7.1.2 Non-Credit Requirements .. 18
7.1.3 Transfer of Credit .. 18
7.1.4 Auditing .. 18
7.2 MASTER OF SCIENCE (MS) IN BIOSTATISTICS .. 18
7.2.1 Course Requirements .. 18
7.2.2 Biostatistics in Practice and the MS Thesis 19
7.2.3 Typical Course Sequence for Full-Time Students in the MS Program .. 19
7.3 DOCTOR OF PHILOSOPHY (PhD) IN BIOSTATISTICS .. 20
7.3.1 Funding Policies .. 20
7.3.2 Course Requirements ... 20
7.3.3 Electives and Independent Study 21
7.3.4 Applied Research Requirement, Equivalent of MS Thesis 22
7.3.5 Teaching Practicum .. 22
7.3.6 Examinations ... 22
7.3.7 Lab Rotations .. 22
L A B O R A T O R Y R O T A T I O N L A B N O T E B O O K ... 24
7.3.8 Biostatistics in Practice ... 24
7.3.9 Typical Course Sequence for Full-Time Students in the PhD Program 26
7.4 E V A L U A T I O N A N D E X A M I N A T I O N S ... 26
7.4.1 The Written Qualifications Examination (MS and PhD) 27
7.4.2 MS Program Examination Requirements 27
7.4.3 PhD Program Examination Requirements 27
7.4.4 Examination Results and Notification 27
7.4.5 MS Students Applying to the PhD Program 28
7.4.6 Review of the Examination .. 28
7.4.7 Sickness Policy .. 28
7.4.8 The PhD Candidacy Examination 29
7.4.9 Review of “Lab Notebook” ... 31
7.4.10 Frequency of Dissertation Committee Meetings 31
7.4.11 PhD Dissertation Examination 31
7.5 T E A C H I N G A S S I S T A N T S .. 33
7.5.1 Courses That Receive Teaching Assistants 33
7.5.2 Students Who Serve as Teaching Assistants 33
7.6 O T H E R P O L I C I E S .. 34
7.6.1 Student Travel ... 34
7.6.2 International Students Travelling Abroad 34
7.6.3 Registration in Biostatistics Courses 35
7.7 C O M M I T T E E S .. 35
8 P H D I N E P I D E M I O L O G Y P R O G R A M .. 36
8.1 O V E R V I E W .. 36
8.2 A C A D E M I C A D V I S O R .. 37
8.2.1 Policy on advisors ... 37
8.3 C O U R S E R E Q U I R E M E N T S .. 37
8.3.1 Electives ... 38
8.3.2 Research rotations .. 38
8.4 C O U R S E P L A N S ... 39
8.5 Ph D E X A M I N A T I O N S ... 41
8.6 P R E P A R I N G T H E D I S S E R T A T I O N .. 45
8.6.1 Dissertation advisor ... 45
8.6.2 Dissertation Committee ... 45
8.6.3 Additional biostatistics support 45
8.6.4 Computing, programming, and database support 46
8.6.5 Frequency of dissertation committee meetings 46
8.6.6 Laboratory notebook .. 46
8.6.7 Content and format of the dissertation 46
8.7 N O N - C R E D I T R E Q U I R E M E N T S .. 47
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.7.1</td>
<td>Teaching practicum</td>
<td>47</td>
</tr>
<tr>
<td>8.7.2</td>
<td>Weekly seminar</td>
<td>48</td>
</tr>
<tr>
<td>8.8</td>
<td>General Program Policies</td>
<td>48</td>
</tr>
<tr>
<td>8.8.1</td>
<td>Transfer of Credit</td>
<td>48</td>
</tr>
<tr>
<td>8.8.2</td>
<td>Auditing</td>
<td>48</td>
</tr>
<tr>
<td>8.8.3</td>
<td>Exemptions and modifications</td>
<td>48</td>
</tr>
<tr>
<td>8.8.4</td>
<td>Terminal master's degree</td>
<td>49</td>
</tr>
<tr>
<td>8.8.5</td>
<td>Student memberships</td>
<td>49</td>
</tr>
<tr>
<td>8.9</td>
<td>Facilities</td>
<td>49</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Program web-resource</td>
<td>49</td>
</tr>
<tr>
<td>8.9.2</td>
<td>Student Space</td>
<td>49</td>
</tr>
</tbody>
</table>
1 Introduction

This handbook serves as a reference manual for the masters and doctoral programs in biostatistics and the doctoral program in epidemiology at the University of Pennsylvania. It covers the graduate experience, from admission through required course work, examinations, and the MS thesis (biostatistics), and PhD dissertation in both programs. This is a living document; please bring errors and omissions to the attention of the Chair or Vice-Chair of the Graduate Group in Epidemiology and Biostatistics, or to the Chairs of the respective programs.

Many people made essential contributions to this handbook, most prominently: Drs. John Holmes, Mary Putt, Hongzhe Li, Marcella Devoto, Harold Feldman; Stephen Kimmel; J. Richard Landis, Daniel Heitjan, Phyllis Gimotty, Kathleen Propert, Scarlett Bellamy, Mary Sammel, Amanda Hyre-Anderson, Ebbing Lautenbach, John Farrar, and Theoklis Zaoutis. We would also like to thank Catherine Vallejo, Marissa Fox, Jennifer Kuklinski, Gabrielle Ostapovich, Thomas Kelly and Ann Facciolo.

Many others contributed in ways large and small, not least the students in the doctoral program, whose many relevant questions and experiences have led us to review our policies, consider their implications, and write them down clearly. We thank them especially and wish them the best in all their endeavors, at Penn and beyond.

Nandita Mitra, PhD
Professor of Biostatistics
Chair, Graduate Group in Epidemiology and Biostatistics

Michael Z. Levy, PhD
Associate Professor of Epidemiology
Vice-Chair, Graduate Group in Epidemiology & Biostatistics

Mingyao Li, PhD
Professor of Biostatistics
Chair, Graduate Program in Biostatistics

John H. Holmes, PhD
Professor of Medical Informatics in Epidemiology
Chair, Doctoral Program in Epidemiology

2 Graduate Group in Epidemiology and Biostatistics

2.1 Overview

The Graduate Group in Epidemiology and Biostatistics (GGEB) is responsible for developing and administering the PhD degree programs in epidemiology and biostatistics as well as the MS program in biostatistics. The PhD programs train individuals to be
rigorous and independent academic investigators, who are able to apply and extend the range of approaches available in epidemiology and biostatistics to address questions in biomedical research. The objective of the MS program in biostatistics is to train individuals in the basic theory and applications of statistical methods, especially as applied to problems in the health sciences.

The GGEB is a member of the Biomedical Graduate Studies Program (BGS) in the Perelman School of Medicine of the University of Pennsylvania. It is comprised of faculty from across the university with interests in biostatistics and epidemiology. Notably, many of the members of the Graduate Group have academic appointments within the Department of Biostatistics, Epidemiology and Informatics (DBEI). The Office of Biomedical Graduate Studies provides oversight and coordination for the GGEB and six other graduate groups offering PhD degrees in the biomedical sciences.

Biomedical Graduate Studies (BGS) was established in 1985 and serves as the academic home within the University of Pennsylvania for roughly 700 students pursuing a PhD in the basic biomedical sciences. Although BGS is housed within the School of Medicine, it is composed of more than 600 faculty members across seven Penn schools and several associated institutes. BGS provides training and administration through seven graduate groups, some of which have distinct sub-specialty areas. Each graduate group has its own training mission, leadership, and staff, but there is often significant overlap among the groups in respect to faculty membership, courses offered, policies, and procedures. BGS provides centralized support to the graduate groups for admissions, student fellowships, curricular oversight, record-keeping, and other operations.

Additional, up-to-date information about BGS is available at http://www.med.upenn.edu/bgs/.

3 Application and Admission

3.1 Affirmative Action

The GGEB values diversity and seeks talented students from all backgrounds. The GGEB does not discriminate on the basis of color, sex, sexual orientation, religion, national or ethnic origin, age, disability, or status as a disabled or Vietnam Era veteran in the administration of its educational policies, programs or activities, admissions policies and procedures, and scholarship programs. Women and minorities are especially encouraged to apply to the GGEB's educational programs.

3.2 The Application Process: All GGEB Programs

Applicants must complete the standard online BGS application form and upload the following documents:

- **Personal Statement** - Please discuss your academic and career objectives. It should be around 500 words in length. Be as specific as you can about the area in which you plan to study and your reasons for wishing to study at the University of Pennsylvania.
 In addition, if you are applying to a certificate program, your personal statement should include
a paragraph (~200 words) reflecting your interest in those programs in addition to the doctoral
discipline.

- **Research Statement** - Please provide a description of your research experience(s), including
 the goals of each project, approaches used, results obtained, and implications of the findings for
 the project and the field at large. You may choose to describe a single research experience or
 several experiences, but please limit your statement to around 1000 words in length.

- **Resume/CV** (Please DO NOT include GPA and/or GRE information)

- **Transcripts** - All BGS applicants are required to upload up-to-date unofficial transcripts from all
 institutions attended. These transcripts must include your Spring 2018 semester grades and
 indicate the courses you are enrolled in for the Fall 2018 semester. Transcripts from completed
 programs should show proof of degree conferral. A final, official transcript showing conferral of
 degree will be required of all accepted students prior to matriculation.

- **Letters of Recommendation** - You will also be prompted to send requests to three (3) people
 who are able to provide letters of recommendation. They will be sent an email notification with a
 link to the online recommendation form, which will allow them to upload a PDF of the letter. The
 letters should identify personal attributes, experiences, accomplishments, and goals relevant to
 success in graduate study in biostatistics or epidemiology, depending on the program.
 Applicants who are currently enrolled in a degree program must arrange for at least one letter of
 recommendation to be sent from a faculty member in that program.

- **Standardized Test Scores** – BGS no longer requires applicants to submit GRE scores but
 does require an English proficiency exam (either the TOEFL or the IELTS) for applicants for
 whom English is not their native language. TOEFL scores should be sent directly from the
 testing service. As part of the review process, we will waive the English Proficiency requirement
 for applicants who have or will have obtained a degree from a US or other approved English-
 instructed institution. There are no minimum score requirements. In order for your application to
 be considered complete, official score reports must be received by the application deadline. In
 order to ensure that your official scores are received in time, we suggest that you take the exam
 no later than mid-November.

3.2.1 Waiver of Fees for the Application

U.S. citizens and permanent residents may request a waiver in cases of documented financial
hardship. To request a waiver, email the admissions coordinator for BGS prior to submitting
your application (bgs@mail.med.upenn.edu). Explain your situation and reasons for requesting
a waiver of fees. The coordinator may ask for additional documentation e.g. documentation by
the Financial Aid Officer from a relevant undergraduate institution, or, if not applicable,
documentation of information about income, assets, family situation, etc. University rules
prevent the waiver of application fees for international applicants.

3.2.2 Graduate Record Examination (GRE)

As of fall 2018 we no longer require GRE scores.
3.2.3 Test of English as a Foreign Language (TOEFL)
All applicants whose native language is not English must arrange for ETS to submit an official TOEFL score as part of the application by the application deadline. The TOEFL requirement is waived for a student who has been enrolled in an English-speaking university for at least two years upon application. TOEFL scores are valid for two years.

3.2.4 Application Deadline and Notification
Students are admitted once per year, for the fall term. Information and application materials are available by October of the preceding year with an application deadline of typically December 1 (please check the on-line application form for the exact date for the year that you are applying). After reviewing the files, the Admissions Committee for the individual programs recommends candidates for the GGEB to the BGS Admissions Committee and the Chair of BGS. Students are usually notified of admissions decisions by the end of March.

3.2.5 Initiating an Application
Those interested in applying for admission to graduate study can access the online application [here](#). For questions on the application process contact the Coordinator:

Ms. Sarah Hughes
Coordinator, Graduate Group in Epidemiology and Biostatistics
Perelman School of Medicine at the University of Pennsylvania
E-mail: Sarah.Hughes2@pennmedicine.upenn.edu

3.3 Admission Requirements Specific to the Biostatistics Programs
Entering students must have completed at least one year of calculus (including multivariable methods), one semester of linear algebra, and have a working knowledge of a programming language. Previous experience with data analysis and statistical packages is desirable but not required. Advanced courses in mathematics are particularly important for students who intend to pursue the PhD degree.

3.3.1 Applicants from the MS Program
Students in our Biostatistics MS program who seek admission to our PhD program must submit a formal application. Typically, such students apply in the fall preceding their projected graduation with the MS. Results on the written qualifications examination are considered in the admission decision (see the section on “Evaluations and Examinations”).

3.4 Admission Requirements Specific to the PhD Program in Epidemiology
Applicants must demonstrate prior training and experience in epidemiology, clinical sciences, or a public health-related field. This requirement can be satisfied by having a Master’s degree in public health, epidemiology, biostatistics, or related field, OR at least two years of relevant work experience. Individuals admitted without clinical or other biomedical training may be required to take biomedical science courses in addition to the courses required for the PhD in Epidemiology. These courses will not count as electives and must be taken in addition to the required courses and credits. The Admission Committee will determine the need for additional courses at the time of acceptance.
The content of the additional courses required for those admitted without prior clinical or other biomedical training will be determined by a committee consisting of the student’s advisor and two additional epidemiologists who are members of the Graduate Group. The advisor will be responsible for identifying those two faculty members. At least one of the three members of this committee must hold a clinical doctorate and at least one member of the committee must hold a doctorate in epidemiology or a related field, without a clinical doctorate. This committee will identify specific courses to be taken on the basis of a review of the candidate’s academic record/transcripts and research interests, as well as interactions with the candidate. The candidate will be informed of the additional required courses prior to enrollment. It is likely that this additional coursework will increase the amount of time it takes for the candidate to successfully complete the PhD degree requirements.

