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Abstract Habituation allows animals to learn to ignore persistent but inconsequential stimuli. 
Despite being the most basic form of learning, a consensus model on the underlying mechanisms 
has yet to emerge. To probe relevant mechanisms, we took advantage of a visual habituation 
paradigm in larval zebrafish, where larvae reduce their reactions to abrupt global dimming (a dark 
flash). We used Ca2+ imaging during repeated dark flashes and identified 12 functional classes of 
neurons that differ based on their rate of adaptation, stimulus response shape, and anatomical loca-
tion. While most classes of neurons depressed their responses to repeated stimuli, we identified 
populations that did not adapt or that potentiated their response. These neurons were distributed 
across brain areas, consistent with a distributed learning process. Using a small- molecule screening 
approach, we confirmed that habituation manifests from multiple distinct molecular mechanisms, 
and we have implicated molecular pathways in habituation, including melatonin, oestrogen, and 
GABA signalling. However, by combining anatomical analyses and pharmacological manipulations 
with Ca2+ imaging, we failed to identify a simple relationship between pharmacology, altered activity 
patterns, and habituation behaviour. Collectively, our work indicates that habituation occurs via a 
complex and distributed plasticity processes that cannot be captured by a simple model. Therefore, 
untangling the mechanisms of habituation will likely require dedicated approaches aimed at sub- 
component mechanisms underlying this multidimensional learning process.

eLife assessment
This valuable manuscript attempts to identify the brain regions and cell types involved in habitua-
tion to dark flash stimuli in larval zebrafish. Habituation being a form of learning widespread in the 
animal kingdom, the investigation of neural mechanisms underlying it is a worthwhile endeavor. 
The authors use a combination of behavioral analysis, neural activity imaging, and pharmacological 
manipulation to investigate brain- wide mechanisms of habituation. While the data presented are 
solid, the authors conclude that there is no simple relationship between pharmacological interven-
tion, neural activity patterns, and behavioral outcomes, and a robust causative link can therefore not 
be established.
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Introduction
A central function of the brain is to learn and change with experience. These adaptations can reflect 
attempts to identify and attend preferentially to salient stimuli. For example, identifying the smell of 
a predator or prey may be crucial, while identifying that my home still smells like my kin is not. This 
ability to suppress responses to continuous non- salient stimuli is known as habituation, a process 
generally considered to be the simplest form of learning and memory (Rankin et al., 2009). Habitu-
ation is conserved across all animals, and like other forms of plasticity, exists in at least two mecha-
nistically distinct forms: transient short- term habituation and protein- synthesis- dependent long- term 
habituation. Here we focus on long- term habituation, which serves as a pragmatic model to dissect 
plasticity processes in neural circuits.

Work on long- term habituation in various species and paradigms has led to significant insights into 
the adaptations underlying this process (Cooke and Ramaswami, 2020; McDiarmid et al., 2019); 
nonetheless, a consensus model on the general principles underlying habituation is yet to emerge. 
Physiological and genetic work in Aplysia and Caenorhabditis elegans was consistent with a model in 
which homosynaptic depression of excitatory synapses drives habituation (Bailey and Chen, 1983; 
Rose et al., 2003; although see Glanzman, 2009). In contrast, work in the Drosophila olfactory and 
gustatory systems indicates that the potentiation of inhibitory neurons drives habituation rather than 
depression of excitatory connections (Das et al., 2011; Paranjpe et al., 2012; Trisal et al., 2022), 
and habituation to specific orientations of visual cues in mice is associated with the potentiation of 
neuronal activity and synapses in the visual cortex (Cooke et al., 2015), which requires GABAergic 
interneurons (Kaplan et al., 2016; Hayden et al., 2021). These studies are more consistent with a 
model in which the potentiation of inhibition, rather than depression of excitation, drives habituation 
(Cooke and Ramaswami, 2020).

