Presentation and analysis of multidimensional data sets

Yury Belyaev Advanced light microscopy facility EMBL Heidelberg

ALMF Course in Confocal Microscopy, 2010

Multidimensional images

time

- 3D image width, height, depth (x,y,z)
- Wavelength multicolour image
- Time time-lapse image
- Position- multiposition image

Overview

- 1. 3D data visualization
- 2. Time series analysis
- 3. Colocalization analysis
- 4. Deconvolution

1. 3D data visualization

- Data preprocessing
- Projection methods
- Depth color coding
- Rendering methods

Data preprocessing

- Median (Gaussian) filtering
 - Removing hot pixels, noise
- Background subtraction and flatfield correction
 Correction for nonuniform illumination, background
- Correction of lamp flickering
 - Polynomial approximation of average intensity in section
- Correction for photobleaching
 - First or second order decay approximation
- Detector calibration
 - CCD pixel sensitivity or non-linearity of PMT and PD
- Image enhancement
 - Contrast stretching, histogram normalization (be careful for quantitative analysys)

Gallery display of z-slices

Requires no calculations All sections can be seen simultaneously Not practical for big stacks (or display a part)

4D dataset: GFP in the cytoplasm of a plant cell (T. Timmers, CNRS/INRA)

6

Displaying 3D data as a movie

z-stack

time lapse

Data displayed sequentially Frame rate can be varied

EMBL internal only

Projections of 3D data

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	22.2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Average	Maximum	Standard deviation	
		2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
Median	Minimum	Sum	
Also can be used for volume rendering 8			
		EMBL internal only	/

Depth color coding

Standard deviation

Color coded

Every section is coded in a different color according to chosen look up table

New features can be revealed

Eye is more sensitive to color than to intensity changes

10

Volume rendering methods

Maximum Projection Mode Only pixels of the highest intensity along the observation axis are displayed.

Isosurface Mode

The non-transparent surfaces are calculated from the gray values. This results in hard transitions between the various channels.

Shadow Projection Mode The image data are illuminated by a virtual light

source. The combination of light reflection and opacity creates the impression of structure in space.

Transparency Mode The image data are illuminated from the back with diffuse white light, which results in a transparent appearance.

Isosurface rendering

Threshold 10

Threshold 70

Threshold, smoothing, rendering accuracy affect image

12

Volume rendering

Maximum Projection

Transparency mode

Opacity, threshold, position of light source affect image

Multicolor 4D imaging

Fluorescence channels can be rendered separately Merging of transmission and fluorescence channels

EMBL internal only

Rotation of rendered image

Drosophila wing disk

Gives better presentation of sample spatial characteristics

15

3D data visualization: summary

Ensure correct sampling during data acquisition: both over- and undersampling are counterproductive

Projection methods are very calculation efficient, and give a quick idea about general structure of the specimen

Rendering methods are more calculation intensive, but well represent spatial features of the specimen

2. Time series analysis

- Optimal imaging conditions
- Kymograph
- Manual particle tracking
- Automatic particle tracking

Timelaps measurements

Eb3-GFP in HeLa cell

Experimental timescales

Optimal frame rate and length of time lapse are defined by the dynamics of processes in the specimen

EMBL internal only

Sampling intervals

Movement between frames should not be too large Signal to noise ratio decreases for higher frame rates Density of the objects should be also considered

EMBL internal only

Basic movement analysis

Projection shows a trajectory of moving particles Data on the intensity along particle trajectory in each frame gives information on particle speed

Kymograph (time/space plot)

Time

Speed of the object is calculated from a kymograph. Displacement of the particle should not exceed 2 pixels per frame.

EMBL internal only

Space

Manual particle tracking

The position of the object in each frame is marked manually.

Direction of particle movement and speed are calculated based of this data.

Accuracy of the obtained values is not very high. Repeated measurements might be required for higher accuracy.

Works reliably for small objects (vesicles, endosomes, etc.). Object density in the specimen should be low.

EMBL internal only

Example of manual particle tracking

Very slow and work intensive procedure

EMBL internal only

Automatic particle tracking

Position of the object, its orientation and form change are automatically defined by one of the following methods:

Gaussian fitting method (small particles); centroid method (small and large particles); pattern matching method (cells, large organelles); etc...

Software calculates speed of the objects and statistics data automatically.

Faster and more accurate than manual tracking, but does not always work for dense specimens.

Example of automatic tracking

Trajectories are color coded

Tracking for 4D datasets

Manual and automatic tracking possible

Automatic tracking of objects in 4D

Macrophages in medaka embryo

Clemens Grabher and Adam Cliffe

EMBL internal only

Advanced analysis techniques

Vector field. Image of Eb1-GFP in Vero cell.