Combined degree (MD-PhD, VMD-PhD, and DMD-PhD) applicants are exempt from this requirement since they will have had at least two years of relevant coursework in their professional degree program prior to starting coursework for the PhD.

4 Financial Obligations and Support

Tuition costs are determined each year. The Trustees of the University of Pennsylvania reserve the right to increase tuition and fees and to otherwise amend the regulations concerning tuition and fees at any time and to make such changes applicable to students in the University at that time. PhD students receive up to 21 months of funding from BGS. During the initial 21 months, students identify a PhD advisor and work with the advisor and the program to develop a funding plan for the remainder of their graduate program. Most PhD students receive financial support through one or more of the following sources: assistantships supported by research grants, training grant fellowships, and fellowships from research institutions or private industry. A limited number of teaching assistantships are available. These sources are described in more detail below. Students who receive full-time support may accept no additional employment during the period of the support. Support for Biostatistics MS students depends on the availability of funds, with priority given to PhD students.

Combined degree (MD-PhD, VMD-PhD, and DMD-PhD) receive financial support from the program until June 30th of the first year in the PhD phase of their program, and are supported by their dissertation advisors starting from July 1st of the same year.

4.1 Financial Aid

The University’s Office of Student Financial Services provides information on student expenses and billing; processes financial aid applications, awards financial assistance; and administers the Penn Plan payment programs. Students may contact the Office directly at:

Office of Student Financial Services
University of Pennsylvania
Room 100 Franklin Building
5 Resources for Students

5.1 PennCard
The PennCard is the official identification card of the University of Pennsylvania. The PennCard Center is located on the second floor of the Penn Bookstore, 3601 Walnut Street. A valid, government-issued photo I.D. is required in order to pick up a PennCard. The first PennCard is free. Information about the PennCard and its use is provided at http://cms.business-services.upenn.edu/penncard/home.html.

5.2 PennKey
The PennKey name and password provides access to PennNet, a Penn e-mail account, and many other essential services managed through the PhD Program. All students are required to have a current, active PennKey and password. Students are issued a PennKey Setup Code when they pick up their PennCard.

5.3 The PennPortal
The PennPortal webpage bundles together links to important information for students. To access the PennPortal (https://portal.apps.upenn.edu/penn_portal/portal.php), students should log in with their PennKey name and password. If the "Graduate Students" tab does not automatically appear, students should click on the "My Tabs" button to add the "Graduate Students" tab from the available tabs.

5.4 Health Care Coverage
Penn students are automatically eligible for Penn Student Health Services and Chickering Health Insurance. Once a student is matriculated, the University will assume that this health coverage is needed and they will bill for the service. Students who wish to waive the Penn sponsored insurance should log onto PennPortal at http://medley.isc-seo.upenn.edu/penn_portal/portal.php to do so. It is necessary that students watch their bill to ensure that no health insurance fee is incurred. If one is charged to the student account, the GGEB Coordinator should be notified.

5.5 Student Travel Funds
BGS allows doctoral students to apply for partial reimbursement (currently, up to $1,000/year) for travel to professional meetings if they are making a presentation. Applicants must justify the expenses prior to attending the meetings. Dissertation advisors sometimes are able to augment these travel funds. In addition, some training grants provide funds for student travel. Information and application are provided at: http://www.med.upenn.edu/bgs/travel_funds.shtml
6 Academic policies

Students in the PhD program are subject to academic policies of BGS (http://www.med.upenn.edu/bgs/current_students_policies.shtml) as well as the specific policies of the GGEB and PhD program as defined below.

6.1 Code of conduct and academic integrity

6.1.1 Code of General Conduct

All BGS students must conduct themselves at all times in a mature and responsible manner. The rights and property of all persons are to be respected regardless of time or place. For dual degree students (MD-PhD, VMD-PhD), or graduate students who conduct research in a clinical venue, this also includes compliance with rules, procedures and accepted practices in the clinical setting. In addition, BGS students must comply with the University's code of general conduct and other University policies related to student conduct that are described in The Penn Book: Policies and Procedures Handbook of the University of Pennsylvania (http://www.vpul.upenn.edu/osl/pennbook.html). These policies include, but are not limited to, policies on sexual harassment, acquaintance rape and sexual violence, open expression, drug and alcohol usage, and the drug-free workplace. The judicial charter contained within that document is not applicable to BGS students; rather, BGS students are subject to the Charter of Biomedical Graduate Studies Student Judicial System which can be found on the BGS website.

6.1.2 Code of Academic Integrity

The most fundamental value of any academic community is intellectual honesty; accordingly, all academic communities rely upon the integrity of each and every member. Students are responsible not only for adhering to the highest standards of truth and honesty but also for upholding the principles and spirit of the following Code. Violations of this Code include but are not limited to the following acts:

A. Cheating: using or attempting to use unauthorized assistance, material or study aids in examinations or any other academic work, or preventing, or attempting to prevent another from using authorized assistance, material, or study aids.

B. Plagiarism: using the ideas, data or language of another without specific and proper acknowledgment.

C. Fabrication: submitting contrived or altered information in any academic exercise.

D. Multiple Submission: submitting, without prior permission, any work submitted to fulfill another academic requirement.

E. Misrepresentation of Academic Records: misrepresenting or tampering with, or attempting to tamper with, any portion of one’s own or any other person’s transcripts or academic record, either before or after coming to the University of Pennsylvania.

F. Facilitating Academic Dishonesty: knowingly helping or attempting to help another violate provisions of this Code.

G. Unfair Advantage: attempting to gain unauthorized advantage over fellow students in an academic exercise.

Note that it is the policy of the GGEB that students may collaborate on homework/coursework solutions but must submit their own independent response to any homework assignment.
The Penn library website has excellent resources on this topic. The links below provide resources on the specific topic of plagiarism:
http://gethelp.library.upenn.edu/PORT/documentation/plagiarism_policy.html
http://gethelp.library.upenn.edu/PORT/documentation/avoidingplagiarism.html

6.1.3 Code of Clinical Conduct
The relationship of modern biomedical research to the clinical setting may place BGS students in direct contact with patients, patient medical records, or health care workers. BGS students must behave with paramount concern for patients' welfare and with respect for the rights of patients. The expectations of BGS students' conduct in the clinical setting include the following:

A. adherence to appropriate standards of behavior in the presence of patients;

B. adherence to appropriate standards of confidentiality with respect to information about patients;

C. honesty in interactions with clinical colleagues and in recordkeeping;

D. respect for the limits of responsibility and activity set forth by supervisors;

E. appropriate interactions with colleagues and co-workers.

6.2 Academic standards

6.2.1 Course grades and Academic Probation
Grades for all formal courses are assigned as follows: “A,” distinguished; “B,” good; “C,” unsatisfactory; “D,” poor; “F,” failure. Course directors may award pluses and minuses at their discretion. Grades of B− or above are considered acceptable; grades of C+ or below are unacceptable. A student who receives an unacceptable grade (C+ or lower) in any course is automatically placed on academic probation, an enrollment status that indicates an unsatisfactory level of academic performance. A student who is on probation may take other courses and exams but may not graduate. The probation is automatically lifted when the student has made up the deficient work by receiving an acceptable grade. The student must arrange with the chair of the course in question a program of study that will accomplish this end. One option is to redo the assignments or exams that led to the unsatisfactory grade.
Another is to take the course again during the next semester in which it is offered. In any event, a student who fails to redress the deficiency within one year of being placed on academic probation will be dismissed and considered ineligible for re-admission. If a student receives a second unacceptable grade in another course while already on academic probation, the Graduate Group Chair will convene a committee to review the case. The committee, which will consist of the student’s academic advisor and two other members of the Graduate Group faculty, is authorized to recommend either immediate dismissal or continuation of the probationary status, subject to approval by the Graduate Group Chair and BGS.

6.2.2 Incompletes
In order to graduate, students must satisfactorily complete their course work. There may be times when, for some reason, a student cannot complete the course work within the allotted time. In this case, the student must formally request, in writing, a grade of Incomplete (I) for the course. Requests for Incompletes are not automatically granted, and the course director must agree to enter the grade for that course. **Students and faculty should be aware that incompletes become permanent after a period of one year.** Thus, course requirements must be completed and a grade reported within one year or the student will not receive credit for the course even though tuition was paid. **If the incomplete is not resolved within the one-year period, then the student will be required to take an additional course to complete the requirements of the curriculum.** The student must obtain approvals for the replacement course from the advisor and the respective Program Chair prior to registering for it.

6.2.3 Individual Development Plans (IDPs)
BGS requires an annual IDP for all pre-doctoral students (PhD, MD-PhD, and VMD-PhD). The goals of the IDP are to make sure students and mentors are communicating openly and that students are working proactively toward developing the skills they will need to succeed in their program. Separate forms are used by pre-dissertation and dissertation level students. Please see https://www.med.upenn.edu/bgs/idp.shtml for specific requirements regarding the IDP and examples of completed IDP forms.

6.3 Additional Academic Requirements and Policies

6.3.1 Collaborative Institutional Training Initiative (CITI) Training Program
This program is mandatory for all School of Medicine faculty, clinical care associate physicians, physicians at affiliated hospitals, and research staff working with physicians who conduct patient-oriented research. Researchers conducting clinical studies with federal funding are also required to take human subjects research training. The Office of the Provost of Research has identified online training devices provided by the CITI program as the accepted standard for fulfilling the requirement for training certification in human research protections. Penn’s IRB requires that researchers conducting clinical trials complete patient-oriented research training, and the CITI program can also fulfill this requirement.

6.3.2 Health Insurance Portability and Accountability Act (HIPAA) training
HIPAA is a federal law that provides for the protection of the confidentiality of patient health records. All students must complete a University-approved course in HIPAA compliance.
6.3.3 Responsible Conduct of Research

Students are required to take training in the responsible conduct of research (RCR) every academic year. First-year students satisfy this requirement by participating in an on-line Bioethics Symposium. Second-, third-, and fourth-year students attend small-group workshops in which relevant case studies are discussed. Students whose studies extend beyond four years must continue to participate in a yearly training session of their choice. Such students can satisfy the responsible conduct of research requirement by participating in various University-sanctioned bioethics courses and symposia or by serving as an assistant facilitator in a workshop for second-, third-, and fourth-year students.

Faculty must dedicate at least two meetings (1-2 hrs each) per year to RCR training. To this end, Faculty have access to case studies to use as discussion pieces, in addition to their own resources or examples from their own experience. The expectation is for these events to be interactive discussions that ideally include all project personnel, but minimally explicitly include all graduate students who work on that project. After each such event, the Faculty member is expected to fill out the online form found here: http://www.med.upenn.edu/bgs/RCR_FORM.shtml

6.3.4 Course evaluations

Students are requested to submit their feedback promptly and completely at the end of each course throughout their time in graduate training. We take seriously what students say about a course and try hard to improve every year based on students' feedback.

Students should also be aware that faculty promotions can be affected by how they are evaluated. This is not meant to dissuade students from honestly rating the course faculty, but rather as an invitation to take this seriously and be thoughtful about how they rate the faculty’s effort, skill, and teaching abilities. Constructive criticism is helpful and truly appreciated by both faculty and the graduate group. Disparaging comments are less helpful and are discouraged. The Program Chairs are always ready to discuss in person any concerns that students may have.

6.4 Leaves of Absence

The University allows graduate students to take leaves of absence with the permission of the graduate group chair and the graduate dean. Students must write to the graduate group requesting the leave; if the chair approves, the request will be forwarded to the graduate dean (i.e., the BGS Director) for approval. The main types of leave are medical, family, and paid time off for the birth or adoption of a child. Under medical and unpaid family leaves, stipends are suspended during the leave period and are guaranteed upon return from leave under the conditions of the original award guarantee, i.e., as long as the student remains in good academic standing; students who wish to continue their health insurance coverage past the current cycle may arrange to do so through Student Health Services, and financial assistance for health insurance may be arranged through BGS. Note that students who have passed the candidacy exam may need to arrange fellowship support from a mentor in order to return; there is no guarantee that the original mentor will be able to provide financial support when the
student returns from leave. Students receiving NIH NRSA support in the form of a training grant appointment or individual fellowship must also obtain permission for a leave from NIH.

Medical Leaves of Absence Students who wish to take a medical leave should submit a request to their graduate group chair, including the leave start date and anticipated return date. The student should consult with their lab advisor regarding the timing of the leave, if possible. The graduate group chair will forward the request to BGS, which will follow up with Student Health Services (SHS) and/or Counseling and Psychological Services (CAPS) to obtain a recommendation for the leave. Students who are being treated outside of SHS or CAPS should arrange for a letter from the treating professional(s) justifying the leave to be sent to SHS or CAPS.

Students on medical leave are expected to seek and follow the advice of the graduate group chair or his/her designate to remediate any work and to devise a course of study for re-enrollment. Students are also expected to make appropriate arrangements to continue any necessary treatment during the leave and to arrange for an appropriate support system. In order to return from medical leave, students must contact their graduate group chair, advisor, and BGS at least 30 days prior to the expected date of return. Students must also submit paperwork (links to forms below) and arrange for their treating professional(s) to provide documentation of treatment and progress to CAPS and/or SHS. Students may not return from leave until arrangements are approved by the graduate group to resume the course of study and until BGS approves the return, in consultation with SHS and/or CAPS.

SHS: https://www.vpul.upenn.edu/shs/files/SHS_Return_From_Leave_1471278050.pdf

CAPS: https://www.vpul.upenn.edu/caps/files/leaveofabsencepacket2016.pdf

Questions regarding the processes for leave approvals and returns from leave may be sent to the BGS Administrative Director, Judy Jackson, jajackso@pennmedicine.upenn.edu.

