

Three-Dimensional Cardiac Reconstructions of GLP and G9a Mutants

Introduction

Reconstructing Neonate Outflow Tracts

Mariacristina Calcagno¹, Diana Fulmer¹, Jonathan Epstein¹ ¹Department of Cell and Biology, Epigenetics Institute, Perelman School of Developmental Medicine

GLP/G9a Mutants Have Patent Ductus Arteriosus (PDA)

Non-coronary Cusp (NC) Right Coronary Cusp (RC)

Left Coronary Cusp (LC) Supernumerary Cusp (S)

GLP/G9a Mutants Have Abnormal Aortic Valves

3Ds Allow For Quantitative Analysis

Length (um)

PDA Penetrance

PDA is a condition that occurs when the ductus arteriosus does not clos post-birth; this causes inadequate oxygen sup the blood running throu the body.

Though more analysis must be done, our studies show that GLP/G9a conditional neural crest mutants have a highly penetrant patent ductus arteriosus; measurements from 3D reconstructions show that DA of mutant mice have larger volumes than those of non-mutant mice; histological examination from which these models were derived demonstrate an open DA that did not close after birth in PO neonate.

I would like to thank Dr. Diana Fulmer for a wonderful six weeks creating 3D models and engaging in labwork; Dr. Jonathan Epstein and the Epstein lab for hospitably allowing me to work in the lab this summer; and of course, Mr. Tarence Smith and Dr. Jamie Shuda for making this entire opportunity possible.

Genotype	Aorta	Pulmonary	DA
GLP ^{f/f} ;G9a ^{f/+} ; Wnt1 ^{Cre(-)}	3.11E+06	2.03E+06	1.87E+05
GLP ^{f/+} ;G9a ^{f/f} ; Wnt1 ^{Cre(+)}	4.94E+06	1.71E+06	6.33E+05

Genotype	Aorta	DA
GLP ^{f/f} ;G9a ^{f/+} ; Wnt1 ^{Cre(-)}	345	154
GLP ^{f/+} ;G9a ^{f/f} ; Wnt1 ^{Cre(+)}	243	133

LE	Genotype	# with pDA	Total #	Penetrance	
s se	Wnt1 ^{Cre(-)}	0	10	0%	
	GLP ^{f/+} ;G9a ^{f/+} ; Wnt1 ^{Cre(+)}	0	2	0%	
oply in ough	GLP ^{f/+} ;G9a ^{f/f} ; Wnt1 ^{Cre(+)}	3	3	100%	
	GLP ^{f/f} ;G9a ^{f/+} ; Wnt1 ^{Cre(+)}	3	4	75%	
	GLP ^{f/f} ;G9a ^{f/f} ; Wnt1 ^{Cre(+)}	4	5	80%	

Conclusions

Acknowledgements