Approach to Identification and Treatment of Alcoholic & Non-Alcoholic Fatty Liver Disease

Kimberly A. Forde, MD
Assistant Professor of Medicine
Division of Gastroenterology and Hepatology
University of Pennsylvania
September 27, 2012
Alcoholic Liver Disease (ALD)

- Epidemiology
- Risk Factors
- Pathogenesis
- Diagnosis

- Prognosis
- Alcoholic Hepatitis
- Chronic ALD

- Treatment
- Alcoholic Hepatitis
- Chronic ALD
ALD: Epidemiology

Alcoholism

- 3rd leading cause of preventable death in the US\(^1\)
 - 79,000 deaths annually (2001-2005)\(^2\)
- 223 billion dollars sent on sequelae of alcoholism in 2006\(^3\)
 - 72.2% in lost productivity
 - 11.4% in healthcare costs
- 67.3% of adult population consume alcohol\(^4\)
 - 4.7% meet DSM IV criteria for alcohol abuse\(^5\)
 - 3.8% meet DSM IV criteria for alcohol dependence\(^5\)

1. Mokdad et al. JAMA 2004;291(10):1238-45
2. http://www.cdc.gov/alcohol/ardi.htm
5. Hasin et al. Arch Gen Psychiatry 2007;(64)7:830-42
ALD: Epidemiology

- **Alcoholic Liver Disease (ALD)**
 - Spectrum of disease from steatosis to cirrhosis
 - Risk of cirrhosis increases with \(\geq 30 \) g/d alcohol
 - Highest risk of cirrhosis with consumption \(\geq 120 \) g/d
 - ALD does not occur universally in all who use heavy alcohol
 - Of those consuming \(\geq 120 \) g/d, 13.5% developed ALD
 - Second most frequent indication for liver transplantation

ALD: Risk Factors

- Dose, duration and type of alcohol consumption
- Drinking patterns
- Sex
- Ethnicity
- Genetic factors
- Other potential causes of liver injury
ALD: Risk Factors

- Dose, duration and type of alcohol consumption
 - Single most important risk factor for ALD!
- Drinking patterns
- Sex
- Ethnicity
- Genetic factors
- Other potential causes of liver injury
ALD: Risk Factors

One mixed drink with
• 1.5 fl oz (44 mL) of 80-proof liquor (such as vodka, gin, scotch, bourbon, brandy, or rum)

5 fl oz (148 mL) of wine

12 fl oz (355 mL) of beer or wine cooler

Grams of alcohol per day = (% volume / volume mL) x (0.79 grams)
ALD: Risk Factors

ALD: Risk Factors

TABLE 1 Classes of daily alcohol consumption of the screened population (n=6534), expressed as absolute number (n) and percentage of lines (%), according to the presence of either non-cirrhotic alcohol-induced liver damage (NCLD) or cirrhosis or hepatocellular carcinoma (=cirrhosis)

<table>
<thead>
<tr>
<th>Alcohol intake (g/day)</th>
<th>No (n=6442)</th>
<th>NCLD (n=57)</th>
<th>Cirrhosis (n=35)</th>
<th>Multivariate analysis (odds ratio) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For NCLD*a</td>
<td>For cirrhosis*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teetotallers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1–30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31–60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61–90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91–120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Alcohol intake (g/day)</th>
<th>No (n=6442)</th>
<th>NCLD (n=57)</th>
<th>Cirrhosis (n=35)</th>
<th>Multivariate analysis (odds ratio) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For NCLD*a</td>
<td>For cirrhosis*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teetotallers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1–30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31–60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61–90</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91–120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ALD: Risk Factors

- Dose, duration and type of alcohol consumption
- Drinking patterns
- Sex
- Ethnicity
- Genetic factors
- Other potential causes of liver injury
ALD: Risk Factors

- Drinking patterns
 - Drinking outside of meal times
 - 2.7 fold increased risk of ALD
 - Binge drinking
 - Increased risk of ALD

Table 4. Multivariate Analysis of Factors Associated With Alcoholic Hepatitis and With Liver Cirrhosis