Childbirth or Adoption A student in a Ph.D. program at Penn is eligible for time off of eight weeks for the birth or adoption of a child. The student must complete the online New Parent Accommodation/Family Leave Request Form at least 60 days prior to the anticipated start date of the leave so that appropriate arrangements can be made to cover any teaching/research responsibilities. Details are provided at https://catalog.upenn.edu/pennbook/family-friendly-policies-phd-students/Family Leave University policy allows PhD students to take an unpaid Family Leave of Absence for the birth or adoption of a child, child care, or care of an immediate family member (spouse, domestic partner, child, or parent) with a serious health condition. Details are provided at https://catalog.upenn.edu/pennbook/family-friendly-policies-phd-students/

6.4.1 Vacation and Time Away

Graduate fellowships provide tuition, fees, health insurance, and a stipend for eligible full-time doctoral students in residence who remain in good academic standing. A student who accepts a full-time funded position is expected to devote full time to graduate study.
BGS and GGEB offer a 12-month annual training program for funded students. Students are expected to work full-time toward the degree and are entitled to take University and GGEB staff holidays and two weeks per year for personal vacation time. The timing of the vacation must be approved by the supervisor of the entity that provides financial support for the student. Students who have not yet passed the candidacy exam (see below) must receive permission from the Chair of the GGEB for any additional time away from the University. A student who has passed the candidacy exam may schedule time away only with the prior approval of his or her dissertation advisor, the individual who is supporting his or her assistantship or traineeship, the Program Chair and the GGEB Chair.

6.5 Transfer of credit
At least twelve course units must be completed while enrolled in a degree program at Penn; for the PhD degree, a maximum of eight units may be transferred from graduate work done at other institutions. Transfer of credit must be approved by the respective Program Chair, Graduate Group Chair, and the BGS Chair. If the requested transfer of credit is for a required core course, then the current course instructor must approve the transfer as well.

6.5.1 Transfer from other graduate groups
Students who are currently enrolled in another graduate group within BGS may apply for transfer into the GGEB by submitting an application for admission to either the PhD Program in Epidemiology or the MS or PhD programs in Biostatistics. Students wishing to transfer must inform their original program of their intent. The student should have the chair of the original program sign a "Transfer of Graduate Group Form" to release the student from the original graduate group and then have the chair of the new program sign the same form to accept the student into the new graduate group. The GGEB will then request that the student's academic file be transferred from the former graduate group office. A similar procedure will be used for students transferring from other graduate programs within the university.

6.6 Residency, time limits, and fees
Students must complete all course requirements, pass the required examinations, and complete the dissertation within ten years of matriculation. A student who fails to complete the dissertation within the time limit must petition a committee — composed of the student’s academic advisor, the Program Chair (or a designated surrogate if the Chair is also the advisor), and a third member of the faculty designated by the GGEB Chair — to be recertified as a PhD candidate. The petition must name the student’s dissertation advisor and committee members, describe a plan to finish the research needed to complete the dissertation, and indicate an expected data for the defense and deposit of the dissertation. Should the committee support the petition, it will submit a detailed recertification plan for review and approval by the Director of BGS, as specified in the University-Wide Academic Rules for Graduate Degrees.

In addition, PhD candidates must complete the dissertation within five years of passing the Qualifications Examination or being admitted into the PhD program (the latter if admitted to the PhD program after passing the Qualifications Examination at the PhD level as an MS student). A student who does not complete the degree within five years must petition the GGEB for an extension of the time limit. The petition must indicate a detailed plan for completing the PhD research, including anticipated dates for defending and depositing the
dissertation. The petition will be considered by a committee that includes the student’s academic advisor, the Program Chair (or a surrogate as indicated above) and a third faculty member designated by the GGEB Chair.

A candidate who withdraws from the PhD program after reaching dissertation status and subsequently applies for re-admission must pay the dissertation fees that would otherwise have been due during the withdrawal period.

7 Graduate Training Programs in Biostatistics

This version of the biostatistics portion of the handbook applies to students who entered the program in the fall of 2019. For students who matriculated prior to this, please refer to the previous version of the handbook that is specific to the student’s matriculation year found at http://www.med.upenn.edu/ggeb/GGEB_Handbook.shtml. Questions about the program for any cohort should be referred to the student’s academic advisor, the Program Chair, or the GGEB Chair.

The PhD program in biostatistics is designed to prepare students to be independent researchers in the development of statistical methodologies and in the appropriate and innovative application of these methodologies to biomedical research problems. In the first five semesters of the program, students complete a series of courses in both theory and applied methodology, engage in individually mentored research experiences, explore statistical collaboration, and complete the qualifications examination. Within this period, students also identify a dissertation research problem and an advisor and present a research proposal as part of the candidacy examination. Students typically defend their dissertations and graduate within five years of matriculation.

The MS program is designed to prepare students to be practitioners of biostatistical methodologies. MS students must formally apply to enter the PhD program. The MS program closely parallels the first two years of the PhD program and requires four full-time semesters of course work, exploration of practical aspects of collaboration, and an independent research project which serves as the MS thesis.

7.1 Elements Common to MS and PhD Programs

7.1.1 Academic Advisor

Each incoming student is assigned an academic advisor who serves as the student’s primary mentor, advising in course selection and related academic matters. The program attempts to match students to advisors who have similar backgrounds and interests. A student may change advisors at any time by request to the Program Chair. A PhD student’s dissertation advisor, once selected, assumes the role of academic advisor during the later years of study. Furthermore, at any time a student may refer questions about his or her program to the chair of the Academic Advising Committee.
At the beginning of the academic year, each student, in collaboration with his/her advisor, prepares a proposed academic program, including courses to be taken, courses to be transferred, and timelines for examinations and dissertation preparation.

7.1.2 Non-Credit Requirements
The department hosts a weekly biostatistics research seminar that invites speakers from other universities, industry, and government. All students are expected to attend at least six seminars per semester, provided there is no conflict with courses. Other non-credit requirements include Responsible Conduct of Research, CITI, and HIPAA training. These requirements are described in detail in Section 6.3. PhD students must also serve as teaching assistants which is also a non-credit requirement (see Sections 7.3.9 and 7.5, respectively).

7.1.3 Transfer of Credit
Only courses considered at the graduate level may be transferred from previous training. At least eight course units of the total program required for the MS degree must be completed while enrolled in a graduate program at UPenn. Because the MS program requires only 12 total course units, no more than four may be satisfied by transfer credit. A maximum of eight units may be transferred from previous training towards the PhD degree. Courses proposed for transfer credit must be relevant to training in biostatistics and may include courses in theory or methods. Transfer of credit must be approved by the Program Chair and the GGEB Chair.

Combined degree students receive an automatic credit transfer (MD-PhD 10 units, VMD-PhD 14 units). These credits can only count towards advanced elective courses.

7.1.4 Auditing
Auditing a course is not allowed for any students in the PhD program. For MS students, auditing of a course is strongly discouraged. If a MS student wishes to audit a course he/she must consult their academic advisor, the course director, and prepare a written request to the Program Chair explaining reasons for the proposed course audit. Final approval must be obtained from the GGEB Chair.

7.2 Master of Science (MS) in Biostatistics

7.2.1 Course Requirements
Candidates for the MS degree must complete 12 units of course credit and prepare a Master’s Thesis. Required courses cover probability, mathematical statistics, and statistical methods including categorical data analysis, linear models, survival analysis, and applied data analysis. MS students will have the option to take the written qualifying exam but it is not required to obtain a master’s in biostatistics.

The MS in Biostatistics typically requires four semesters of formal course work. Students must complete nine units of required courses, three units of electives, and the Biostatistics in Practice and project requirements (see Section 7.2.3). The required courses are described below. The courses in bold type are the “core” courses for the MS degree.
Theory:
BSTA 620: Probability (1 unit)
BSTA 621: Statistical Inference I (1 unit)

Methods:
BSTA 630: Methods I (1 unit)
BSTA 632: Statistical Methods for Categorical and Survival Data (Methods II) (1 unit)
BSTA 651: Introduction to Linear Models & Generalized Linear Models (1 unit)
BSTA 656: Longitudinal Data Analysis (0.5 unit)
BSTS 754: Advanced Survival Analysis (0.5 unit)
BSTA 660: Design of Observational Studies (0.5 unit)
BSTA 661: Design of Interventional Studies I (0.5 unit)
BSTA 670: Programming and Computation for Biomedical Data Science (1 unit)
BSTA 511: Biostatistics in Practice (1 unit)

7.2.1.1 Electives
Students in the MS program choose three additional units from a list of advanced courses in biostatistics and related topics. At least two of these courses must be quantitative; the third may be in a related scientific field subject to approval by the Program Chair and GGEB Chair. A partial listing appears under the section on electives for the PhD program (Section 7.3.3). In addition to these electives, BSTA 622 Inference II, which is a required course for the PhD program, may be used as an advanced elective for the MS program. Courses not described here may be used as advanced electives for the MS program upon receiving approval from the Program Chair and GGEB Chair.

7.2.2 Biostatistics in Practice and the MS Thesis
All MS students must participate in Biostatistics in Practice and complete a Biostatistics in Practice project, which serves as the MS thesis. The project may be completed in any semester. See the description of the Biostatistics in Practice requirements in Section 7.3.8.

7.2.3 Typical Course Sequence for Full-Time Students in the MS Program

<table>
<thead>
<tr>
<th>Semester</th>
<th>Required Credit Courses (units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>FT Courses:</td>
</tr>
<tr>
<td></td>
<td>BSTA 620: Probability (1)</td>
</tr>
<tr>
<td></td>
<td>BSTA 630: Statistical Methods and Data Analysis I (1)</td>
</tr>
<tr>
<td></td>
<td>BSTA 660: Design of Observational Studies (0.5)</td>
</tr>
<tr>
<td></td>
<td>BSTA 661: Design of Interventional Studies (0.5)</td>
</tr>
<tr>
<td>Spring</td>
<td>FT Courses:</td>
</tr>
<tr>
<td></td>
<td>BSTA 621 Statistical Inference I (1)</td>
</tr>
<tr>
<td></td>
<td>BSTA 632 Statistical Methods for Categorical and Survival Data (Methods II) (1)</td>
</tr>
<tr>
<td></td>
<td>BSTA 651: Linear Models and Generalized Linear Models (1)</td>
</tr>
<tr>
<td>Summer</td>
<td>Written Qualifications Examination (Optional for MS Students)</td>
</tr>
</tbody>
</table>
7.3 Doctor of Philosophy (PhD) in Biostatistics

7.3.1 Funding Policies
Full-time PhD students are eligible for funding in the form of traineeships, fellowships, and research and teaching assistantships. The work associated with these sources of support is an essential part of the graduate training program.

At the beginning of the academic year, each funded student receives a letter describing sources of support and associated obligations. All doctoral students admitted to the program receive support from BGS for up to 21 months. During this time students take courses and explore research opportunities with faculty in the department. Once students decide on a dissertation advisor, the advisor, the student and the Program Chair will work to develop a sustained funding plan that will cover the student’s time during the remainder of their graduate program. A number of funding opportunities are available including federally funded research and training grants, partial TAships and funding through partnerships with industry. The typical length of time in the program is five years. Students in good academic standing have occasionally received funding for up to six years in the program.

Combined degree (MD-PhD, VMD-PhD, and DMD-PhD) students receive financial support from the program until June 30th of the first year in the PhD phase of their program, and are supported by their dissertation advisors starting from July 1st of the same year.

7.3.2 Course Requirements
The PhD in Biostatistics typically requires four and a half semesters of coursework and additional semesters devoted to dissertation research. This is usually accomplished in four to five years of full-time study. The standard course sequence for PhD students consists of 3 units in theory, 7 units in statistical methods, and 5 units of advanced electives. At least 3 of these advanced electives must be in theory and methods and 2 may be taken outside of these areas. In addition, a minimum of three semesters of lab rotations (BSTA 699) is required. In general, students are expected to have completed all required courses by the end of their 3rd year (or equivalent for those who enter with a Master’s degree). In rare cases substitutions may be made. Such alternatives must be pre-approved by the chair of the Curriculum Committee, the Program Chair, G Geb Chair and the director of the course being waived, who is in the best position to evaluate whether the necessary skills are met by the substitution.

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Fall</th>
<th>FT Courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BSTA 754: Advanced Survival Analysis (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 656: Longitudinal Data Analysis (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Electives (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 511 (1) Biostatistics in Practice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year 2</th>
<th>Spring</th>
<th>FT Courses:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BSTA 670: Programming and Computation for Biomedical Data Science (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Electives (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MS Thesis Presentation</td>
</tr>
</tbody>
</table>
Below are the required core courses; the courses in **bold** type are PhD “core” courses that are covered on the written qualifying examination.

Theory:
- **BSTA 620** Probability (1 unit)
- **BSTA 621** Statistical Inference I (1 unit)
- **BSTA 622** Statistical Inference II (1 unit)

Methods:
- **BSTA 630** Statistical Methods and Data Analysis I (1 unit)
- **BSTA 632** Statistical Methods for Categorical and Survival Data (Methods II) (1 unit)
- **BSTA 651** Introduction to Linear Models & Generalized Linear Models (1 unit)
- **BSTA 656** Longitudinal Data Analysis (0.5 unit)
- **BSTA 660** Design of Observational Studies (0.5 unit)
- **BSTA 661** Design of Interventional Studies I (0.5 unit)
- **BSTA 670** Programming and Computation for Biomedical Data Science (1 unit)
- **BSTA 754** Advanced Survival Analysis (0.5 unit)
- **BSTA 511:** Biostatistics in Practice (1 unit)

7.3.3 Electives and Independent Study

Students are required to take 5 additional advanced electives; a partial listing of such courses is given below. In addition to this list, other courses offered by departments outside of the Department of Biostatistics, Epidemiology & Informatics may be appropriate advanced electives and may be used as an advanced elective for the PhD program upon receiving approval from the student’s academic advisor and the Program Chair. At most one of the five required advanced electives may be a reading course, and only on a topic not offered as a formal course within a year.