Recently, we found that long- term habituation of the response of larval zebrafish to sudden pulses 
of whole- field darkness, or dark flashes (DFs), involves multiple molecularly independent plasticity 
processes that act to suppress different components of the behavioural response (Randlett et al., 
2019). Similar behavioural, pharmacological, and genetic experiments have led to comparable 
conclusions in acoustic short- term habituation (Nelson et al., 2023) and habituation in C. elegans 
(McDiarmid et  al., 2019; McDiarmid et  al., 2020), indicating that habituation generally acts via 
multiple modular plasticity processes. These modules act to mute or shift behavioural responses to 
repeated stimuli. How and where these processes are implemented in the circuit, and how conserved 
or derived these processes are across species or paradigms remains to be determined. Here we have 
used a combination of high- throughput behavioural analyses, pharmacology, and Ca2+ imaging to 
dissect DF habituation. Our results are consistent with a model in which habituation results from a 
multidimensional and distributed plasticity process, involving multiple independent molecular mech-
anisms. We propose that GABAergic inhibition is central to DF habituation, but how individual cell 
types and molecular events lead to behavioural adaptations during habituation will require targeted 
genetic and cellular approaches.

Results
Volumetric two-photon Ca2+ imaging of habituation learning
When stimulated with a DF, larval zebrafish execute an O- bend response (Figure 1A). The O- bend is 
characterized by a strong body bend and a large turn that forms part of the phototactic strategy of 
larval zebrafish, helping them navigate towards lit environments (Burgess and Granato, 2007; Chen 
and Engert, 2014). When presented with repeated DFs, larvae habituate and reduce their responsive-
ness, remaining hypo- responsive for multiple hours (Figure 1B; Randlett et al., 2019).

To explore the circuit mechanisms leading to this form of habituation, we asked how individual 
neurons within the DF responsive circuit adapt to repeated DFs. We used a head- fixed paradigm to 
perform two- photon Ca2+ imaging in larvae expressing nuclear- targeted GCaMP7f pan- neuronally. 
Imaging was performed with a resonant scanner and piezo objective, enabling us to cover a volume 
of ≈600 × 300 × 120 µm (x,y,z) sampled at 0.6 × 0.6 × 10 µm resolution, leading to the detection of 
30890 ± 3235 Regions of Interest (ROIs) per larvae (± SD, Figure 1C–E). ROIs were aligned to the 
Z- Brain atlas coordinates (Randlett et al., 2015), demonstrating that this volume spans the majority 
of the midbrain, hindbrain, pretectum, and thalamus (Figure 1C–E).

https://doi.org/10.7554/eLife.84926
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Figure 1. Volumetric two- photon Ca2+ imaging of dark flash (DF) habituation. (A) In response to a DF, larval zebrafish execute a high- amplitude turn 
called an O- bend response. (B) Habituation results in a progressive decrease in response probability to DFs repeated at 1 min intervals, delivered in 
four blocks of 60 stimuli, separated by 1 hr of rest (from 0:00 to 7:00), and after a 5 hr retention period (12:00-). Inset (i) shows an expanded view of the 
first training block. (C) Tg(elavl3:H2B- GCaMP7f) larvae were imaged across 12 z- planes at 10 µm steps. Regions of Interest (ROIs) are overlaid in random 

Figure 1 continued on next page

https://doi.org/10.7554/eLife.84926
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We focused on a single training block of 60 DFs to identify neuronal adaptations that occur during 
the initial phase of learning (Figure  1Bi). This paradigm induced strong Ca2+ activity in neurons 
(Figure 1F), some of which were clearly associated with the DF stimuli. Ca2+ transients in response to 
DFs generally decreased across the 60 stimuli, though this pattern was not seen in all neurons, and 
substantial heterogeneity in their adaptations was observed. Strong correlated patterns were also 
seen in large groupings of neurons, predominantly in the hindbrain, which were associated with move-
ment events through their correlation with motion artefacts in the imaging data (Figure 1—figure 
supplement 1).

To explore the spatial patterns in these data, we used a two- dimensional lookup table to visu-
alize tuning with regressors representing either DF stimuli or movement (Figure  1G and H). This 
revealed segregated populations of neurons coding for the DFs (pink) and movement (green/teal). 
As expected, DF- tuned neurons were located predominantly in visual sensory areas of the midbrain 
(tectum) and the diencephalon (pretectum and thalamus). Motor- coding neurons dominated in the 
hindbrain, with the exception of the cerebellum and inferior olive, which was predominantly tuned to 
the sensory stimulus. Some neurons did show approximately equal correlation values to both stimuli, 
as evidenced by the bluish hues. Finally, some areas of the brain appeared to contain mixtures of 
neurons with different coding properties, including the ventral diencephalon and midbrain.