<table>
<thead>
<tr>
<th>Factor</th>
<th>Alcoholic hepatitis (^1)</th>
<th>Liver cirrhosis (^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (female)</td>
<td>4.92 (2.40–10.08)(^c)</td>
<td>2.19 (1.04–4.59)(^a)</td>
</tr>
<tr>
<td>Alcohol consumption</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–15 years</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>16–20 years</td>
<td>1.91 (0.93–3.90)</td>
<td>2.97 (1.19–7.39)(^a)</td>
</tr>
<tr>
<td>>20 years</td>
<td>1.14 (0.56–2.34)</td>
<td>3.72 (1.51–9.16)(^b)</td>
</tr>
<tr>
<td>Habitual quantity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80–150 g/day</td>
<td>Reference</td>
<td>Reference</td>
</tr>
<tr>
<td>151–200 g/day</td>
<td>1.37 (0.61–3.04)</td>
<td>1.32 (0.51–3.45)</td>
</tr>
<tr>
<td>>200 g/day</td>
<td>0.91 (0.42–1.96)</td>
<td>3.44 (1.45–8.14)(^b)</td>
</tr>
<tr>
<td>Drinking pattern (irregular)</td>
<td>5.49 (2.83–10.66)(^c)</td>
<td>1.10 (0.52–2.31)</td>
</tr>
<tr>
<td>Spirits drinking habit</td>
<td>1.48 (0.75–2.91)</td>
<td>0.71 (0.33–1.50)</td>
</tr>
<tr>
<td>Presence of SAWS</td>
<td>1.79 (0.92–3.48)</td>
<td>0.35 (0.17–0.75)(^b)</td>
</tr>
</tbody>
</table>

ALD: Risk Factors

- Dose, duration and type of alcohol consumption
- Drinking patterns
- Sex
- Ethnicity
- Genetic factors
- Other potential causes of liver injury
ALD: Risk Factors

- **Sex**
 - Incidence of ALD modified by sex
 - ALD: 0.3% vs 0.1% per year in men vs women
 - Cirrhosis/ ALD: 0.2% vs 0.03% per year in men vs women
 - Risk of development of cirrhosis
 - > 60-80 g/d for 10 or more years in men
 - > 20 g/d for 10 or more years in women
 - Women have a higher relative risk of developing ALD than men for every given level of reported alcohol consumption
 - Difference may be on the basis of decreased levels of alcohol dehydrogenase, increased body fat, and changes in metabolism with menstruation.

ALD: Risk Factors

- Dose, duration and type of alcohol consumption
- Drinking patterns
- Sex
- Ethnicity
- Genetic factors
- Other potential causes of liver injury
ALD: Risk Factors

- **Ethnicity**
 - Increase in ALD mortality in Hispanics

- **Genetics**
 - Polymorphisms of alcohol metabolism pathway
 - Alcohol dehydrogenase ADH
 - Aldehyde dehydrogenase ALDH
 - ADH and ALDH polymorphisms recently identified

- **Other potential causes of liver injury**
 - Viral Hepatitis
 - Obesity
 - Iron overload
ALD: Pathogenesis

- **Acute Alcoholic Hepatitis**
 - Nutrition
 - Genetics
 - Direct Toxic Effect
 - Immunologic

ALD: Pathogenesis

- Morphology of Chronic ALD
 - Macrøvesicular Steatosis
 - Steatohepatitis
 - Hepatocyte ballooning
 - Mallory bodies
 - Perivenular/ pericellular fibrosis

ALD: Diagnosis

- **Acute Alcoholic Hepatitis**
 - Screening for alcohol dependence
 - Laboratory assessment
 - AST > ALT:
 - Ratio > 2.0
 - ↑Total Bilirubin
 - ↑International normalized ratio (INR)
 - ↑White blood cell count (WBC)
 - ↑Mean corpuscular volume (MCV)
 - Physical examination
 - Fever
 - Right upper quadrant tenderness
 - Ascites
ALD: Diagnosis

Chronic ALD

- Screening for alcohol dependence
- Laboratory assessment
 - AST > ALT:
 - Ratio > 2.0
 - Respective values < 300 IU/L and almost never > 500 IU/L
 - ↑Gamma-glutamyl transferase (GGT)
 - ↑Mean corpuscular volume (MCV)
 - ↑Carbohydrate-deficient transferrin (CDT)
- Physical examination
 - Signs of chronic liver disease