- **STAT 530** Probability (1 unit)
- **STAT 531** Stochastic Processes (1 unit)
- **STAT 921** Observational Studies (1 unit)
- **STAT 925** Multivariate Analysis: Theory (1 unit)
- **OPIM 930** Stochastic Models II (1 unit)
- **BSTA 751** Statistical Methods for Neuroimaging (1 unit)
- **BSTA 771** Applied Bayesian Analysis (1 unit)
- **BSTA 774** Statistical Methods for Evaluating Diagnostic Tests (0.5/1 unit)
- **BSTA 775/STAT 920** Sample Survey Methods (1 unit)
- **BSTA 777** Systematic Reviews and Meta-analyses (1 unit)
- **BSTA 782** Statistical Methods for Incomplete Data (1 unit)
- **BSTA 783** Multivariate and Functional Data Analysis (1 unit)
- **BSTA 785** Statistical Methods for Genomic Data Analysis (1 unit)
- **BSTA 786** Advanced Topics in Clinical Trials (1 unit)
- **BSTA 787** Methods for Statistical Genetics in Complex Human Disease (1 unit)
- **BSTA 788** Functional Data Analysis (1)
- **BSTA 789** Big Data (1)
- **BSTA 790** Causal Inference in Biomedical Research (1 unit)
BSTA 820/STAT 552 Statistical Inference III (1 unit)
BSTA 852/STAT 910 Forecasting and Time Series (1 unit)
BSTA 854/STAT 927 Bayesian Statistical Theory and Methods (1 unit)

7.3.4 Applied Research Requirement, Equivalent of MS Thesis

All PhD students must participate in Biostatistics in Practice and complete a Biostatistics in Practice project, a requirement that students typically satisfy during the first or second year. See Section 7.3.8 for further details.

7.3.5 Teaching Practicum

All students in the PhD program must provide teaching support for courses offered by the Department of Biostatistics and Epidemiology or related programs. This is discussed in detail in Section 7.5.

7.3.6 Examinations

The PhD program requires the successful passing of three examinations: the written Qualifications Examination, the oral Candidacy Examination, and the Dissertation Examination. Later sections outline the procedures for each of these.

7.3.7 Lab Rotations

Goals and Objectives

The overall goal of the rotations is to expose students to biomedical research, and in particular research related to statistical methodology early in their training. In addition, students will rotate through a number of different labs, in order to get a broad perspective on research and faculty. Only GGEB faculty are eligible to lead a lab rotation. This will also assist students in identifying their research interests and dissertation topic earlier in their educational process. In addition, both the students and faculty can assess whether they are a good match for possible dissertation advisor/advisee relationships. By the end of 21 months of training (summer of year 2) students who were initially funded by BGS will identify their dissertation advisor, have a foundation for the first topic in their dissertation work, and move off of BGS funding and onto funding that is related to their dissertation work. Students will normally identify their PhD mentor through working with them on a lab rotation. Students who are funded by a training grant during their first 21 months in the program will remain on the training grant throughout their program. Students who are currently funded or who have interests in receiving funding during their dissertation research from a training grant should discuss how to structure their lab rotations with the training grant director. Lab rotations that offer research experience in areas relevant to our training grants will be available each year.

Combined degree (MD-PhD, VMD-PhD, and DMD-PhD) receive financial support from the program until June 30th of the first year in the PhD phase of their program, and are supported by their dissertation advisors starting from July 1st of the same year.

Lab Rotation Content

Laboratory rotations should focus on statistical research as opposed to simple data analysis or service/project work. Ideas include implementation of a method from the literature, literature review of methods, running and summarizing simulations, or the analysis of a complicated...
dataset. It is recognized that, depending upon the background of the students matriculating into the program, the first lab rotation may need to be a lighter introduction to the methodological area such as focusing on literature review, study design, logistics, and data management and/or data analysis.

Duration and Number of Individual Rotations and Dissertation Advisor Choice
Students are expected to participate in 3-5 rotations in total with a minimum of 2 different mentors. First year students will have 3 rotations: fall, spring, and summer. Students can expect to spend 20+ hours per week during the fall/spring semesters and full time 40+ hours during the summer. In the second year it is expected that students will settle into a relationship with a potential PhD dissertation advisor with the goal of focusing their research in an area of research related to that of the advisor. Nevertheless, if needed, a fourth or even fifth lab rotation may occur in the second year to help the student decide on a research topic and mentor. In addition to determining an area of research interest, the dissertation advisor must show willingness to, at least partially, support the student.

Laboratory Rotation Assignments
Prior to the arrival of the new students, interested faculty mentors will submit a short summary describing their proposed laboratory rotation (similar to a course description). During new student orientation and the first week of classes, faculty who are interested in serving as a mentor for the upcoming semester will make a brief presentation of their projects. Faculty mentors can also distribute a handout with a more detailed project description to interested students. Each student should schedule meetings with 2 or 3 potential faculty mentors. This should occur within one week after the faculty presentations so that lab rotation assignments can be made and lab rotations can begin in a timely fashion for the Fall semester. Students will rank their choice of projects and the rankings will be reviewed by members of the Academic Advising Committee. The Academic Advising Committee will take this information and facilitate matching students to faculty. It is important to note that each student will be working in three labs during their first year, so students and faculty will have ample opportunity to work with each other over the course of the program and initial matches do not preclude options for other collaborations. The same process will be used to match first year students to faculty mentors for lab rotations in Spring semester.

For subsequent lab rotations (summer of first year, and Fall and Spring of second year) students may identify faculty mentors on their own without participating in this formal matching process. In the case of lab rotations that are arranged outside of the formal match process, students should email the Chair of the Academic Advising Committee, copying their faculty mentor, with their choice of lab rotation mentor. Students and faculty are asked not to arrange lab rotations outside of the formal match process during Fall and Spring of first year.

It is the responsibility of faculty mentors to make sure any required IRB approvals are obtained, and that students have the requisite CITI training to work with any data related to their laboratory rotation project.

Evaluation
At the initiation of each new lab rotation, the advisor and mentee will write a short summary of the goals and expectations for the particular laboratory rotation. This document will be
submitted to the Academic Advising Committee for review. Laboratory rotations are taken for credit (1 unit, BSTA 699) and students receive both a written evaluation and a letter grade. Summer rotations also receive a letter grade; however, these will not appear on the formal transcript. In addition, each student will present their progress on their laboratory rotation work at least once per year during a brown bag format “chalk talk”. Attendance will be required for all students participating in various lab rotations and encouraged for more senior students as well as faculty.

Laboratory Rotation Lab Notebook

PhD students are required to keep a formal record/notebook of work being conducted during mentored laboratory rotations as part of the first 21 months in the PhD programs. The lab notebook should be a shared document between the mentor and mentee. This document should be stored in a location that both mentor and mentee can access such as a project directory or a shared PENN Box folder. Both mentor and mentee should continue to have access to the shared folder once the lab rotation has been completed.

The lab notebook should contain dated entries including a list of the goal(s) for each week, and a summary of progress towards those goals. The notebook progress should be reviewed at weekly meetings between the mentee and mentor with new goals set for the following week.

A copy of the lab notebook along with all work products should be retained by the mentor at the end of each rotation.

7.3.8 Biostatistics in Practice

The Biostatistics in Practice (BIP) project is required for both the MS and PhD degrees. It offers the student an opportunity to acquire and demonstrate proficiency in statistical collaboration, data analysis and scientific writing. Students typically start their BIP project in the summer prior to the start of their second year and must submit the final written report by April 15th the next year. The project is defined by several elements: A scientific question or hypothesis arising in medical research; the statistical methodology needed to address the question; the development of a study design and/or analysis of a relevant data set; and a summary of the results of these analyses. In most cases, a collaborating medical scientist provides the research question and the data. The student, under the supervision of a biostatistics faculty member, identifies the appropriate statistical methods and conducts the analysis. The analysis should be sufficiently extensive and detailed to support a manuscript publishable in the medical literature.

The project consists of two parts. The first is a written report including: a description of the research question; background and significance; a description of the statistical methods applied; the results of the analysis; and summary of the major findings and conclusions. The written report should be at the level of a completed manuscript that includes Introduction, Methods, Results, Discussion, Literature cited etc. Each BIP project will be supervised by one Biostatistics program faculty member, a secondary subject area advisor, and will also be evaluated by another Biostatistics program faculty member (faculty reader) who will be chosen by the primary Biostatistics faculty mentor. The student must provide the faculty readers their report by March 14th to get feedback. Students may use this Biostatistics in Practice project
write-up as their MS thesis. The second part of the project is a short (20 minute) oral presentation of the project to the biostatistics faculty and students.

All data analyses done as part of the Biostatistics in Practice project must have IRB approval. In most cases this requirement is satisfied if the research objectives are part of an existing protocol of the participating medical research collaborator, as long as the student is added to the protocol according to the standard modification procedures required by the IRB.
7.3.9 Typical Course Sequence for Full-Time Students in the PhD Program

<table>
<thead>
<tr>
<th>Semester</th>
<th>Funds</th>
<th>Plans</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FT Courses:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 620: Probability (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 630: Statistical Methods and Data Analysis I (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 660: Design of Observational Studies (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 661: Design of Interventional Studies (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 699: Lab Rotation (1)</td>
</tr>
<tr>
<td>Year 1</td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FT Courses:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 621: Statistical Inference I (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 632: Statistical Methods for Categorical and Survival Data (Methods II) (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 651: Linear Models and Generalized Linear Models (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 699: Lab Rotation (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Written Qualifications Examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 699: Lab Rotation</td>
</tr>
<tr>
<td>Year 2</td>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FT Courses:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 622: Statistical Inference II (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 754: Advanced Survival Analysis (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 656: Longitudinal Data Analysis (0.5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 511: Biostatistics in Practice Project (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 699: Lab Rotation (1) OR BSTA 899: Pre-Dissertation Research (0.33-1) (if a dissertation advisor has been chosen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BGS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FT Courses:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 670: Programming and Computation for Biomedical Data Science (1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Electives (2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 699: Lab Rotation OR BSTA 899: Pre-Dissertation Research (0.33-1) (if a dissertation advisor has been chosen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral Candidacy Examination</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Thesis*</td>
</tr>
<tr>
<td>Year 3</td>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Electives (3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 899: Pre-Dissertation Research (0.33-3)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral Candidacy Examination (if not completed in summer)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Dissertation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Spring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 995: Dissertation Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Dissertation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Dissertation</td>
</tr>
<tr>
<td>Years 4-5</td>
<td></td>
<td>Fall</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 995: Dissertation Research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PhD Dissertation</td>
</tr>
</tbody>
</table>

7.4 Evaluation and Examinations

Evaluation for the MS degree is based on performance in the required and elective courses, and completion of the MS thesis/Biostatistics in Practice project. Evaluation for the PhD degree is based on these criteria plus ongoing interactions with the faculty.
advisor(s), laboratory rotations, successful performance on the written Qualifications Examination, Candidacy and Dissertation Examinations, and the dissertation itself.

7.4.1 The Written Qualifications Examination (MS and PhD)
The following guidelines refer to the written Qualifications Examination (QE) required for all PhD students and optional for MS students in Biostatistics. The Qualifying Examination Committee develops and administers the examination each year and presents the results to the full faculty.

Passing of the written Qualifications Examination is required for continuation in the PhD program. This examination also satisfies the UPenn examination requirements as outlined below.

7.4.2 MS Program Examination Requirements
Students in the MS program in Biostatistics, are not required to take and pass the written qualifying examination. In order to obtain the degree, students will need to write and deposit an MS thesis and conduct an oral presentation of their work on one of the designated Biostatistics in Practice presentation days. MS candidates will have the option to take the exam if they are considering PhD work but it is not required. If the MS student passes the QE at the PhD level and is subsequently admitted to our PhD program, he/she will not need to take the exam again.

7.4.3 PhD Program Examination Requirements
The written Qualifications Examination serves as the university-required “Qualifications Evaluation” as defined in the Graduate Studies catalog. PhD students must pass the written Qualifications Examination as the first step toward full PhD candidacy. The examination is offered each summer, in June, to allow for grading and faculty review such that students will have results before the July 4th holiday each year. All full-time PhD students are expected to sit for the examination after their first year of study, with the option to retake the exam the following year if the exam is not passed the first time.

This one-day written exam will consist of problems stemming from the five first-year core courses and aims to test theoretical and methodological foundations of the course materials. The exam is 6 hours and is closed book/notes. Because the exam is offered only once a year, PhD students who do not pass the exam and elect to take it a second time have the opportunity to take two additional semesters of course work between examinations.

7.4.4 Examination Results and Notification
All matters pertaining to grading and review of the written qualifications examination by the faculty are confidential, but some general procedures are outlined here.

Once grading is complete (typically two weeks after the exam), the faculty of the Biostatistics program meet to review the examination. Course grades, performance in lab rotations, and related materials may also be considered in the pass/fail decision. Because
the difficulty of the examination may vary from year to year, there are no absolute cut-offs for passing.

Each student who takes the exam receives written notification of his or her outcome as soon as possible after the faculty grading meeting. No other information is made available before that time. The letter notifies the student of the outcome of the exam, recommendations for continued study, and the process for discussion of the exam with the Examinations Committee if needed.