To determine if there was any spatial logic to how different neurons adapt their responsiveness 
to DFs during imaging, we plotted the ROIs using a lookup table highlighting the preference for 
either the first three DFs (pink, naive response) or last three DFs (green, trained response). Strong 
preferences for the naive stimuli reflect a depressing response profile (Figure 1I and J). While most 
neurons did show tuning consistent with strong depression, there were neurons that showed an equal 
preference for naive and trained stimuli, or even stronger preference for the latter, indicating stable 
or potentiating response profiles. These non- depressing neurons were mostly contained in the dorsal 
regions of the brain, including the torus longitudinalis, cerebellum, and dorsal hindbrain. These results 
demonstrate that while the majority of neurons across the brain depress their responsiveness during 
habituation, a smaller population of neurons exists that show the opposite pattern.

Functional classification and anatomical localization of neuronal types 
observed during habituation learning
To explore the functional heterogeneity within the DF- tuned neurons, we used affinity propagation 
clustering. This method has the advantage that cluster numbers do not need to be defined before-
hand and instead attempt to identify the most representative response profiles (Förster et al., 2020). 
This identified 12 clusters that differed both in their adaptation to repeated DFs, as well as the shape 
of their response to the DF (Figure 2A and B).

We therefore use these two aspects of the response to label the clusters:
Adaptation Profile.

No adaptation =  noA  : cluster 1, 9, and 10
Weak depression =  weakD  : clusters 5, 6, and 11
Medium depression =  medD  : clusters 2, 3, and 7

colours. (D) Density of detected ROIs registered and plotted in the Z- Brain coordinate space. n = 1,050,273 ROIs across 34 larvae. (E) Cropped field 
of view used for plotting and analysing Ca2+ imaging data and approximate anatomical localizations of major brain areas: dien, diencephalon; mid- b, 
midbrain; cb, cerebellum; hind- b, hindbrain; io, inferior olive; ret, retina; tec, tectum. (F) Functional responses of neurons to 60 DFs at 1 min intervals, 
plotted as a clustered heatmap (‘rastermap’; Pachitariu et al., 2017, https://github.com/MouseLand/rastermap, copy archived at MouseLand, 2023) 
where rows represent individual neurons ordered by the similarities in their activity. Darker shades reflect increased activity. This clustering reveals 
neurons that are tuned to the DF stimuli (pink box) or motor events (green box). Dashed trace above the heatmap depicts the DF stimulus convolved 
with a kernel approximating H2B- GCaMP7f kinetics. (G) ROIs in an individual fish plotted based on their correlation and tuning to regressors defining 
either motor or DF stimulus events, highlighting the spatial distributions of these tunings across the imaged population. Plotted as a maximum intensity 
projection. (H) Same analysis as (G), but across the entire population of 34 larvae. (I) ROIs in an individual fish plotted based on their correlation and 
tuning to regressors defining either the first or last three DF stimuli. (J) Same analysis as (I), but across the entire population of 34 larvae. tl, torus 
longitudinalis.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Validation of motion analysis based on image artefacts during two- photon imaging.

Figure 1 continued

https://doi.org/10.7554/eLife.84926
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Figure 2. Characterization of functional response types during habituation learning. (A) Heatmap of the response profiles of ROIs categorized into 12 
functional clusters. n = 16,607 ROIs from 34 larvae. (B) Average z- scored fluorescence of each functional cluster plotted for the whole experiment (left 
column) and centred on each dark flash (DF) stimulus (right column), demonstrating the differences in both Adaptation Profiles and Response Shape for 
each cluster. Clusters were identified using Affinity Propagation clustering (affinity = Pearson correlation, damping = 0.9, preference = -9), and organized 
using hierarchical clustering, distance = complete, correlation. Dashed lines in the top panels are the DF stimulus convolved with a kernel approximating 
H2B- GCaMP7f kinetics, used as the regressor in the analysis. (C) Summed intensity projection of the ROIs belonging to each functional cluster in Z- Brain 
coordinate space depicting their physical locations in the brain. Projection images are normalized to the maximum value. (D) Heatmap depicting the 
density of each cluster that is found within different Z- Brain regions. (E) Correlogram calculated from the Pearson correlation in downsampled volumes 
for the ROI centroid positions for each cluster (see ‘Methods’). Hierarchical clustering, distance = complete, correlation. (F) Correlation between motor 
events and the Ca2+ traces for each ROI assigned to the functional clusters. dots = individual ROIs, bar height = 99.99999% confidence interval around 
the median value.

https://doi.org/10.7554/eLife.84926
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Strong depression =  strgD  : clusters 4 and 8
Potentiation =  Pot  : cluster 12

Response Shape.

