypes, we manually 
curated cell lines for inclusion as follows: OV (OAW28, COV318, 
KURAMOCHI, SNU8, ONCODG, JHOS4, JHOS2, OVCAR8, 
COV504, COV362, OV90, X59M, OVCAR5, CAOV3, EFO21, and 
A2780); BRCA (luminal A) (EFM19, HCC1428, CAMA1, HCC1419, 
MCF7, MDAMB415, SKBR3, ZR751, KPL1, HCC202, and HMC18); 
BRCA (luminal B) (EFM19, HCC1428, CAMA1, HCC1419, MCF7, 
MDAMB415, SKBR3, ZR751, KPL1, HCC202, and HMC18); BRCA 
(basal/TNBC) (MDAMB468, HCC1806, HCC1395, MDAMB436, 
MDAMB231, SUM159PT, BT549, HCC1937, MDAMB157, CAL51, 
HS578T, HCC1143, DU4475, and HMC18); and BRCA (HER2) 
(AU565, MDAMB453, JIMT1, and HCC1954).
Tumor subtype MTF predictions
To predict candidate MTFs specific for each of the 140 tumor sub-
types (table S9), we implemented the same workflow developed for the 
34 TCGA cancer types; however, instead of adding all samples for a 
query cancer type, we selected one subtype at once to be the query 
group and all other cancer subtypes to be the background. For exam-
ple, considering the four molecular subgroups for ovarian cancer, 
we select “proliferative” samples as query and all other 136 cancer 
subtypes as background, leaving out other molecular subgroups for 
OV, i.e., mesenchymal, differentiated, and immunoreactive.
Somatic mutation analyses
We used coding SNVs from 2715 tumors from the PCAWG project 
(https://icgc.org). We removed all SNVs that fall into regions of low 
mappability (wgEncodeDacMapabilityConsensusExcludable.bed). 
To identify frequently mutated genes, we calculated a background 
mutation rate for each sample. Let Xi(Xi ∈ [0, n]) be a random vari-
able that represents the number of samples with at least one muta-
tion in the ith gene (where n is the total number of samples of a 
given tumor type), and then Xi follows a Poisson binomial distribu-
tion with a vector of probabilities p = [1 − (1 − pk)ni]k, where ni is the 
size of the coding sequence of the ith gene in base pairs and pk is the 
global background rate of sample k (k ∈ [1, n]) empirically estimated 
by the ratio of the total number of SNVs in sample k (nk) over the 
total coverage of all exons (in base pairs) (ncov)

   p  k   =    n  k   ─  n  cov      

To determine the statistical significance of the observed number 
of mutated samples in the ith gene, we calculated the probability of 
having at least si samples mutated, i.e., P valuei = P(Xi ≥ si). P values 
were adjusted using the Benjamini-Hochberg method.
Oncoplots of PAX8, SOX17, and MECOM genetic aberrations
Data were obtained from cBioPortal (73). Data included 579 patients/
samples with OV, from the study TCGA Provisional.
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Experimental methods
H3K27ac ChIP-seq of primary HGSOC tissues
All tissues used were collected with informed consent and the 
approval of the institutional review boards of the University of 
Southern California, Cedars-Sinai Medical Center (CSMC), the 
Whitehead Institute for Biomedical Research (WIBR), and the 
Dana-Farber Cancer Institute. All specimens profiled were primary, 
chemotherapy-naïve HGSOCs. Tumors 1 to 4 were profiled at CSMC 
and have been previously described (74). Briefly, 5-mm punches of 
optimal cutting temperature compound (OCT)–embedded, pathology- 
reviewed tumor specimens were taken from epithelial enriched regions. 
Tissues were subjected to ChIP-seq using an anti-H3K27ac antibody 
(C15410196, Diagenode, Denville, NJ). Tumors 5 to 12 were profiled 
at WIBR. Thirty-micrometer sections of frozen tissues, with a >90% 
tumor enrichment, were washed with phosphate-buffered saline (PBS) 
and cross-linked with 1% formaldehyde for 10 min and quenched with 
0.125 M glycine for 5 min at room temperature. Cross-linked mate-
rial was resuspended in 1 ml of lysis buffer [0.1%SDS, 1× Triton 
X-100, 10 mM tris-HCl (pH 8), 1 mM EDTA (pH 8), 0.1% sodium 
deoxycholate, 0.25% sarkosyl, 0.3 mM NaCl, 1× protease inhibitor 
cocktail, and 5 mM sodium butyrate] and sonicated for 20 min with 
a Covaris E220 instrument (10% duty cycle, 175 peak incident power, 
200 cycles per burst, and 1 ml of AFA Fiber milliTUBEs). Eight mi-
crograms of soluble chromatin was immunoprecipitated with 10 g 
of H3K27ac (C15410196, lot #a1723-0041d, Diagenode) antibody. 