7.4.5 MS Students Applying to the PhD Program

Students enrolled in the MS program who wish to apply to the PhD program must submit a formal application. As the written qualifications examination is typically administered in the summer after the first year of study, it is likely that the results will be known to the Admissions Committee. The Admissions Committee determines how to use the results of the written examination in the admissions process.

MS students who pass the written qualifying examination and later enroll in the PhD program are not required to take the written qualifying examination again.

7.4.6 Review of the Examination

A student who does not pass the examination may request to review his/her exam paper with the Qualifying Examination Committee (QEC) chair and together with his/her academic advisor. The purpose of such a review is to help the student evaluate the types of mistakes made and identify areas where further study is needed. The QEC retains the graded exam bluebooks and does not return them to the students.

A student may appeal the outcome of the qualifying examination to the QEC Chair, who together with the QEC membership evaluates the appeal and judges whether it has merit. A grade can only be changed in cases of a specific error in scoring. The QEC refers any grade change that could affect the student’s exam outcome to the full Biostatistics program faculty, who decide whether to revise the exam outcome.

Because a minor revision of the score is unlikely to change the exam outcome, a student should only initiate a formal appeal if there were egregious errors in the problem or in its grading, the correction of which would likely lead to a substantial increase in the score. The QEC Chair can advise the student on the prospects for success of a proposed appeal. A student who seeks a formal review must request it, in writing, from the QEC Chair within one week of the issuance of the letter notifying the student of the exam result.

7.4.7 Sickness Policy

A student who has declared an intention to sit for the exam, but at the time of the exam is too ill to attend, may request a deferment by contacting both his/her academic advisor and the Chair of the QEC. A deferment can be granted only if the student provides an official note from a medical doctor excusing him or her from the exam as a result of the illness. The request must be made before taking the exam. If the request is approved, the student
may then be allowed to take the exam on or before the first business day when the note indicates that the student may return to work.

7.4.8 The PhD Candidacy Examination

In order to advance to candidacy for the PhD degree in Biostatistics, a student must successfully pass a candidacy examination. This examination satisfies the requirements of the University’s required “Candidacy Examination” defined in the Academic Rules on the Provost website.

The purpose of the candidacy examination is to evaluate whether the student is qualified to proceed to dissertation research. Although the examination is structured around the dissertation proposal, it may also cover any material in the student’s course work. This includes the core courses and other requirements. The examination should emphasize the student’s qualification to continue as well as the content of the dissertation proposal.

Committee members are encouraged to communicate to both the student and the dissertation advisor suggestions regarding the proposed research, as well as the feasibility of completing the project in a reasonable time.

Candidacy Examination Committee Membership

The committee will consist of a minimum of three members, not counting the advisor(s), of whom two must be faculty members of the GGEB, and one must be an external (non GGEB) member. A GGEB faculty member will be appointed as the Chair of the committee by the student’s advisor (the advisor cannot serve as the Chair). The role of the Chair is to run committee meetings and to oversee the candidacy examination and final defense. Committee members will be collectively responsible for administering and evaluating the oral Candidacy Examination, reading the dissertation, and evaluating the final defense. Additional content experts from within or outside the GGEB may be added to the committee as needed. The initial constituency and any changes in the membership must be approved by the Program Chair and the Graduate Group Chair. This Committee will be in place at all times during the dissertation phase. If for some reason, a student changes to a different area of research, a new Dissertation Committee must be appointed immediately and must meet within three months to discuss new plans for the dissertation research.

Candidacy Examination Scheduling

To maintain good academic standing, students must advance to candidacy by 18 months after passing their written qualifications examination. In typical cases this will occur no later than the beginning of the student’s fifth (spring) semester, although students are encouraged to complete their candidacy examination within one year of passing the written qualifications examination. It is the responsibility of the dissertation advisor to work with the student to schedule the candidacy exam once the dissertation research has been clearly outlined. The Program Chair will schedule the candidacy examination for any student who has not met this deadline.

Content of the Dissertation Proposal

The student should provide a written dissertation proposal to the committee at least two weeks prior to the scheduled examination date. The members review the proposal and prepare questions for the exam.
The dissertation proposal should include a review of the literature relevant to the topic to be studied. The proposal may, but need not, include preliminary research results. The paper should be primarily a true proposal and should typically not exceed twenty pages.

The examination lasts up to two hours and typically includes three parts: First, the student gives a formal presentation of the proposal, generally not to exceed 45 minutes (which may be extended if there are questions during the talk). Next, committee members question the student on the proposal or on topics in biostatistics. Once all committee members are satisfied that the questioning is complete, the student is asked to leave the room. The committee then discusses the examination, votes the outcome (see below), and makes recommendations (if any) for future research and study. The student is then readmitted and informed of the outcome. The committee chair ensures that necessary forms are signed and returned to the graduate program office.

Candidacy Examination Outcomes
The candidacy exam has four potential outcomes:

a) **Pass.** The student has sufficiently mastered the material and advances to PhD candidacy.

b) **Conditional pass.** Additional evidence of mastery of the material is required, the nature of this evidence to be determined by the committee. An example would be a revised dissertation proposal that better represents the nature of the problem to be studied. Once all committee members agree that the additional requirements have been met, the outcome of the examination is changed to a “Pass”. The student is not required to retake the candidacy exam.

c) **Fail with possibility of retaking the examination.** The student has not mastered the required material and must retake the examination within 6 months in order to progress to PhD candidacy.

d) **Fail without possibility of retaking the examination.** The student has not mastered the required material and the committee determines that the student should not continue in the program.

Retaking the Candidacy Examination
A student who fails the candidacy exam after taking it a second time, or who does not make a second attempt within six months of the first (unsuccessful) attempt, is automatically withdrawn from the program.

A student who has passed the candidacy exam but wishes to change dissertation topics must prepare a new proposal and submit it to his or her committee. A discussion of the new proposal should be scheduled within three months of its submission. If there is no substantial change in the statistical content area, the candidacy exam need not be retaken, and the committee need not be reconstituted. If there is a substantial change in the statistical content area, the full committee determines whether an additional candidacy exam is required. The student, the advisor for the new proposal, and the other members of the committee also decide on any changes in the composition of the committee.
Review of “Lab Notebook”
BGS mandates that the student’s dissertation committee review the student’s “lab notebook” at each of its meetings. The Biostatistics PhD program interprets this to mean that the student should make available for faculty review, upon request, primary documentation of any substantial element of the dissertation. Such a review takes place at the candidacy exam and any subsequent meetings of the committee, and following the closed session of the dissertation defense. Examples of materials subject to review include the statement and formal proof of a key theorem; the code and results of a simulation study; or the data, code and results of a data analysis in keeping with reproducible research best practices. Prior to the meeting, the student’s advisor, in consultation with the dissertation committee, designates a short list of such items that the student makes available in electronic or hard-copy format. The committee chair sets aside time at the meeting for the review of this material. In keeping with the BGS policy, there is no expectation that the committee should scrutinize all such documents “in their entirety”; rather, the review should be sufficient to satisfy the committee that the student’s research records are “complete and well managed”.

Frequency of Dissertation Committee Meetings
Once a student has advanced to candidacy, his/her dissertation committee must meet at least once every six months to review goals and progress. A review of the “lab notebook” (see above) must accompany each such meeting. The advisor, working with the chair of the committee, schedules the meetings. The student is responsible for providing any review materials needed by the committee in a timely fashion, typically at least two weeks before a meeting.

7.4.9 PhD Dissertation Examination
This section provides guidelines for the content of the dissertation and the format of the defense. The Biostatistics Program follows the regulations described by BGS. The final steps toward the PhD degree are the preparation of an acceptable dissertation and the dissertation defense. Refer to the Academic Rules.

Permission to Write and Defend the Dissertation
The dissertation committee must formally grant permission to write the dissertation. Students must submit the dissertation to the graduate group within six months of receiving permission to write.

If the student will not meet the six-month deadline, s/he must meet with the committee again before the end of the six months. The committee will review the student’s progress and set a new deadline for the submission of the dissertation. Under normal circumstances, no more than one additional month will be granted. If the student does not submit the dissertation or meet with the committee during the six-month period, the graduate group will put the student on academic probation. The graduate group’s academic review committee will determine whether the student should be given permission to defend the dissertation, and under what circumstances, or whether the student should be withdrawn from the program.
After the student submits the dissertation, the committee has up to one month to review it. If the committee determines that the student must revise the dissertation prior to defending it, the student will have one month to make the revisions.

Once the committee approves the dissertation, the student will have one month in which to finalize the defense arrangements. It is expected that the student will make tentative arrangements for the defense before this point.

Students Leaving the Department Prior to Defending the Dissertation
Refer to http://www.med.upenn.edu/bgs/dissertation_policies.shtml

Dissertation Level Students Changing Mentors
Refer to http://www.med.upenn.edu/bgs/dissertation_policies.shtml

Scheduling
The dissertation defense should be scheduled when the candidate and the dissertation advisor agree that the research is near completion and the draft dissertation is in a format suitable for distribution to the committee. As soon as a date and time are fixed, the graduate program coordinator reserves a room (for at least two hours) and prepares the necessary public announcements. In order to accommodate space and scheduling constraints, the date of the exam should be set at least one month before it will take place. All dissertation committee members must attend the exam in person.

Content and Format of the Dissertation
A typical dissertation consists of five chapters: The first is an introduction and brief literature review; in many cases, this is similar to the dissertation proposal. The next three cover the three main topics of the dissertation; these may be written in a format suitable for submission as individual articles to peer-reviewed journals. The final chapter summarizes the dissertation findings and indicates possible future research directions. There are no upper or lower limits on the length of the document. It is the expectation that at least two of the three middle chapters will be methodological and have been submitted to peer-reviewed journals at least two weeks prior to the dissertation defense. Exceptions to this submitted paper requirement would need prior approval from the dissertation committee and the Chair of the Graduate Program.

Content and Format of the Defense
At least four weeks prior to the exam, the student should provide each committee member with a copy of the full dissertation. The committee members review the dissertation and prepare exam questions based on it. The defense consists of two parts:

a) Open session. The advisor introduces the student and describes the process to all attendees. The candidate then presents his/her research in the style of a departmental colloquium. Typically, the candidate presents one chapter in depth, with a very brief overview of the others. This presentation should not exceed 45 minutes. At the close of the formal presentation the candidate takes questions from the audience. To leave sufficient time for the closed portion of the exam, the chair has the right to terminate the open session if it goes on beyond one hour.
b) Closed session. In this part of the exam, attended only by the student and the committee, committee members ask specific questions related to the dissertation. Because the committee members have read the entire dissertation, this is their opportunity to ask questions about any part of it, including chapters not presented in detail in the open session. Once all committee members are satisfied that the questioning is complete, the student is asked to leave the room. The committee then discusses the exam and votes an outcome (see below). The student is then asked to return to the examination room and informed of the outcome. The committee chair sees that necessary forms are signed and returned to the graduate program office.

Dissertation Examination Outcomes

The dissertation exam has three potential outcomes:

a) **Pass.** The student has completed the dissertation requirements for a PhD in biostatistics. The student then works with the graduate program coordinator to ensure that all other requirements are met prior to deadlines for the proposed graduation date.

b) **Conditional pass.** The defense was satisfactory but additional requirements must be met. Commonly, the student is asked to address specific questions raised at the defense, or to incorporate edits proposed by committee members. The dissertation advisor typically oversees these changes, but other committee members may also review changes at their discretion. Once the additional requirements are met, the student is considered to have completed the dissertation. The student is not required to defend the dissertation again.

c) **Fail.** The student must defend the dissertation again.

7.5 Teaching Assistants

7.5.1 Courses That Receive Teaching Assistants

The program assigns TAs to courses in the biostatistics graduate program, the Masters of Science in Clinical Epidemiology, and programs outside of the department such as the Biomedical Graduate Studies program, or the Masters of Science in Health Policy. The Program Chair assigns TAs to courses based on course needs and student qualifications.

7.5.2 Students Who Serve as Teaching Assistants

All doctoral students are required to serve as a teaching assistant for a minimum of two but typically three semesters as assigned by the graduate program chair. Each TA will spend the equivalent of six hours per week for each semester course. Some students may be assigned to TA a full semester course that requires additional hours (12-14). Beyond the first course, students may be eligible to receive supplementary compensation for additional teaching.

Benefits and duties of Serving as a Teaching Assistant

In addition to being a degree requirement for all doctoral students, the teaching experience is an opportunity to work closely with a faculty member in the department, review and deepen understanding of the material being taught, and acquire and sharpen teaching skills.
TA duties typically include some or all of the following:

- Attend regular meetings with the course instructor
- Attend lectures
- Hold office hours
- Assist in or teach lab sessions
- Assist in the preparation of written course materials, exams and solution sets
- Grade assignments or exams and record the grades
- Coordinate access to computing facilities, online data sets, and web applications

Timeliness in the completion of these duties is essential. The course instructor and TA should communicate regularly to discuss duties, to share feedback from the students, and to ensure that the TA’s time is being used efficiently. A student who feels s/he is spending on average more than the designated number of hours on teaching activities should speak to the instructor or, if concerns remain, with the Program Chair. Both instructors and TAs should recognize that time pressures can vary greatly over the course of a semester. Open communication is the key to a successful teaching experience.

In cases where TA duties include assisting in the grading of exams, course instructors should provide the TA with clear guidance on how to assign points. Instructors should also recognize that some students may feel awkward evaluating their peers.

TAs should share their e-mail addresses and mailbox locations with their students. TAs are not on call for their students; nevertheless, students should expect reasonable access to TAs, particularly in the days leading up to exams and project due dates.