Kota Miura

Time series analysis: summary

Frame rate of good time series should correspond the dynamics and signal in the specimen

Kymograph is an useful technique for analyzing speed of the objects in time lapse series

Manual tracking is not very accurate and extremely time consuming, especially for large data sets

Automatic tracking is accurate and time efficient, but strongly depends on algorithm, settings, and the quality of data set

3. Colocalization analysis

- Optimal image acquisition
- Colocalization scatter plot
- Colocalization coefficients
- Role of threshold adjustment

Requirements for accurate colocalization

- Low noise level in image
- No bleed through between channels
- Check registration shift between channels
- Reproducible shift can be corrected
- Correct sampling in axial and lateral directions
- Use highly color corrected objectives
- Slide of multicolor beads is a good test sample

Colocalization by channel merging

green channel red channel merged

Colocalized features are yellow Qualitative and very subjective method

EMBL internal only

Colocalization scatter plot

Green vs green

Green vs red

Fully colocalized channels give a straight line

EMBL internal only

Pearson coefficient (-1 to 1)

$$r_p = \frac{\sum_{i} (R_i - R_{aver}) \times (G_i - G_{aver})}{\sqrt{\sum_{i} (R_i - R_{aver})^2 \times \sum_{i} (G_i - G_{aver})^2}}$$

The correlation coefficient measures the strength of a linear relationship between two variables.

The correlation coefficient is always between -1 and +1. The closer the correlation is to +/-1, the closer to a perfect linear relationship.

- -1.0 to -0.7 strong negative association.
- -0.7 to -0.3 weak negative association.
- -0.3 to +0.3 little or no association.
- +0.3 to +0.7 weak positive association.
- +0.7 to +1.0 strong positive association.

Accounts for similarity of shape but does not consider intensity values

35

Overlap coefficients (0 to 1)

$$r = \frac{\sum_{i} R_{i} \times G_{i}}{\sqrt{\sum_{i} (R_{i})^{2} \times \sum_{i} (G_{i})^{2}}}$$
$$k_{1} = \frac{\sum_{i} R_{i} \times G_{i}}{\sum_{i} R_{i}^{2}}$$
$$k_{2} = \frac{\sum_{i} R_{i} \times G_{i}}{\sum_{i} G_{i}^{2}}$$

Describe differences in intensities between the channels Relatively insensitive to difference in channel intensity values

36

Colocalization coefficients (0 to 1)

$$M_1 = \frac{\sum_{i} R_{i,coloc}}{\sum_{i} R_i}$$

 $R_{i,coloc} = R_i$ if $G_i > 0$ and $R_{i,coloc} = 0$ if $G_i = 0$

$$M_2 = \frac{\sum_{i} G_{i,coloc}}{\sum_{i} G_i}$$

$$G_{i,coloc} = G_i$$
 if $R_i > 0$ and $G_{i,coloc} = 0$ if $R_i = 0$

Describe contribution from every channel in the colocalized area Works also for big difference in channel intensity values

EMBL internal only

Low degree of colocalization

Mile Ories; ER-EGFP

Scatter graph has no specific form

EMBL internal only

High degree of colocalization

TMRE (red) plac Mito-perican (Green)

Scatter graph is close to a straight line

Threshold adjustment

Threshold 800

Threshold 1200

40

Results for different thresholds

Parameter	threshold	
	800	1200
number of colocalized voyels	387/3	0061
% of dataset colocalized	14.78	3.80
% of ROI colocalized	14.78	3.80
% of volume A above threshold colocalized	93.68	85.69
% of volume B above threshold colocalized	65.53	55.85
% of material A above threshold colocalized	94.73	86.75
% of material B above threshold colocalized	71.38	59.42
% of ROI material A colocalized	31.81	10.81
% of ROI material B colocalized	31.34	10.35
channel correlation in dataset volume	0.9347	0.9347
channel correlation in ROI volume	0.9347	0.9347
channel correlation in colocalized volume	0.7336	0.5699

Colocalization: summary

Channel merging is quick but very subjective method of colocalization

Colocalization scatter plot is a good starting point for quantitative analysis

Colocalization coefficients are the quantitative measure of colocalization

Use threshold adjustment for adapting to a signal level in your data set

Deconvolution of data set before the analysis can improve the reliability of the result

EMBL internal only

4. Deconvolution

- 2D deconvolution methods
- 3D deconvolution methods
- Deconvolution for widefield
- Deconvolution for confocal

Point spread function (PSF)

Deconvolution

The imaged object is deconvolved with measured, calculated, or estimated microscope PSF by mathematical means.

The result is the image of the object of better quality.

EMBL internal only

Deconvolution methods

- 2D methods (debluring)
 - Use PSF to estimate blur, which subtracted from image
 - No neighbor
 - Nearest neighbor
 - Inverse (Wiener) filtering
- 3D methods (restoration)
 - Use imaging equation to estimate object
 - Constrained, iterative deconvolution
 - Blind deconvolution
 - Exhaustive photon reassignment
 - Many others...