On- response =  On  : clusters 1 and 2
Long/sustained response =  L  : clusters 3 and 4
Medium- length response =  M  : clusters 5, 6, and 9
Short/transient response =  S  : clusters 7, 8, 10, and 11

Yielding clusters:  1
noA
On  ,  2

medD
On  ,  3

medD
L   ,  4

strgD
L  ,  5

weakD
M  ,  6

weakD
M  ,  7

medD
S  ,  8

strgD
S  ,  9

noA
M  ,  10noA

S  ,  11weakD
S  , and  12Pot

M  
While these results indicate the presence of a dozen functionally distinct neuron types, such clus-

tering analyses will force categories upon the data irrespective if such categories actually exist. To 
determine if our cluster analyses identified genuine neuron types, we analysed their anatomical local-
ization (Figure 2C–E). Since our clustering was based purely on functional responses, we reasoned 
that anatomical segregation of these clusters would be consistent with the presence of truly distinct 
types of neurons. Indeed, we observed considerable heterogeneity both within and across brain 
regions. For example,  11weakD

S   was mostly restricted to medial positions within the optic tectum;  3
medD
L   

and  4
strgD
L   were more prevalent within motor- related regions of the brain including the tegmentum 

and hindbrain rhombomeres;  9
noA
M   was the most prominent cluster in the torus longitudinalis, consis-

tent with the presence of non- depressing signals in the area (Figure 1I and J).
We then quantified the similarity in the spatial relationships among the clusters by looking at the 

correlations in the positions of the ROIs in the Z- Brain (Figure 2E). This revealed similar hierarchical 
relationships to those identified functionally (Figure 2B), especially with respect to Response Shape, 
indicating that physical location is associated with functional response type.

Finally, since our functional analysis was performed purely based on correlations with the DF 
stimuli, we asked to what extent neurons belonging to each cluster were correlated with motor output 
(Figure 2F). This identified  4

strgD
L   as the most strongly correlated to motor output, consistent with its 

strong habituation profile and its localization within motor regions of the hindbrain. This indicates that 

 4
strgD
L   neurons likely occupy the most downstream positions within the sensorimotor network.

These results highlight a diversity of functional neuronal classes active during DF habituation. 
Whether there are indeed 12 classes of neurons or whether this is an over- or underestimate awaits a 
full molecular characterization. Independent of the precise number of neuronal classes, we proceed 
under the hypothesis that these clusters define neurons that play distinct roles in the DF response 
and/or its modulation during habituation learning.

Pharmacological screening to identify habituation modulators
We next used a pharmacological screening approach to both identify molecular mechanisms of habitu-
ation and further probe the habituating circuit. For this, we screened 1953 small- molecule compounds 
with known targets (Figure 3—source data 1), in conjunction with the high- throughput assay we 
previously established, which has a maximum throughput of 600 larvae/day (Figure  3A; Randlett 
et al., 2019). As we aimed to identify modulators specific for habituation, we included additional 
behavioural assays as controls, including the response to acoustic stimuli, the optomotor response 
(OMR), and the spontaneous swimming behaviour of the fish in the absence of stimulation (Figure 3B 
and C). In each 300- well plate, 40 groups of six larvae were treated in individual wells and compared 
to 60 vehicle- treated controls (Figure 3A). We chose these numbers based on a sub- sampling analysis 
that determined these numbers were sufficient to identify the effect of a known modulator of habitu-
ation (haloperidol; Randlett et al., 2019) at a false- negative rate of less than 0.05 (not shown), while 
allowing us to screen 80 compounds per experiment across two plates.

We were able to collect the full behavioural record of 1761 compounds (Figure 3D, Figure 3—
source data 2), indicating that the fish survived the treatment and maintained their ability to swim. 
Behavioural records for fish treated with each compound were compressed into a fingerprint (Rihel 
et al., 2010) – a vector representing the strictly standardized mean difference (SSMD) across 47 aspects 
of behaviour (see ‘Methods’). For measurements related to DF habituation behaviour, responses were 
time- averaged across three epochs chosen to highlight the changes in habituation: the naive response 
(first five DFs), the response during the remaining training flashes, and the re- test block 5 hr after 