TAs are encouraged to speak with the instructor, their academic advisor and the Program Chair about their teaching experiences, particularly if difficulties arise. A potential conflict can often be avoided if its warning signs are recognized early and the situation is handled thoughtfully.

7.6 Other Policies

7.6.1 Student Travel
BGS allows doctoral students to apply for partial reimbursement (currently, up to $1,000/year) for travel to professional meetings if they are making a presentation. Applicants must justify the expenses prior to attending the meetings. Dissertation advisors sometimes are able to augment these travel funds. In addition, some training grants provide funds for student travel. Request for Travel Funds here.

7.6.2 International Students Travelling Abroad
Students are entitled to two weeks of vacation per year. Unfortunately, it is sometimes difficult for international students leaving the US to re-enter in a timely fashion, often due to visa issues. While the program understands that these issues are largely out of the control of our international students, it also puts a strain on financial sponsors when students are unavailable to carry out the obligations of their research assistantships in person. International students who leave the country for vacation must make a plan with their sponsor in advance to address the possibility of delayed re-entry. The written plan must be
approved by both the research sponsor and the Program Chair. Sponsors are not required to allow students to work remotely and, in particular, are not expected to fund students to work remotely for indefinite periods of time. International students should expect that funding will be suspended if suitable arrangements are not made and/or if students are absent for more than two weeks. Details on travel requirements for international students can be found at https://global.upenn.edu/isss/travel

7.6.3 Registration in Biostatistics Courses
Any student who does not have dissertation status and who wishes to take a course in Biostatistics must formally register for the course. The University reserves the term “auditor” for a student who registers for a course without the intention of receiving a grade and academic credit. BGS PhD students are not allowed to audit a course. MS students may request a waiver of this policy from the Chair of the GGB.

A student with dissertation status (i.e., who is paying dissertation fees and therefore does not pay for course units) may sit in on a course without registering for it. Students who intend to participate in a course in this way must agree to participate in the course in a manner defined by the instructor, and must obtain the instructor’s prior approval.

7.7 Committees
Six committees provide governance and administrative leadership to the Biostatistics graduate programs. Membership is subject to change annually.

The Admissions Committee is responsible for the application and admission process. Responsibilities include developing admission policies; identifying qualified students; reviewing applications; selecting students to interview; ranking students for admission; and reviewing applications from students in other BGS programs who seek to transfer into Biostatistics. Admission decisions are subject to approval by the GGB Chair, the GGB Executive Committee and the BGS Admission Committee. The chair of the Biostatistics Admissions Committee, together with the chair of the Epidemiology Admissions Committee, represents the GGB in the BGS Admission Committee.

The Curriculum Committee is responsible for all rules and policies related to courses, MS theses and doctoral dissertations. Responsibilities include developing policies related to course content; reviewing requirements for MS theses and PhD dissertations; approving proposals for the creation of new courses; and reviewing student course evaluations.

The Academic Advising Committee was created to facilitate the assignment of academic advisors, lab rotation mentors and to insure that each student is meeting program requirements in a timely fashion. This committee works closely with the curriculum committee to insure that all faculty mentors are up-to-date on the curriculum and all requirements.

The Qualifying Examination Committee conducts the Program’s written qualifications exam. Responsibilities include developing guidelines, policies and procedures for the exam; soliciting questions for the exam; reviewing and selecting questions; creating the
exam itself; managing its grading; presenting results to the faculty; and evaluating the merits of appeals of exam results. Decisions on the outcome of the exam are made by the Biostatistics program faculty assembled as a committee of the whole.

The Student Recruitment Committee conducts outreach to establish and maintain a pipeline of talented undergraduate students to apply to the GGEB MS and PhD programs in biostatistics. Activities include informational presentations to undergraduate departments of mathematics and statistics in Greater Philadelphia and additional targeted areas, attendance and recruitment at national undergraduate research conferences, creation and national circulation of program announcements, communication with prospective applicants, and hosting an informational open-house each fall. The Student Recruitment Committee also aims to increase awareness and enrollment in Penn's summer undergraduate research opportunities in biostatistics.

The Student Awards Committee explores opportunities and supports applications for student awards. The Committee chooses the award winner for the Saul Winegrad Award for Best Dissertation. In addition, along with students in the program, the Committee nominates an outstanding faculty member for the Jane M. Glick Graduate Student Teaching Award. Additionally, there are three awards exclusive to the GGEB: the Tom Tenhave Student Leadership Award, the Graduate Student Teaching Award, and the Faculty Teaching Award. These are awarded at the end of every academic year.

8. PhD in Epidemiology Program

8.1 Overview
The mission of the PhD Program in Epidemiology is to train independent researchers in the development and application of epidemiologic methods and to prepare them for positions as scientific leaders in academia, industry, and the public sector. The PhD is a research degree; it indicates the highest attainable level of scholarship, and prepares one for a research career. The PhD does not represent merely the accumulation of course credits, but rather, the development and completion of a well-designed and conscientious program of scientific investigation that makes a unique contribution to the field of epidemiology.

The PhD Program in Epidemiology requires basic and advanced courses in epidemiology, statistical methods, and electives drawn from the Department of Biostatistics, Epidemiology, and Informatics and other departments and schools that serve the student’s research interests. The program also requires written qualifications and oral candidacy examinations, and the successful defense of a doctoral dissertation, in accordance with University of Pennsylvania policy.

The PhD program typically requires the equivalent of at least four years of full-time study, in three defined phases: coursework, pre-candidacy, and candidacy. The coursework phase typically takes two years of full-time study and is intended to provide the student with the knowledge needed to pursue advanced, independent study and investigation in epidemiologic research. This phase culminates in the written Qualifications Examination, normally taken after
most or all of the student’s coursework has been completed. The pre-candidacy phase focuses on the preparation of a scientifically unique, methodologically sound, and feasible dissertation proposal. This phase ends with passing the oral Candidacy Examination, at which time the student is recognized as a Candidate for the PhD and focuses his or her effort on performing the research for and writing the dissertation. A successful public defense of the dissertation then completes the academic requirements for the PhD.

8.2 Academic advisor
At the time of admission, each incoming student will be assigned an academic advisor who advises the student in course selection and related academic matters. A student may change advisors by request to the Program Chair. A PhD student’s dissertation advisor, once selected, normally assumes the role of academic advisor during the later years of study. At the beginning of the academic year, each student, in collaboration with his/her advisor, prepares a proposed academic program including courses to be taken, courses to be transferred, and timelines for examinations and dissertation preparation. Students who are on a training grant will have two co-advisors: 1) the Principal Investigator or other senior faculty on the training grant and 2) the Epidemiology Program advisor. This is to ensure that all academic advising meets the course and other requirements of the training grant in addition to those of the Epidemiology Program.

8.3 Course requirements
The PhD in Epidemiology typically requires the equivalent of four to six semesters of coursework plus additional semesters devoted to dissertation research. The degree can be accomplished in the equivalent of four to five years of full-time study, although depending on the student’s research program, six or even seven years may be needed to complete the program. The progress of students requiring longer than six years to complete the program will be reviewed semi-annually by the Epidemiology Program Chair and the Chair of the Examinations and Academic Review Committee. In any event, according to University policy, the program must be completed in 10 years. The current standard course sequence for PhD students consists of up to 7 core courses (see below). Four additional course units are taken in electives (advanced epidemiology and/or biostatistics courses and courses outside the department and school as needed to serve the student’s specific interests). In addition, a minimum three semesters of lab rotations (EPID 699) and one unit of dissertation research (EPID 995) are required. However, the PhD curriculum is continuously under review and these requirements may change; these changes will be reflected in a subsequent version of the Handbook, pending approval by the Graduate Group and Biomedical Graduate Studies. Students are subject to the course requirements in place at the time of admission.

Course descriptions are provided at:
https://www.med.upenn.edu/ggeb/ggeb-courses.html

The core courses required for all PhD students are:

- EPID 701: Introduction to Epidemiologic Research (1cu)
- EPID 702: Advanced Topics in Epidemiologic Research (1cu)
- EPID 600: Data Science for Biomedical Informatics (1cu)
- HPR 608: Applied Regression Analysis for Health Policy Research (1cu), OR
 - BSTA 630: Statistical Methods and Data Analysis (1cu)
 - BSTA 632: Biostatistics for Epidemiologic Methods I (1cu)
- EPID 700: Doctoral Seminar(1cu)

Graduate Group in Epidemiology and Biostatistics Handbook 2021-2022
• EPID 534: Qualitative Methods in the Study of Health Disease and Medical Systems
• Ethics course (1cu) or MSCE workshops
• Career Development workshops
• Grant writing workshop

8.3.1 Electives

PhD students take elective courses in order to reach the required total number of course units (12). At least two of these courses must be advanced courses in statistical applications, such as (but not limited to) EPID 621: Longitudinal and Clustered Data, EPID 622: Applied Regression Models for Categorical Data, EPID 623: Survival Data Analysis, and EPID 680: Causal Inference in Epidemiology. Students meeting additional prerequisites in biostatistics may satisfy this requirement through advanced courses in statistical methods, such as (but not limited to) BSTA 754: Advanced Survival Analysis, BSTA 656: Longitudinal Data Analysis, and BSTA 790: Causal Inference in Biomedical Research.

Elective courses include advanced courses in epidemiology and biostatistics, as well as advanced courses in related disciplines, such as biostatistics, statistics, demographics, sociology, anthropology, economics, and psychology. Students may also arrange to take independent study courses taught by members of the Graduate Group faculty or courses taught elsewhere in the University. However, it is important to select independent study courses carefully, since it is assumed that students will have completed the core at the time of the Qualifications Examination. The student and faculty member will design the activity and the form of the evaluation for the independent study course. Any such proposed independent study course must be approved in advance by the PhD Program Chair. Finally, all electives will be chosen in consultation with the trainee’s faculty advisor.

8.3.2 Research rotations

In order to provide doctoral students with as much exposure as possible to a broad range of research activities and opportunities during their first year of study, they are required to engage in project rotations with GGEB faculty. This will assist the students in identifying their research interests and thesis topic earlier in their educational process. In addition, students will normally identify their PhD dissertation advisor through working with them on a lab rotation, during which both the students and faculty can assess whether they are a good match for possible dissertation advisor/advisee relationships. This section describes the procedures for engaging in these rotations.

• Each student is required to complete three rotations during the first year in the doctoral program: fall, spring, and summer.
• Each rotation will last 12 weeks. Students can expect to spend approximately 20+ hours per week during the fall/spring semesters and full time 40+ hours during the summer.
• Each August, the epidemiology faculty in the GGE will be provided with a short description of each new student’s interests and background by the Graduate Group Coordinator and will be asked to confirm their willingness to
serve as a rotation preceptor.

• When possible, at the beginning of each term, a chalk talks session will be organized during which G Geb faculty will present the rotation projects to the students. Alternatively, students will be informed by the Graduate Group Coordinator of the names and contacts of the faculty members who agreed to serve as rotation preceptors. Students are also welcome to reach out to G Geb members to inquire about potential projects beyond those discussed during chalk talks. The students will contact the faculty members whose research matches their interests to discuss the details of a potential rotation. Once an agreement is reached between the student and the faculty member, they will submit a short proposal describing the content and goals of the rotation for approval by the Academic Review Committee.

• Laboratory rotations should focus on epidemiological research as opposed to simple data analysis or service/project work. Ideas include implementation of a method from the literature, literature review of methods, or the analysis of a complex dataset. It is recognized that, depending upon the background of the students matriculating into the program, the first lab rotation may need to be a lighter introduction to the methodological area such as focusing on literature review, study design, logistics, and data management and/or data analysis.

• Laboratory rotations are taken for credit (0.33 unit per rotation, 1-unit total) and students receive both a written evaluation and a letter grade.

• At the end of each rotation, the supervising faculty member will provide a brief summary of the student’s involvement in the project, including any scholarly output such as abstracts and manuscripts. In addition, the faculty member will indicate his or her desire to mentor the student, as well as willingness to take on the financial responsibilities associated with mentoring.

8.4 Course plans

All students are expected to develop and maintain a current course plan with their academic advisor. This course plan must be approved by the advisor and the Program Chair and filed with the department’s Office of Graduate Programs. The course plan will be reviewed annually in order to monitor the student’s progress and identify potential delays in completing the program. Typical course plans are shown below.
Sample course plan for entering PhD students starting Fall 2021

<table>
<thead>
<tr>
<th>Year</th>
<th>Term</th>
<th>Course</th>
<th>Course Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1</td>
<td>Fall</td>
<td>EPID 701: Introduction to Epidemiologic Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 630 Statistical Methods and Data Analysis I</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HPR 608: Applied Regression Analysis for Health Policy Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 600: Data Science for Biomedical Informatics (if placed out of 526/527)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 699: Research Rotation</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Career Development Workshop</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>EPID 702: Advanced Topics in Epidemiologic Research</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BSTA 632: Statistical Methods for Categorical and Survival Data</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 699: Research Rotation</td>
<td>0.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Elective</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Career Development Workshop</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>EPID 699: Research Rotation Qualifications Examination</td>
<td>0.33</td>
</tr>
<tr>
<td>Year 2</td>
<td>Fall</td>
<td>EPID 534: Qualitative Methods in the Study of Health Disease and Medical Systems</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 699: Research Rotation or EPID 899: Pre-Dissertation Lab Rotation (for those who have selected a dissertation advisor)</td>
<td>0.33-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ethics course or MSCE Workshops</td>
<td>0-1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Elective</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Career Development Workshop</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grant Writing Workshop</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>Career Development Workshop</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 699: Research Rotation or EPID 899: Pre-Dissertation Research (for those who have selected a dissertation advisor)</td>
<td>0.33-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 700: Doctoral Seminar</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Advanced Elective</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td>Summer</td>
<td>EPID 899: Pre-Dissertation Research Candidacy Examination</td>
<td>1-3</td>
</tr>
<tr>
<td>Year 3</td>
<td>Fall</td>
<td>Advanced Elective</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 899: Pre-Dissertation Research</td>
<td>0.33-3</td>
</tr>
<tr>
<td></td>
<td>Spring</td>
<td>Advanced Elective</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPID 899: Pre-Dissertation Research</td>
<td>0.33-3</td>
</tr>
<tr>
<td>Year 4-5</td>
<td></td>
<td>EPID 995: Dissertation Research</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dissertation Defense</td>
<td></td>
</tr>
</tbody>
</table>

Notes

All Epidemiology PhD students must take either HPR 608 or both BSTA 630 and BSTA 632 to
fulfill their statistics core requirements.

