
Integrating Remote Cloud and

Local HPC Resources

Angel Pizarro
Institute for Translational Medicine and TherapueticsInstitute for Translational Medicine and Therapuetics

Perelman School of Medicine

University of Pennsylvania

Acknowledgements

• Los Jefes:

– Garret FitzGerald

– John Hogenesch

– Junhyong Kim

– Jim Eberwine

• Mi Equipo:

• Anand Srinivasan

• Katharina Hayer

• Mike DeLaurentis
– Jim Eberwine

• El Dinero:

– UL1RR024134 (CTSA)

– PA Department of Health

– UPENN

• Mike DeLaurentis

• Dimitra Sarantopoulou

The Problem

• Not enough compute

• No where to put

computational computational

infrastructure

• Attracting IT talent

easier said than done

• No academic institution

does this as well as

mega-corps

Cloud to the rescue!

• “Magical land of

endless compute!”™

• Amazon Web Services

– UPENN strategic –

partnership

• Initial usage caps are

easily lifted on request

– Went from 40 to 300 in 2

days

• Then how to integrate?

Integration to Local Resources

• I have no immediate and easy answer for you

• My 2¢:

– Start with separate resources– Start with separate resources

– Provide a robust transport mechanism

– Stabilize both resources

– Closely monitor usage patterns of both

– THEN AND ONLY THEN start thinking about tight
integration

The Cloudy Choices Before Us

• Pay someone to provide a solution

• Managed multi-tenant environments
– Hosted provider agreements

• E.g. POD or other non-root accessible resources

– Set-contract VPS & managed hosting – Set-contract VPS & managed hosting
• Assumes administrative rights on resources

• Can be “bear metal” dedicated servers (RackSpace)

– IaaS providers
• AWS, RackSpace Cloud, etc.

• [Un]managed single-tenant environments
– IaaS where “users” request and administer resources

Managed Multi-tenant Environments

• Recreating current HPC environments on AWS

EC2

• Known management and execution tools

• EC2 is “just different enough” to make your • EC2 is “just different enough” to make your

life a huge pain

• Costs are no longer fixed and amortized

– chargebacks are going to be different (and

variable)

Single-tenant Managed Environments

• Bootstrapped Single Purpose Clusters (SPC™)

• Automation is critical

– Permanent resources have a different
management style, allow certain tradeoffs that are
less palatable with cloud resources
management style, allow certain tradeoffs that are
less palatable with cloud resources

• Able to tune SPC’s for each business process

– Instance type, how many, execution engine,
storage strategy, etc.

• Let’s look at an example: RNA-Seq analysis

Accuracy

Algorithm: RNA-Seq Unified Mapper

(RUM)

Runtime

Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Grant GR, Farkas MH,

Pizarro AD, Lahens NF, Schug J, Brunk BP, Stoeckert CJ, Hogenesch JB, Pierce EA. Bioinformatics. 2011 Sep 15;27(18):2518-

28. Epub 2011 Jul 19. PMID: 21775302

Closer look at RUM workflow

• 10MM 100bp paired

end simulated data

• Lots of IO

– 75% writes–

• Essentially a map-

reduce workflow

• 30 “chunks”

Orchestration via StarCluster

• Python command line tool to configure and

launch single-tenant clusters on AWS

>>> Configuring cluster took 5.672 mins

>>> Starting cluster took 6.576 mins

Our StarCluster Plugins

• Extend StarCluster’s bootstrapping procedure

• GrideEngine Tweaks
– Alter the number of slots on the master

– Enable h_vmem on execution hosts

– Enable exclusive reservation of hosts

• RAID0 Ephemeral storage• RAID0 Ephemeral storage
– Formats all ephemeral disks into a single BTRFS volume

• GlusterFS on ephemeral storage
– Parallel shared file system

– Uses above to get massive single-namespace parallel filesystem

• PVFS2 on ephemeral storage
– Alternate parallel shared file system

– Built for high I/O workflows

https://github.com/PGFI/StarClusterPlugins

Experiment: Effect of a Shared File

System on Run Time

• NFS from the master host

– Native to StarCluster default strategy, on EBS

• GlusterFS

– FUSE-based, slower than kernel modules

– All nodes on cluster join their ephemeral storage as
one distributed GlusterFS volume

• PVFS2

– Kernel module shunts requests via a pvfs2-client
daemon

– Distributed striped volumes across ephemeral storage

PVFS2 Results

• Killed PVFS2 after 232 minutes

– Master process looked for files and aggressively

cleaned up after itself

– Restarted each “chunk” analysis– Restarted each “chunk” analysis

– Your algorithm may work better

– There are tuning parameters that allow more file

system consistency

– Can tune the data server and metadata server

layout configuration

PVFS2 Profile Data

(something is not right)

GlusterFS Results

• Completed in 112 minutes

– 10MM paired end RNASeq data ~ $7.50 to align

– VERY CLEAN SIMULATED DATA

• We’ve tried using 2 dedicated GlusterFS file
servers to service the cluster, and that failed servers to service the cluster, and that failed
badly.

– NFS time outs, lots of EBS => $$$

• Much better performance to use it as scratch
space on ephemeral drives

– Also cheap, since it utilizes ephemeral drives

GlusterFS Profile Data

NFS from the master node

• Finished in 91 minutes

• Not much faster than GlusterFS

• We have seen it fail hard under heavy loads• We have seen it fail hard under heavy loads

– 10-15 servers, 90 processes

• Unless you RAID, limited to 1TB volumes

• Probably best to use local scratch space on

nodes, copy back final results to NFS space

NFS Profile Data

Conclusions

• Profile your algorithms, tune Single Purpose
Clusters (SPC™) for CPU and IO

• COMPLETELY automate the process of
bootstrapping SPC’sbootstrapping SPC’s

– Automate the process of bringing them up and
bringing them down

• Once you have achieved “set it and forget it”
status, treat it as a single algorithm/service
that gets integrated with local resources