Inverse (Winer) filter

Divide the convolved image by OTF

 $G = S_n / (S_n^2 + \alpha)$ Winer filter

- Limited by noise amplification
- Possible ringing (-)
- Fast (+)

I = OS $O = IS/(S^2 + \alpha) = IG$

No neighbor

• Assumptions:

Measurements of adjacent planes is not necessary

Contribution from adjacent planes is approximated by blurred object

$$(O_{n+1} = O_{n-1} = I_{n+1} = I_{n-1} = I_n)$$

>OTF is equal in adjacent planes $(S_{n-1} = S_{n+1})$

48

Nearest neighbor

$$I_{n} = O_{n}S_{n} + O_{n+1}S_{n+1} + O_{n-1}S_{n-1}$$
$$I_{n} = O_{n}S_{n} + c(I_{n+1} + I_{n-1})S_{n-1}$$
$$O_{n} = (I_{n} - c(I_{n+1} + I_{n-1})S_{n-1})G$$

• Assumptions:

>Intermediate plane is only blurred by the two adjacent planes

>Object in the adjacent planes is approximate by the image $(O_{n+1} = I_{n+1}, O_{n-1} = I_{n-1})$ >OTF is equal in adjacent planes $(S_{n-1} = S_{n+1})$

49

Restoration for wide-field

Wide-field image

Iterative deconvolution

Zebrafish primordium Delta Vision RT microscope

EMBL internal only

PSF: measured vs. calculated

- Measured
 - Uses sub resolution fluorescence beads (at least 100 nm)
 - Contains all information about aberrations in the system
 - Can take some time to acquire
- Calculated
 - Based on objective NA, wavelength, refraction index, etc.
 - Does not have information about aberrations in the system
 - Very fast

x-z projection of PSF for 100x/NA 1.4 objective measured with 100 nm bead mounted in glycerol (n=1.47) with immersion oil n=1.5140 (left) and n=1.5220 (right). Mismatch of immersion oil refractive index results in strong spherical aberration.

Restoration increases resolution

Maximum liklihood restoration for bead using measured PSF

original image

restored image

- Restoration can significantly increase resolution
- Resolution increase is more pronounced in z-direction
- Resolution increase depends on quality of restoring algorithm
- Sufficient oversampling in x, y and z directions should be assured

EMBL internal only

Restoration for confocal

LCSM

restored

Bovine endothelial cell Deconvolution: maximum likelihood, 15 iterations

- Restoration improves LCSM image quality (+)
- No redistribution of out of focus light (-)
- Resolution mostly enhanced in axial direction (+/-)

Restoration for spinning disk

Zebrafish primordium Deconvolution: maximum likelihood, 20 iterations

- Restoration improves image quality (+)
- Redistribution of out of focus light possible (+)
- Resolution mostly enhanced in axial direction (+/-)
- Practical for live cell/organism imaging (++)

Deblurring vs. restoration

Deblurring

- very fast, runs in real time
- OK for large section spacing
- subtractive method thus loss of intensity
- a two-dimensional method
- can not be used for quantitative analysis
- does not increase resolution

Restoration

- requires 5 to 20 iterations
- correct section spacing necessary
- stable works with poor SNR
- conservative no intensity lost or gained
- relatively fast (100 Mb in 3 min)
- can be used for quantitative analysis
- can increase resolution

Software for deconvolution

Specialized deconvolution packages

- Huygens (Huygens remote manager (HRM))
 www.svi.nl
- DeltaVision (SoftVoRx)
 - > www.appliedprecision.com
- AutoQuant

➤ www.aqi.com

- Volocity Restoration
 - ➤ www.improvision.com

As a part of image processing software

- MetaMorph
 - ➤ www.moleculardevices.com
- Software from microscope manufactures
 - ➢ Leica, Nikon, Olympus, Zeiss

Deconvolution: summary

Optimise imaging condition (illumination, objective, camera, filters, etc.) to get as good original image as possible

For quantification use only data produced by 3D deconvolution methods

Test your data set with several deconvolution algorithms

Do not abuse deconvolution, always compare deconvolved and raw images

Literature

Handbook of biological confocal microscopy, Pawley, J.B., editor, 3rd ed. Springer, New York, NY, (2006).

A guided tour into subcellular colocalization analysis in light microscopy, Bolte, S. and F.P. Cordelieres, Journal of Microscopy-Oxford, 224: p. 213, (2006).

Quantitative fluorescence microscopy and image deconvolution, Swedlow, J.R., in Digital Microscopy, 3rd Edition. p. 447, Methods in Cell Biology, v.81, (2007).

Tracking Movement in Cell Biology, Miura, K., in: Rietdorf J, editor. Advances in Biochemical Engineering/Biotechnology. Heidelberg: Springer Verlag; p. 267 (2005).

Acknowledgments

Timo Zimmermann, CRG Barcelona

EMBL Heidelberg: Rainer Pepperkok Arne Seitz Stefan Terjung Gulcin Cakan Petra Haas

Felix Heindl, Konstanz University

EMBL internal only