ChIP-seq libraries were constructed using an Accel-NGS 2S DNA 
library kit from Swift BioSciences. Fragments of the desired size were 
enriched using AMPure XP beads (Beckman Coulter). Thirty-six–
base pair (bp) paired-end reads were sequenced on a NextSeq instru-
ment (Illumina). Data were processed using the ENCODE pipeline, 
as described above, with SEs identified using ROSE.
Cell culture
OVCAR4 and Kuramochi cell line models were selected as they 
closely recapitulate the molecular features of human HGSOC (65). 
Cells were cultured in RPMI 1640 supplemented with 10% fetal 
bovine serum, 1× nonessential amino acid (NEAA) cell culture sup-
plement , insulin (11.4 g/ml), and 1× penicillin/streptomycin and 
maintained at 37°C with 5% CO2. Cells were passaged with 0.05% 
trypsin using standard cell culture procedures. Cells were confirmed 
to be negative for Mycoplasma and were authenticated by profiling 
of short tandem repeats using the Promega PowerPlex 16HS assay, 
performed at the University of Arizona Genomics Core (table S14).
RNA interference and colony formation assays
OVCAR4 cells were reverse transfected with nontargeting [Dharmacon 
ON-TARGETplus Non-targeting Control Pool (NT1) and a second 
custom control pool containing the following: D-0012-03, D-001210-04, 
and D-001210-05 (NT2)] or pooled PAX8, SOX17, and MECOM 
oligonucleotides (L-003778-00-0005, L-013028-01-0010, and 
L-006530-02-0005, Dharmacon) by incubating 120 nM of each siRNA 
pool in Opti-MEM I (Thermo Fisher Scientific) for 5 min, which 
was then combined with a mix of Opti-MEM I and Lipofectamine 
RNAiMAX (Thermo Fisher Scientific) and incubated for 20 min at 
room temperature. The transfection reagent mix was then com-
bined with 300,000 cells and seeded in a 60-mm dish. Medium was 
replenished after 24 hours, and transfected cells were used for anal-
ysis or assays 48 hours later. For colony formation assays, transfected 
cells were trypsinized and counted, and 1000 cells per condition 
were seeded in six-well plates, in triplicate. Media were replenished 
once per week, and after 14 days, the cells were washed with 1× PBS 

(Thermo Fisher Scientific) three times and fixed with 10% formalin 
(McKesson) for 20 min. Plates were then washed with water and 
stained with 0.1% crystal violet for 30 min. Excess crystal violet was 
washed with water, and colonies were counted manually.
Western blotting
Cells were lysed with 100 l of cell lysis buffer per 1 million cells 
[10 mM Hepes (pH 7.5) by KOH, 300 mM NaCl, 0.1% NP-40, 5 mM 
EGTA, with aprotinin (10 g/ml), leupeptin (10 g/ml), 1× protease 
inhibitor cocktail (Roche), 1× PhosSTOP Protease Inhibitor Cocktail 
(Roche), 1× phenylmethylsulfonyl fluoride (Sigma-Aldrich), and 
Supraise-in (Ambion)] at 4°C for 1 hour. Lysed samples were then 
centrifuged at 12,000g for 10 min at 4°C, and supernatants were col-
lected. Thirty micrograms of whole-cell extracts were treated with 
sample buffer and boiled at 95°C for 5 min. Samples were separated 
via SDS–polyacrylamide gel electrophoresis (Bio-Rad) and trans-
ferred to a nitrocellulose membrane with the Trans-Blot Turbo system 
(Bio-Rad) per the manufacturer’s instructions. Membranes were 
blocked with StartingBlock (Thermo Fisher Scientific) blocking 
buffer for 60 min at room temperature, followed by incubation with 
primary antibodies to detect PAX8 (1:1000 dilution; 32440, Novus), 
SOX17 (1:2000; ab224637, Abcam), MECOM (1:1000; C50E12, Cell 
Signaling Technology), or -tubulin (1:2000; D3U1W, Cell Signal-
ing Technology). Primary antibody incubations were performed in 
blocking buffer overnight at 4°C. Samples were then washed with 
tris-buffered saline with 0.1% Tween® 20 Detergent (TBT-T) three 
times for 10 min each and incubated in secondary antibody (1:10,000; 
ab6721 or ab6789, Abcam) for 1 hour, followed by three 10-min 
TBS-T washes. Membranes were developed using the Piece ECL 
Western Substrate (Thermo Fisher Scientific) following the manu-
facturer’s protocol.