ALD: Prognosis-Alcoholic Hepatitis

- Maddrey’s discriminant function (MDF)
 - \(4.6 \times [\text{PT} - \text{control PT}] + (\text{serum bilirubin})\)
 - \(\text{MDF} \geq 32:\)
 - 35 - 45% 28 day mortality
 - \(\text{MDF} \geq 32 \text{ with encephalopathy}\)
 - > 50% 28 day mortality
 - \(\text{MDF} \geq 32\)
 - Threshold for initiating therapy

ALD: Prognosis-Alcoholic Hepatitis

- **Model for End Stage Liver Disease Score (MELD)**
 - \[3.8[\text{Ln serum bilirubin (mg/dL)}] + 11.2[\text{Ln INR}] + 9.6[\text{Ln serum creatinine (mg/dL)}] + 6.4\]
 - Comparable to MDF at predicting 30/90 day mortality
 - MELD of 21 equivalent to MDF > 32
 - Better predictor of in-hospital mortality

<table>
<thead>
<tr>
<th>Score</th>
<th>Cut-off</th>
<th>Sens (%)</th>
<th>Spec (%)</th>
<th>PPV (%)</th>
<th>NPV (%)</th>
<th>+LR</th>
<th>−LR</th>
<th>OR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admission MELD</td>
<td>18</td>
<td>85</td>
<td>84</td>
<td>47</td>
<td>97</td>
<td>5.3</td>
<td>0.2</td>
<td>28.8</td>
</tr>
<tr>
<td>Week 1 MELD</td>
<td>20</td>
<td>91</td>
<td>85</td>
<td>51</td>
<td>98</td>
<td>6.09</td>
<td>0.11</td>
<td>55.7</td>
</tr>
<tr>
<td>ΔWeek 1 MELD</td>
<td>2</td>
<td>80</td>
<td>75</td>
<td>35</td>
<td>96</td>
<td>3.2</td>
<td>0.3</td>
<td>12.0</td>
</tr>
</tbody>
</table>

Srikureja et al. J Hepatol 2005;42:700-6
ALD: Prognosis-Alcoholic Hepatitis

- Lille Model
 - 6 variables (age, renal function, albumin, prothrombin time, bilirubin, and evolution of bilirubin at day 7)
 - Accurate prognostic marker of 6-month survival
 - Score of > 0.45 associated with a 6 month survival of 25%
 - Score utilized to identify patients in whom steroids should be discontinued after 7 days

Louvet et al. Hepatology 2007;45:1348-1354
ALD: Treatment-Alcoholic Hepatitis

- Abstinence
- Nutritional support
 - Degree of malnutrition associated with outcome in acute alcoholic hepatitis
 - In a study of patients treated with steroids or enteral nutrition, mortality was not significantly different between the groups
- Pharmacologic therapy

Cabre et al. Hepatology 2000; 32:36-42
ALD: Treatment-Alcoholic Hepatitis

- **Corticosteroids**
 - Inhibits the action of transcription factors such as activator protein 1 (AP-1) and NF-κB
 - Indicated when discriminant function > 32 or hepatic encephalopathy
 - Course of prednisolone 40 mg daily administered 4 weeks

- **Contraindications**
 - Infection/ sepsis
 - Hepatorenal syndrome
 - Gastrointestinal bleeding
28-DAY SURVIVAL OF PATIENTS WITH DF ≥ 32:
Individual Data Analysis of the Three RCTs

- Prednisolone-randomized patients, n=113
- Placebo-randomized patients, n=102

Mathurin et al. J Hepatol 2002; 36:480-487
ALD: Treatment-Alcoholic Hepatitis

- Pentoxifylline
 - Non-selective phosphodiesterase inhibitor
 - Modulation of transcription of TNF-α gene is thought to be putative mechanism
 - Used as an alternative to steroids when discriminant function > 32
 - 41% reduction in mortality at 28 days
 - Survival 46.1% vs 24.5% in placebo
 - Relative Risk 0.59; 95% CI 0.35 - 0.97
 - Improvement in survival based upon prevention of HRS

Akriviadis et al. Gastro 2000; 119:1637-1648
ALD: Treatment-Alcoholic Hepatitis

Akriviadis et al. Gastro 2000; 119:1637-1648
ALD: Treatment-Alcoholic Hepatitis

Akriviadis et al. Gastro 2000; 119:1637-1648
ALD: Treatment-Alcoholic Hepatitis

- **Pentoxifylline vs. Steroids**
 - Three month mortality 35% in pentoxifylline group vs 14.7% in steroid group
 - Increase in HRS incidence in steroid group

