Autoimmune diseases and cardiovascular risk
Joel M. Gelfand, Sonia Wang, and Michael S. Garshick

There are more than 80 different autoimmune diseases which collectively affect 4–8% of the world’s population. In a recent study published in *Lancet*, Conrad et al. found that 19 autoimmune diseases are associated with a composite of cardiovascular disease (CVD). Inflammation promotes atherosclerotic CVD with psoriasis and rheumatoid arthritis recognized as CVD risk enhancers. New strategies are needed to identify and mitigate the impact of chronic inflammation on CVD-related morbidity and mortality.

Chronic inflammation, assessed by circulating biomarkers including high-sensitivity C-reactive protein (hsCRP) and interleukin 6 (IL-6), is a risk factor for major adverse cardiovascular (CV) events (MACE) and mortality [1]. Mechanistic studies linking type 1 helper cell (Th1)-mediated inflammation to atherosclerosis have motivated a series of epidemiological and translational studies of chronic inflammatory diseases over the past two decades to determine their impact on the risk of atherosclerotic CVD. These inflammatory diseases are highly variable in terms of their immune pathophysiology (i.e., predominantly Th1-, Th2-, or Th17-mediated) and target organ (i.e., joints, bowels, lungs, skin, etc.), and have yielded positive as well as null associations with CVD. There is a strong consensus that, of >80 autoimmune diseases, both psoriasis and rheumatoid arthritis are CV risk enhancers as defined by American Heart Association (AHA)/American College of Cardiology (ACC) guidelines [1].

In this context, a recent study in *Lancet* from Conrad et al. [2] sought to extend our knowledge of inflammation and CVD by examining 446 449 patients with at least one of 19 autoimmune conditions of varying pathophysiology and target organ [Addison’s disease, ankylosing spondylitis, celiac disease, type 1 diabetes, Graves’ disease, Hashimoto’s thyroiditis, inflammatory bowel disease (IBD), multiple sclerosis, myasthenia gravis, pernicious anemia, polymyalgia rheumatica, primary biliary cirrhosis, psoriasis, rheumatoid arthritis (RA), Sjögren’s syndrome, systemic lupus erythematosus, systemic sclerosis, vasculitis, and vitiligo]. The patients were identified through electronic medical records systems in the UK and followed longitudinally for ~6 years. The CV outcomes studied were diverse in their pathophysiology and included a composite of aortic aneurysm, atrial fibrillation, atrial flutter, supraventricular arrhythmia, conduction system disease, heart failure, ischemic heart disease, non-infectious myocarditis or pericarditis, peripheral arterial disease, infective endocarditis, stroke or transient ischemic attack, valve disorder, and venous thromboembolism or pulmonary embolism.

Compared to a cohort of 2 102 830 people without these autoimmune diseases matched for demographic characteristics, Conrad et al. found a higher risk of CVD with a hazard ratio (HR) of 1.56 (1.52–1.59) when adjusted for blood pressure, smoking, body mass index, cholesterol, and type 2 diabetes. Importantly, and as previously described, the relative risks were highest in younger individuals with autoimmune conditions, indicating a pattern of accelerated CVD [3]. However, patients and clinicians must recognize that the absolute risk of CV events attributable to an immune disease increases dramatically with age, and thus the clinical significance of these relationships only becomes more pressing in older individuals (Figure 1).

Conrad et al. found an increased risk of CVD for all 19 autoimmune diseases studied. The results confirmed well-accepted associations of psoriasis and rheumatoid arthritis with CVD, and newly identified Hashimoto’s thyroiditis, myasthenia gravis, pernicious anemia, Graves’ disease, and vitiligo as also conferring CV risk. However, for several of the autoimmune diseases evaluated (primary biliary cirrhosis [4], celiac disease [5], and IBD [6]), the results contrast to earlier studies using the same or similar databases, which observed no or minimally increased CV risk when hard atherosclerotic CV endpoints (myocardial infarction (MI) or stroke) were evaluated. Furthermore, the estimate found by Conrad et al. was attenuated when the analysis was limited to hard CV endpoints, suggesting that the findings may be due in part to observation bias and may be further attenuated when one considers the presence of incompletely measured confounders.

There is a crucial need to develop treatments that target inflammation and reduce CV risk. It is estimated that 30% of patients with coronary disease have residual inflammatory risk (i.e., hsCRP ≥2 mg/l) despite optimal management of their traditional CV risk factors [7]. Trials of anti-inflammatory therapy for atherosclerosis have left more questions than answers about how to mitigate inflammation as a risk factor for CVD [8]. Canakinumab (a biologic targeting IL-1β) lowered CV risk in patients with a history of MI but also increased mortality from infection. In contrast to observational studies of patients with RA or psoriasis, methotrexate failed to lower CV risk in patients with previous MI or multivessel coronary disease who had type 2 diabetes or metabolic syndrome. Finally, trials of colchicine in patients with coronary disease have yielded generally favorable results, although some suggested a risk of serious infection.

Randomized placebo-controlled trials of more targeted and well-tolerated immune-modulating treatments in psoriasis patients...
have identified potential CV benefits of adalimumab [a tumor necrosis factor (TNF) inhibitor that lowered IL-6, hsCRP, and glycoprotein acetylation (GlyCa)], ustekinumab (an IL-12 and IL-23 inhibitor that reduced aortic vascular inflammation), and UV-B phototherapy [lowered IL-6 and hsCRP], and increased high-density lipoprotein particles (HDL-P), whereas neutral effects on CV pathways were observed for secukinumab (an IL-17 inhibitor) [9]. A recent study of apremilast, a pill that blocks phosphodiesterase 4 (PDE4), demonstrated a reduction in visceral adiposity, IL-1β levels, and metabolomics related to cardiometabolic disease, accompanied by an increase in apolipoprotein A-1 but a reduction in cholesterol efflux [10]. Immune-targeted treatments can have paradoxical effects, and therefore rigorous and event-driven trials in patients at high risk of MACE will be necessary before they can be routinely recommended for primary or secondary prevention of CVD. For example, JAK inhibitors potently reduce hsCRP but can increase the risk of both venous and atherothrombotic events [11].

While the race is on to prove that immune-targeted treatments can safely and effectively reduce CV risk, it is incumbent upon clinicians to optimize identification and management of well-established CV risk factors in patients with inflammatory disease. There is a large evidence-to-practice gap in the identification and management of CV risk factors in patients with inflammatory diseases. For example, in psoriasis, statins are severely underutilized; as skin severity assessed by their general practitioner increases, so too does the likelihood that their hypertension will be inadequately controlled [12].

In future work it will be important to confirm the association of a variety of individual autoimmune diseases specifically with atherosclerotic CVD, including estimates of how autoimmune disease severity impacts on these risks, as has been done for psoriasis and rheumatoid arthritis. New strategies to optimally identify and treat traditional CV risk factors are needed, including the earlier use of statins [13] in patients with systemic inflammatory disease, and it will be essential to determine which immune-targeted therapies lower the risk of MACE without increasing the risk of serious infections.