RNA-seq and data analysis
OVCAR4 cells were transfected in triplicate with the two siRNA 
control pools and target gene siRNA pools described above. RNA 
and protein were harvested 72 hours after transfection. Protein 
lysates were used to verify knockdown using Western blotting, as 
described above. Cells were washed with cold PBS, collected by 
scraping, and RNA extraction was performed using the NucleoSpin 
RNA Plus Kit (Macherey-Nagel) per the manufacturer’s protocol. 
Extracted RNA samples were used for polyadenylate nonstranded 
library preparation and 150-bp paired-end sequencing at 40 million 
reads using the DNBseq next-generation sequencing platform 
(RNA-seq performed by BGI). Reads were filtered and aligned us-
ing STAR-2.5.1b (ref_genome_hg38_gencodev26), and a gene-level 
read count matrix was generated using featureCounts (subread-
1.6.3-source). Differential gene expression analyses were then per-
formed using the R package DESeq2 (version 1.24.0). Differentially 
expressed genes were selected using an absolute log2 fold change of 
≥1 and an adjusted P value of ≤0.01. Pathway analyses were per-
formed using the R package ReactomePA (75).
Proximity ligation assay
To perform the PLA, we used the Duolink Technology (DUO92101, 
Sigma-Aldrich). Kuramochi cells were grown for 24 hours on a 
96-well imaging plate (0030741030, Eppendorf). Cells were fixed 
in 4% paraformaldehyde for 15 min, permeabilized with 0.25% 
Triton X-100 for 15 min, and blocked with 1% bovine serum 
albumin in PBS containing 0.1% Tween 20 for 30 min. Primary 
antibodies against PAX8 (1:250 dilution; NBP2-29903, Novus), SOX17 
(1:250 dilution; 81778S, Cell Signaling Technology), and MECOM 
(1:250 dilution; 23201-1-AP, ProteinTech) were incubated overnight 
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at 4°C. After three 5-min washes with TBS-T, PLA probes were in-
cubated overnight at 4°C. Detection was performed using Duolink 
RED detection reagents as recommended by the manufacturer. 
Samples were air-dried and covered with Duolink mounting me-
dium with 4′,6-diamidino-2-phenylindole and then imaged using 
a Nikon Eclipse Ti inverted microscope under ×40 magnification.
ChIP-seq of PAX8, SOX17, MECOM, and CTCF in Kuramochi cells
Kuramochi cells were grown to 80% confluence, cross-linked with 
1% formaldehyde in PBS for 15 min, pelleted, and flash-frozen. One 
hundred million cells were used per ChIP with 10 g of each anti-
body, PAX8 (catalog number 59019, lot 1, Cell Signaling Technology), 
SOX17 (catalog number AF1924, lot KG0818071, R&D Systems), and 
MECOM (catalog number 2593, lot 4, Cell Signaling Technology). 