§ For those desiring a more advanced statistical analysis background, BSTA 630 and BSTA 632 are recommended if you have previously completed coursework in calculus through multivariable calculus and linear algebra. The permissions of the instructors are required to take these courses.

‡ HPR 608 is required for those not taking BSTA 630 and BSTA 632.

Any electives taken in the summer required prior authorization by the Chairs of the PhD Curriculum Committee and the Epidemiology Program.
8.5 PhD Examinations

In addition to course-specific examinations, there are three PhD examinations required in order to ensure rigorous, appropriate evaluations during the phases of a student’s program. These examinations are described below.

1. Qualifications Examination

The Qualifications Examination consists of two components: the Qualifying Review, and the Oral Qualifications Examination.
a. Qualifying Review
At the end of the first year of coursework, the Academic Advising and Examination Committee will review each student’s academic record. In addition to the student’s transcript, the committee will review examples of the student’s written work, including at least one scientific paper and two examinations or assignments. Papers submitted for the Qualifying Review can be from a course assignment or a manuscript that was prepared for submission to a journal, but in the case of the latter, the manuscript must have been written since entering the PhD program. Students will be expected to provide these to the committee at least four weeks prior to the Oral Qualifications Examination. The review will take place no sooner than two weeks prior to the Oral Qualifications Examination. Students are expected to have a minimum GPA of 3.0, with no grades lower than B. Any grade lower than B (B- and below) will require that the student’s record be referred to the Academic Advising and Examination Committee and the pertinent course director(s) for remediation. Remediation could include retaking the course(s) in question or taking another course as substitution. Upon remediation, the student will have the opportunity to request a second Qualifying Review, using the same procedure as if it were the first review. If the remediation is satisfactory, the student can proceed to the Oral Qualifications Examination. However, if the remediation is determined to be unsatisfactory by the Academic Advising and Examination Committee, the student may be dismissed from the program, as determined by the Ggeb leadership and the BGS Curriculum and Academic Standards Committee, the body charged with monitoring student performance.

b. Oral Qualifications Examination
Upon successfully passing the Qualifying Review, the student will be eligible to sit for the Oral Qualifications Examination. For this examination, each student will be given a scenario for which, they are to create a research proposal to address the scenario, and then present their proposal to the Committee via a jury-style oral presentation. The procedure for the examination is as follows:

1. Preparation of the examination
 a. The questions will be developed by the Academic Advising and Examination Committee,
 b. The scenario will address three or more core competencies, a list of which will be provided to all first-year students entering the program. The source of these competencies will include those specified in Table 1 in https://pubmed.ncbi.nlm.nih.gov/31320154 as well as new competency areas as they arise. The Epidemiology Program leadership will review a draft list of the competencies, which will be vetted by the Epidemiology Program faculty, for approval by the GGEB leadership, and circulated to each incoming cohort at the beginning of the academic year.
 c. The scenario will be different for each student and will not be directly related to the student’s research interests.
 d. The scenario will be provided to the student(s) no less than two weeks prior to the examination.

2. The Oral Examination
 a. The examination will be given at the end of the spring semester, typically before mid-May. The Chair of the Examination Committee will announce the specific date of the examination by the end of the fall semester so that students may plan accordingly.
 b. The Oral Examination will be conducted by a jury, which will consist of the Academic Advising and Examination Committee augmented by at
least two members of the Epidemiology Program faculty and a member of the Biostatistics faculty.
c. Ordinarily, all examinations will be given to all students on the same day. There may be exceptions for personal emergencies or other contingencies, but these require the approval of the Chairs of the Examination Committee and the Doctoral Program.
d. Format of the Oral Examination
 1. A total of 60 minutes will be allotted for each student’s examination.
 2. The Examination will begin with a 20-minute “chalk talk” by the student that demonstrates the ability of the student to address as an epidemiologist the scenario that was provided. This presentation should state at least one research question; a set of specific aims with clearly stated hypotheses; sufficient background that sets the stage for the proposal in terms of significance; and an approach section that addresses the study design, analysis plan, sample size/power, and limitations and how these would be addressed.
 3. The oral presentation will be followed by 30 minutes of questions by the jury. The jury may also ask additional questions as needed to ascertain competency in epidemiology that would be expected of a student having completed the first year of doctoral studies. At the conclusion of this part of the examination, the student will be excused from the room.
 4. The final 10 minutes will be allotted to the jury’s evaluation of the student’s performance on the Examination.

3. Evaluation

 - **Overall impact:** an assessment of the likelihood for the project to exert a sustained, powerful influence on the research field(s) involved, in consideration of the following review criteria and additional review criteria as applicable for the project proposed). In addition, the student will be evaluated on how well the questions posed by the jury were answered.
 - **Significance:** If the aims of the project are achieved, how will scientific knowledge, technical capability, and/or clinical practice be improved? How will successful completion of the aims change the concepts, methods, technologies, treatments, services, or preventative interventions that drive this field? In addition, the student will be evaluated on how well the questions posed by the jury were answered.
 - **Approach:** Are the overall strategy, methodology, and analyses well-reasoned and appropriate to accomplish the specific aims of the project? Are potential problems, alternative strategies, and benchmarks for success presented? If the project is in the early stages of development, will the strategy establish feasibility and will particularly risky aspects be managed? In addition, the student will be evaluated on how well the questions posed by the jury were answered.
b. Each domain will be scored using the NIH system (1=Exceptional, 9=Poor). A passing score on each domain is 5. Each jury member will independently score each domain, and the domain scores will be averaged across the jury. In addition, each jury member will provide specific notes about the student's performance on each domain. These notes, in addition to the numeric scores will be used by the jury to determine the outcome of the examination.

c. Evaluation outcomes

1. Pass: In order to pass the oral examination, a student must attain an average passing score (<=5) on all three domains. Students who pass the examination will be qualified to sit for the Candidacy Examination, which must be passed within 18 months of the Qualifications Examination.

2. Conditional Pass: This is granted for students who score less than passing on any one (but only one) domain.

3. Fail: A Fail indicates that the student did not demonstrate sufficient competency on two or more of the domains. The student will be required to remediate and then re-take the examination with a new scenario and oral presentation. The Oral Examination can be re-taken only once, by those who received a Conditional Pass or Fail. A subsequent failure will result in dismissal from the program.

d. Remediation is required of students who do not pass the Oral Examination. Such students will meet with the Academic Review and Examination Committee and faculty advisor to review the areas of concern and create a remediation plan. This plan will address the domains and specific issues, and may involve taking additional courses or guided self-study, depending on the severity and scope of the deficiencies. Each remediation plan will be approved by the Program Chair and GGEB Chair. The remediation plan will be finalized and made available to the student and faculty advisor within one week of the examination.

e. All deliberations by the committee are confidential and to be discussed with no one outside the committee. Students will receive only the result of the examination and the scores on the domains as noted above.

2. Candidacy Examination

a. The Candidacy Examination must be passed within 18 months of the Qualifications Examination.

b. The Candidacy Examination is administered by the Dissertation Committee (see Section8.6.2).

c. The focus of the Candidacy Examination is on the student's proposed dissertation research, but other material may be included as desired by the student's committee.

d. The Candidacy Examination will consist of two parts:

i. **Written**: dissertation proposal, submitted to the student’s committee at least one month prior to oral proposal defense, and approved by the committee prior to the oral proposal defense

ii. **Oral**: Oral defense of proposal (non-public) before the committee with the inclusion of additional pertinent material at the discretion of the committee. All dissertation committee members should be present for the oral phase of the candidacy examination. In emergencies, one member may participate in the defense by video remote connection, such as BlueJeans or Zoom. That member cannot be the committee chair or the
e. Students must pass both parts of the Candidacy Examination in order to advance to the final phase of the PhD program. Those who fail the Candidacy Examination may re-take it once, at the discretion of the committee.

3. **Dissertation Defense**

 a. The final oral examination is the Dissertation Defense. The defense must be announced by public advertisement at least four weeks in advance using such venues as the GGEB website, posted announcements in Penn Medicine spaces (as allowed), and electronic mail.

 b. The defense should be scheduled when the candidate and the dissertation advisor agree that the research is near completion and the draft dissertation is in a format suitable for distribution to the committee. As soon as a date and time are fixed, the graduate program staff reserves a room (for at least two hours) and prepares the necessary public announcements.

 c. All dissertation committee members should be present for the final defense. In emergencies, one member may participate in the defense by video remote connection, such as Bluejeans or Zoom. That member cannot be the committee chair or the student’s advisor. If one or more committee members are absent (i.e., not present or not participating by telephone) from the final defense, it cannot proceed and must be rescheduled. During times of global health emergencies that result in closure of University facilities, (such as the SARS-CoV-2 pandemic), the defense will be conducted entirely using a video remote connection, such as Bluejeans or Zoom.

 d. Format of the defense

 i. At least two weeks prior to the exam, the student should provide each committee member with a copy of the full dissertation. The committee members review the dissertation and prepare exam questions based on it. The defense consists of two parts:

 1. Open session. The committee chair describes the process to all attendees and the dissertation advisor introduces the candidate. The candidate then presents his/her research in the style of a departmental colloquium. Typically, the candidate presents one chapter in depth, with a very brief overview of the others. This presentation should not exceed 45 minutes. At the close of the formal presentation the candidate takes questions from the audience. The committee chair has the right to terminate the open session if it goes beyond one hour.

 2. Closed session. In this part of the examination, attended only by the student and members of the committee, the student is asked specific questions pertaining to the dissertation. Because the student’s advisor. If one or more committee members are absent (i.e., not present or not remotely participating) from the examination, it cannot proceed and must be rescheduled. During times of extenuating circumstances, such as inclement weather or global health emergencies that result in closure of University facilities, (such as the SARS-CoV-2 pandemic), the examination will be conducted entirely using a video remote connection, such as Bluejeans or Zoom.
committee members have read the entire dissertation, this is their opportunity to ask any questions about any part of it, including material not presented in the open session. Once the committee members are satisfied that the questioning is complete, the student is asked to leave the room and the committee deliberates in closed session. During this time, the committee reviews the student’s work, draws up a list of recommendations, and votes an outcome. The student is then readmitted to the room, informed of the outcome, and is provided with any recommendations. The committee chair sees that necessary forms are signed and returned to the graduate program office.

ii. The defense will be coordinated by the dissertation committee chair. This individual will be responsible for maintaining order and the sequence and timely completion of the examination.

e. The dissertation exam has three potential outcomes:

i. **Pass.** The student has completed the dissertation requirements for a PhD in epidemiology. The student then works with the graduate program staff to ensure that all other requirements are met prior to deadlines for the proposed graduation date.

ii. **Conditional pass.** The defense was satisfactory but additional requirements, usually minor, must be satisfied. Commonly, the student is asked to address specific questions raised at the defense, or to incorporate edits proposed by committee members. The dissertation advisor typically oversees these changes, but other committee members may also review changes at their discretion. Once the additional requirements are met, the student is considered to have completed the dissertation. The student is not required to defend the dissertation again.

ii. **Fail.** The student must defend the dissertation again; only one additional attempt at the final defense is allowed.

f. Dissertation acceptances must be unanimous, in writing, and signed by all members of the dissertation committee. Approved dissertations must be submitted to the Graduate Council of the Faculties in a format that meets the style standards established by the Vice Provost for Graduate Education.

8.6 Preparing the dissertation

8.6.1 Dissertation advisor

PhD in Epidemiology students must carry out their dissertation research under the mentorship of a faculty member of the GGE EB. The dissertation advisor is the most important individual the student will interact with in the course of their graduate training. For this reason, students should carefully evaluate their interests and experiences in choosing the advisor. The student’s dissertation advisor may not be the Dissertation Committee chair, but may have been the student’s academic advisor. Dissertation advisors for students pursuing the PhD in epidemiology must have extensive training and experience in epidemiologic research. Generally, they will have a PhD (or equivalent) in epidemiology or related field, **OR** a professional doctorate (MD, PharmD, DNP, VMD, etc.) **and** Master's degree in epidemiology or a related field, and experience as an independent investigator, as demonstrated through receipt of funding as principal investigator or similar role such as a project or core lead on a
Dissertation advisors not holding the PhD are strongly urged to work closely with the Program Chair and other PhD faculty throughout the student’s program in order to ensure that the special and intensive demands of mentoring PhD students are met. **Dissertation advisors should expect to dedicate considerable time and effort to one-on-one student supervision.**

Previous experience as a PhD dissertation committee member for at least one student in epidemiology or biostatistics at the Master’s level or beyond, including advising through all phases from protocol development to submission of a dissertation, is desirable, but not required. However, faculty who have been selected to be a student’s dissertation advisor and who have not previously mentored a PhD student in the GGB will be assigned a faculty mentor with that experience. The secondary mentor will be designated a formal dissertation co-advisor, upon review and approval by the Program Chair. Faculty members who do not fulfill these criteria may be approved in individual cases by the Graduate Group Chair, in consultation with the Graduate Group Executive Committee.