- **Pentoxifylline after Steroids**
 - No survival benefit to steroid non-responsive patients

De et al. Word J Gastroenterol 2009;15:11613-1619
ALD: Treatment-Alcoholic Hepatitis

Therapeutic Algorithm for the Management of Alcoholic Hepatitis

1. Establish Disease Severity

 - **Low Risk:**
 - MDF < 32 and 1st week decrease in bilirubin, or MELD < 18 and 1st week decrease in MELD by 2 points
 - Nutritional Assessment / Intervention
 - Supportive Care & Close follow-up

 - **High Risk:**
 - MDF ≥ 32, presence of HE, or MELD ≥ 18
 - Nutritional Assessment / Intervention
 - Consider Liver Biopsy if Diagnosis is uncertain
 - If steroid contraindications or early renal failure
 - Prednisolone
 - Pentoxifylline
ALD: Treatment – Chronic ALD

- Abstinence

- Liver transplantation
 - Contraindicated in acute alcoholic hepatitis
 - 6 months of sobriety

- Baclofen
ALD: Treatment-Chronic ALD

Therapeutic Algorithm for the Long-term Management of ALD

- Emphasize Abstinence
- Evaluate and treat Co-morbidities

- Need for Rehabilitation +/- drug treatment?

- Determine Stage of Disease

- Fatty Liver
- Alcoholic Hepatitis
- Fibrosis / Cirrhosis

- Nutritional Assessment / Intervention

- Frequent feeding / night-time snacks micronutrient & vitamin replacement

- Consider Clinical Trials

- Manage Complications of Liver Disease
ALD: Take Home Points

- ALD is a spectrum of disease
- Risk of developing ALD is proportion to the amount of alcohol ingested
- Co-factors such as obesity, viral hepatitis and iron overload increase disease progression
- Acute alcoholic hepatitis is associated morbidity and mortality
 - Evaluate prognosis quickly
 - Institute pharmacologic therapy if indicated
- Alcohol cessation is essential to the management of ALD
ALD: Broad Question 1

- 47 year old woman presents with severe alcoholic hepatitis presents to the hospital for management. In which of the following situations is pentyoxifylline more appropriate than glucocorticoids?

- A. Ascites and gastrointestinal bleeding
- B. Mild jaundice and encephalopathy
- C. Severe jaundice, coagulopathy and encephalopathy
- D. Severe jaundice, encephalopathy and HRS
47 year old woman presents with severe alcoholic hepatitis presents to the hospital for management. In which of the following situations is pentyoxifylline more appropriate than glucocorticoids?

A. Ascites and gastrointestinal bleeding
B. Mild jaundice and encephalopathy
C. Severe jaundice, coagulopathy and encephalopathy
D. Severe jaundice, encephalopathy and HRS
38 year old man with a recent bout of alcoholic hepatitis is seen in follow up. He has a body mass index of 33, diabetes mellitus with a Hgb A1c of 10, and frequently smokes marijuana. In addition to alcohol abstinence, which is the lifestyle modification most likely to improve his outcome from a liver standpoint?

- A. Tighter blood glucose control
- B. Marijuana smoking cessation
- C. Nutritional and protein supplementation
- D. Weight loss
38 year old man with a recent bout of alcoholic hepatitis is seen in follow up. He has a body mass index of 33, diabetes mellitus with a Hgb A1c of 10, and frequently smokes marijuana. In addition to alcohol abstinence, which is the lifestyle modification most likely to improve his outcome from a liver standpoint?

- A. Tighter blood glucose control
- B. Marijuana smoking cessation
- C. Nutritional and protein supplementation
- D. Weight loss
A patient inquires whether he is at risk of deleterious effects on his liver from alcohol. Which of these co-factors puts him at higher risks of such effects?

- A. Sex
- B. Chronic hepatitis C infection
- C. Diabetes mellitus/insulin resistance
- D. Obesity
- E. Smoking
A patient inquires whether he is at risk of deleterious effects on his liver from alcohol. Which of these co-factors puts him at higher risks of such effects?

- A. Sex
- B. Chronic hepatitis C infection
- C. Diabetes mellitus/ insulin resistance
- D. Obesity
- E. Smoking