Sonications were performed with a Qsonica microtip sonicator with 
4 min of total time (30-s on, 1-min off) with 18 to 21 W. The super-
natant of the sonicated lysates was incubated overnight at 4°C with 
the antibody and Invitrogen DynaI magnetic bead mix. After exten-
sive washing, enriched chromatin was purified as follows: for PAX8, 
using a phenol:chloroform:isoamyl alcohol extraction (76), and for 
SOX17 and MECOM, bead:antibody:chromatin complexes were 
resuspended in elution buffer, placed at 65°C for 45 min with inter-
mittent vortexing and spun down. Ribonuclease A (RNase A) was 
added to the supernatant, and samples were incubated at 65°C for 
3.5 hours before a proteinase K digest at 42°C for 1 hour. DNA was 
then purified using polymerase chain reaction (PCR) column puri-
fication. CCCTC-binding factor (CTCF) ChIP-seq was performed as 
previously described (77) using 25 g of chromatin and 5 g of anti- 
CTCF antibody (catalog number 61311, Active Motif), and chromatin 
was sheared to 100- to 300-bp fragments using a Covaris E220 evo-
lution focused ultrasonicator. ChIP libraries were constructed using 
the KAPA Hyper Library Preparation kit, quantified, and sequenced 
on an Illumina NextSeq 500 sequencer. Reads were aligned to the 
hg19 version of the human reference genome using bowtie v1.2 (78) 
with parameters -k 2 -m 2 –best and -l set to the read length. WIG 
files for display were made using MACS v1.4 (71) with parame-
ters -w -S –space = 50 –nomodel –shiftsize = 200. Regions statistically 
enriched in reads were identified using MACS v1.4 with corre-
sponding input control and parameters -p 1e-9 –keep-dup = auto. 
Regions for the colocalization heatmap were constructed by col-
lapsing regions enriched in PAX8, SOX17, and MECOM using bed-
tools merge (79) and creating 4-kb regions centered on the center of 
the collapsed regions. Read coverage was quantified for heatmap 
analysis using bamToGFF (https://github.com/BradnerLab/pipeline) 
with parameters -m 100 -r using a mapped read bam with non-PCR 
duplicate reads created with samtools rmdup (80). Heatmaps were ranked 
using read coverage quantified in 1-kb windows centered on the middle 
of each collapsed region using bamToGFF with parameters -m 1 -r.
THZ531, THZ1, and JQ1 dose response curves
OVCAR4 cells were plated in 96-well plates at 5000 cells per well. 
After 24 hours, THZ531 (ApexBio), THZ1 (Selleck Chemicals), and 
JQ1 (Tocris) or vehicle [dimethyl sulfoxide (DMSO)] were added in 
1:3 dilutions starting from 10,000 to 1.5 nM in triplicate and incu-
bated for 72 hours at 37°C. Cell numbers were quantified using the 
Promega Cell Titer Glo reagent. Signals were then normalized to the 
lowest dose, and IC50 values were calculated with GraphPad Prism.
THZ531, THZ1, and JQ1 drug treatment for RNA
OVCAR4 cells (400,000) were seeded in 60-mm dishes 24 hours be-
fore experiment. Cells were treated with either low-dose THZ1 (50 nM), 
high-dose THZ1 (250 nM), low-dose THZ531 (100 nM), high-dose 

THZ531 (500 nM), JQ1 (500 nM), or DMSO (500 nM) for 6 hours. 
Plates were then washed with ice-cold PBS once, followed by RNA 
extraction with the NucleoSpin RNA Mini Kit (Macherey-Nagel), 
followed by quantitative PCR. Relative expression was measured 
and normalized using the average expression of GAPDH and ACTB 
and then normalized to DMSO control.
THZ531, THZ1, and JQ1 global transcriptome data
RNA-seq data from THZ1-treated Kuramochi cells were obtained 
from GSE116282 (66). Data were filtered to remove lowly transcripts 
[Reads Rer Kilobase of transcript, per Million mapped reads (RPKM) > 1] 
to select protein-coding genes, and expression of the top 10% of genes, 
at 50 and 250 nM, was plotted. Gene set enrichment was conducted 
using an ascending-ordered ranked list of log2FC after target gene 
knockdown and gene sets of THZ1 differentially expressed genes.
Quantitative PCR
Total RNA was converted to complementary DNA (cDNA) using 
random primers (Promega) and the Moloney Murine Leukemia 
Virus (M-MLV) Reverse Transcriptase RNase H (Promega) as per 
the manufacturer’s instructions. cDNA was then amplified by the 
QuantStudio 12K Flex Real-Time PCR system (Thermo Fisher 
Scientific) with the Taqman Universal Master Mix with UNG (Applied 
Biosystems) along with the following probes: GAPDH, TUBB, and/or 
ACTB as housekeeping genes (Hs02786624_g1, Hs00742828_s1, 
and/or Hs01060665_g1), as well as PAX8, SOX17, and MECOM 
(Hs00247586_m1, Hs00751752_s1, and Hs00602795_m1).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abf6123

View/request a protocol for this paper from Bio-protocol.
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