In addition, the Program expects dissertation advisors to adhere to the University guidelines for mentoring PhD students as articulated in the Graduate Catalog: https://catalog.upenn.edu/graduate/academic-resources/advising-mentoring/. Additional material can be found in this document, prepared by the American Association of Medical Colleges: https://www.aamc.org/what-we-do/mission-areas/medical-research/grad-compact.

8.6.2 Dissertation Committee

Each student will organize a Dissertation Committee according to the following constituency.

- The committee will consist of a minimum of three members, not counting the advisor(s). Two of these members must be faculty members of the GGB, and one must be an external (i.e., not a GGB) member.
- From the dissertation committee, a GGB faculty member will be appointed as the Chair of the committee by the Chair of the Epidemiology Program. Dissertation committee chairs must have served on at least one GGB dissertation committee before being approved as a chair. The role of the Chair is to run committee meetings and to oversee the candidacy examination and final defense, and to ensure the timely and proper deposit of the dissertation. The Chair is also charged with resolving disputes between committee members and the student, with the assistance of the Program Chair and/or GGB Chair, as needed. The Chair will be expected to agree to the terms required of this position, as provided by the Program Chair.
- At least one member of the Dissertation Committee must be a member of the faculty in the Division of Epidemiology and ordinarily at least one other should be a member of the faculty in the Division of Biostatistics or Division of Informatics.
- Committee members will be collectively responsible for administering and evaluating the oral Candidacy Examination, reading the dissertation, and evaluating the final defense. Additional content experts from within or outside the GGB may be added to the committee as needed. The initial constituency and any changes in the membership must be approved by the Program Chair and the Graduate Group Chair.
- Ordinarily, this Dissertation Committee will be in place at all times during the dissertation phase. If for some reason, a student changes to a different area of
research, a new Dissertation Committee must be appointed immediately and must meet within three months to discuss new plans for the dissertation research.

- All committee members must read and agree to the policies and procedures pertaining to their respective roles, as articulated in this Handbook and by policies of Biomedical Graduate Studies and the University, and indicate their agreement in writing by signing a form to be provided at the time the committee is constituted. Countersigned by the Epidemiology Program and GGEB Chairs, the document will be maintained in the student's portfolio.

8.6.3 Additional biostatistics support
The biostatistics faculty member(s) on the Dissertation Committee will provide advice and collaborate on the scientific design and statistical analyses required for the dissertation research, but it is the student’s responsibility to perform such analyses. If appropriate, it may be possible to substitute the GGEB biostatistics faculty member with biostatistics faculty from another department at Penn or from outside the University, upon approval by the Program Chair and the GGEB Chair. If a student’s dissertation research area requires additional statistical expertise, appropriate biostatistics faculty should formally be added to the Dissertation Committee.

8.6.4 Computing, programming, and database support
The student is responsible for writing all parts of the dissertation, including any methodological sections, and for conducting or directing all analyses; this ordinarily includes obtaining, preparing, and maintaining data needed for the research. Depending on the student's research program, additional (non-faculty) assistance with computing, programming, and database development may be requested by the student. However, to ensure that the student gains the maximum possible experience with these critically important skills, this request must be approved by the dissertation advisor and the Program Chair. The student and dissertation advisor are responsible for obtaining the necessary funding to defray non-faculty support costs.

8.6.5 Frequency of dissertation committee meetings
Once a student has advanced to candidacy, his/her Dissertation Committee will review goals and progress every 6 months. The committee chair should complete the Dissertation Committee Meeting Report form and submit this to the Program Chair within 15 days of each committee meeting.

8.6.6 Laboratory notebook
BGS mandates that the student’s Dissertation Committee, at each of its meetings, review the student’s “lab notebook”. The PhD Program in Epidemiology interprets this to mean that the student should make available for faculty review, upon request, primary documentation of any substantial element of the dissertation. Such a review takes place at the Candidacy Exam and any subsequent meetings of the committee prior to, but not including, the dissertation defense. Examples of materials subject to review include the statement and investigation of a research question; the code and results of a simulation study; or the data, code and results of a data analysis. Prior to the meeting, the student’s advisor, in consultation with the Dissertation Committee, designates a short list of such items that the student makes available in electronic
or hard-copy format. The Committee Chair will set aside time at the meeting for the review of this material. In keeping with the BGS policy, there is no expectation that the committee should scrutinize all such documents “in their entirety”; rather, the review should be sufficient to satisfy the committee that the student’s research records are “complete and well managed”. Note that the University provides the LabArchives Electronic Research Notebook system for researchers, instructors, and students (https://researchnotebooks.upenn.edu/). Penn's license offers the software at no cost to faculty, researchers, staff, graduate students, and undergraduate students for both research activities and coursework. The use of LabArchives for laboratory notebook is strongly encouraged but not mandatory as long as an acceptable alternative is in place.

8.6.7 Content and format of the dissertation

The dissertation must be a scholarly work, providing a written account of an independent investigation of an epidemiologic question or series of related epidemiologic questions that are driven by a unifying theme. It will be in the form of a monograph, containing one or more research questions about the epidemiology of a particular health topic or disease. Within this monograph, there will be at least three separate manuscripts of publishable quality, relating to the theme of the dissertation, one of which must offer a novel methodologic approach to a question in epidemiologic research. Specifically, what constitutes a novel methodological approach should be interpreted broadly, and can range from elaboration of a new statistical method, to the development and validation of a new data collection instrument, to a new application of an existing method to an epidemiological question, to name a few. The dissertation will include the formulation and testing of one or more hypotheses, a review of the appropriate literature, a description of the project, data collection, data analysis, data interpretation, discussion of the findings, and limitations of the work. If the dissertation involves the investigation of more than one question, each question must focus on an epidemiologic or methodologic issue related to the health topic or disease under investigation. The dissertation project should demonstrate that the candidate has a command of the subject and a thorough knowledge of the research methodology used to investigate the question(s).

Publication requirement. At least two of the three manuscripts must have been, at a minimum, submitted for review at least once by the time of the dissertation defense. The third must be at a stage where submission is planned within 60 days of the defense. Manuscripts that have been submitted but rejected satisfy this requirement, but only if rejected manuscripts are subsequently submitted to other journals. Students will be required to articulate their plans for submitting publications with their dissertation committee, with specific notation to this effect included in the committee meeting report by the committee chair.

8.7 Non-credit requirements

8.7.1 Teaching practicum

Students in the PhD program must spend one semester providing teaching support as a Teaching Assistant (TA) for an Epidemiology or Biostatistics course. In addition to being a degree requirement for all doctoral students, the teaching experience is an opportunity to work closely with a faculty member, to review and deepen understanding of the material being taught, and to acquire and sharpen teaching skills. TAs are usually assigned to core courses in the Master of Science in Clinical Epidemiology program, but students may find teaching in one of the elective courses, or other epidemiology-related courses in other departments to be of interest as well. The Program Chair assigns TAs to courses based on student interest and availability.
based on course needs and student qualifications, in consultation with the course director, the student, and his/her advisor. Upon assignment, students must prepare a teaching assistance plan in writing, signed off by the course director and approved by the chair, for TA activities related to the course. This plan must be completed at least four weeks prior to the start of the course.

TA duties typically include some or all of the following:

- Attending lectures
- Holding office hours
- Running lab sessions
- Assisting in the preparation of handouts, exams and solution sets
- Grading homework and recording the grades
- Helping to grade exams and recording the grades
- Coordinating access to computing facilities, online data sets, and web applications
- Attending regular meetings with the course instructor(s).

Please note that merely serving as a grader in a course does not fulfill the TA requirement for the doctoral program. The student must make a substantive contribution to the course.

Timeliness in the completion of these duties is essential. The course instructor(s) and TA should communicate regularly to discuss duties, to share feedback from the students, and to ensure that the TA’s time is being used efficiently.

Both instructors and TAs should recognize that time pressures can vary greatly over the course of a semester. For instance, TA duties usually are light at the start of the course, heavy in the middle, and then light again toward the end (unless assistance is required grading exams).

Experience shows that grading homework and preparing and directing lab or discussion sessions are the two items that occupy most of a TA’s time, especially for first-time TAs. TAs should not hesitate to request specific direction on what to present in lab or discussion sessions. Although the success of a course is ultimately the instructor’s responsibility, students should recognize that instructors cannot be expected to solve problems that they don’t know exist. Open communication is the key to a successful teaching experience. In cases where TA duties include assisting in the grading of exams, course instructors should provide the TA with clear guidance on how to assign points. Instructors should also recognize that some students may feel awkward evaluating their peers.

The course director may provide the opportunity for the TA to prepare and deliver at least one lecture. In this case, the course director should allow the TA sufficient time to prepare the lecture and should offer any necessary guidance about what is to be covered. Whenever possible, the TA’s lecture will be videotaped and reviewed with the course director and his/her dissertation advisor in order to identify strengths and weaknesses.

To ease communication, TAs should share their e-mail addresses and/or other appropriate contact information with their students. TAs are not on call for their students; nevertheless, students should expect reasonable access to TAs, particularly in the days leading up to exams and project due dates.

8.7.2 Fellowship grant requirement

All students are required to prepare and submit a fellowship grant. This is typically done as soon as the dissertation committee has been formed and a robust research and training plan has been developed by the student with his/her dissertation advisor, with input from the dissertation committee and other faculty as needed. For domestic students, there are two NIH mechanisms for this grant. The F30 is used for MSTP students, and is described in this Funding Opportunity Announcement: https://grants.nih.gov/grants/guide/pa-files/PA-21-049.html. The F31 mechanism is used for all other students, and is described here: https://grants.nih.gov/grants/guide/pa-files/PA-21-051.html. There are
additional guides and instructions available here: https://grants.nih.gov/grants/how-to-apply-application-guide/forms-f/fellowship-forms-f.pdf. In addition, there are other sources of such grants, such as the American Cancer Society, American Heart Association, and other federal agencies such as the US Department of Agriculture. Students are advised to consult the list of funding opportunities that is maintained by BGS: https://www.med.upenn.edu/bgs/predoctoral-fellowships.html.

Sample applications, as well as successful applications previously submitted and successfully funded are available on the program’s Penn Box folders to which PhD student are individually invited by the GGEB Coordinator.

All students are required to take the Grant Writing Workshop which is offered every fall semester. This workshop focuses on preparation of fellowship grants. In addition, all fellowship grant applications will undergo an internal review in a “mock study section”, composed of at least three GGEB faculty with experience in sponsoring or writing a successful fellowship grant and/or experience in reviewing such grants. The results of this process will be shared with the student and the student’s advisor and mentoring team as a summary statement of the strengths and weaknesses of the application, and suggestions for improvement, as needed.

8.7.3 Weekly seminar

A fundamental component of the PhD program is attendance at the Center for Clinical Epidemiology & Biostatistics Seminar, at which faculty and researchers within and outside of Penn present their work or discuss timely issues in epidemiology. All PhD students are required to attend this seminar series, unless excused due to scheduling conflicts, illness, or other reason. Excuses should be made with the GGEB Coordinator, either before or as soon as possible after a missed seminar. Advanced PhD students are also welcome to present at this seminar. However, slots fill up early in the academic year, so it is best to discuss any plans to present with the advisor and the Chair of the Seminar Committee.

Students are also encouraged to suggest experts from the field as potential seminar speakers to the Seminar Committee.

8.8 General program policies

8.8.1 Transfer of Credit

While previous coursework can be used to place out of required courses, due to the streamlined curriculum and small number of elective courses, only in exceptional cases will transfer of credit be allowed. Transfer of credit must be approved by the Program Chair and the GGEB Chair.

8.8.2 Auditing

Auditing a course is not allowed for any students in the PhD program.

8.8.3 Exemptions and modifications

Trainees may place out of the following courses if they previously attended equivalent courses: EPID 526: Biostatistics for Epidemiologic Methods I, and EPID 527: Biostatistics for Epidemiologic Methods II. The student should justify the request to place out of a course, and the request should be accompanied by the equivalent course syllabus, or other appropriate
material. Such requests are made in writing as a letter to the Academic Review Committee and should be made before the end of the first semester in the program.

8.8.4 Terminal master's degree
The PhD Program in Epidemiology does not admit students for study towards a Master’s degree. However, in rare cases, students who are unable to complete the PhD may apply for a terminal Master of Science degree, with the following requirements:

- Completion of at least eight (8) course units that includes those from core courses taken in the first year of study, each with a grade of at least B-minus.
- Passing grade on the Qualifications Examination
- Completion of a research project that culminates in the preparation of at least one comprehensive scholarly manuscript of such quality that is appropriate for a peer-reviewed publication. This manuscript will be evaluated by the Program Chair and two additional GGEB faculty to determine its acceptance as a Master’s thesis, consonant with the goals and requirements of the program and with the policies set forth in the Pennbook: https://catalog.upenn.edu/pennbook/academic-rules-research-masters/.

8.8.5 Student memberships
All PhD students in Epidemiology are encouraged to join one or more professional societies, but especially the American College of Epidemiology as an Associate or the Society for Epidemiologic Research as a Student Member.

8.9 Facilities
8.9.1 Program web-resource
Student-related forms, resources, and web links are available at the GGEB web site: https://www.med.upenn.edu/ggeb/.

8.9.2 Student Space
The PhD program has space for students on the first floor of Blockley Hall with carrels and lockers. There is wireless connectivity throughout the University campus through AirPennNet. Administration of the carrels and locker assignments is managed by the Graduate Group Coordinator (627 Blockley Hall). In addition, dissertation advisors may provide workspace in their labs.