https://doi.org/10.7554/eLife.84926
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Figure 3. Pharmacological screening for dark flash habituation modulators. (A) Screening setup to record larval zebrafish behaviour in 300- well plates, 
which are placed below a 31°C water bath that acts as a heated lid for the behaviour plates. Two 300- well plates are imaged in alternation using mirrors 
mounted on stepper motors. Fish are illuminated with infrared LEDs and imaged with a high- speed camera recording at 560 frames per second (fps). 
Visual stimuli are delivered by a rectangular ring of RGB LEDs, and acoustic stimuli are delivered via a solenoid mounted on the back of the water 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.84926
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training (Figure 3B). This was done across 10 different components of the DF response (probability of 
response, latency, displacement, etc.).

We found that 176 compounds significantly altered at least one aspect of measured behaviour, 
yielding a 9% hit rate (hit threshold of  |SSMD| ≥ 2 ). While the average effect was to suppress behavioural 
output ( SSMD = −0.20 ), which could reflect non- specific toxicity or a generalized inhibition of motor 
output, most small molecules induced both positive and negative changes in behavioural output, 
indicating that toxicity is not the primary phenotypic driver. While the false- negative rate is difficult to 
determine since so little is known about the pharmacology of the system, we note that of the three 
small molecules we previously established to alter DF habituation that were included in the screen 
– clozapine, haloperidol, and pimozide (Randlett et al., 2019) – the first two were identified among 
our hits while pimozide was lethal at the 10 µM screening concentration.

Correlational structure in the pharmaco-behavioural space
To explore the pharmaco- behavioural space in our dataset, we clustered the hits based on their 
behavioural phenotypes (Figure 4A). This strategy can identify compounds that share common phar-
macological targets or perhaps distinct pharmacological targets that result in convergent behavioural 
effects (Bruni et al., 2016; Rihel et al., 2010). Indeed, compounds known to target the same molec-
ular pathways often showed similar behavioural fingerprints lying proximal on the linkage tree, indi-
cating that our dataset contains sufficient signal- to- noise to recover consistent pharmaco- behaviour 
relationships.

Alternatively, compounds can be considered as tools to manipulate different aspects of brain 
function agnostic to their molecular mechanisms. Consequently, using similarities and differences 
among the induced alterations should uncover molecular and neural linkages among different 
behavioural outputs. Following this logic, the ability of a compound to co- modify different aspects of 
behaviour would reflect molecular and/or circuit- level dependencies. For example, visual behaviours 
that all depend upon photoreceptors should be similarly affected by any compounds that modu-
late phototransduction in these photoreceptors. We quantified these relationships by calculating the 
correlated effects on our different behavioural measurements across compounds (Figure 4B).

Consistent with our previous results highlighting uncorrelated learning across the behavioural 
components of the O- bend response during habituation (Randlett et  al., 2019), we found that 
different aspects of the response were independently affected pharmacologically, resulting in distinc-
tive correlated groupings within the correlogram. While we previously found that O- bend response 
probability and latency habituate independently in individual fish (Randlett et al., 2019), in our small- 
molecule screen data these appear to be tightly coupled (Figure 4B). The performance of the animals 
in the OMR assay under different treatments was also associated with O- bend probability and latency, 
suggesting that pharmacological modulation of vision or arousal could drive these correlations within 
the small- molecule screen dataset.

tank. Colours overlaid on the 300- well plate indicate the arrangement of small- molecule treatments and controls (yellow). (B) Habituation results in a 
progressive decrease in responsiveness to dark flashes repeated at 1 mi intervals, delivered in four training blocks of 60 stimuli, separated by 1 hr of rest 
(from 0:00 to 7:00). This epoch is separated into periods reflective of the naive response (first five stimuli, blue), and the remaining 235 stimuli during 
training (green). From 8:00 to 8:30, no stimuli are delivered and fish are monitored for spontaneous behaviour (yellow). From 8:30 to 9:00, fish are given 
acoustic stimuli via the solenoid tapping on the water bath (pink). From 10:00 to 11:00, fish are stimulated with alternating leftward and rightward motion 
using the RGB LEDs to induce the optomotor response and turning towards the direction of motion (light blue). Finally, at 12:00–13:00, larvae are given 
60 additional dark flashes during the test period (red). Same data as Figure 1B. (C) The strictly standardized mean difference (SSMD) is calculated across 
these different time periods, behaviours, and the different components of O- Bend behavioural habituation (Randlett et al., 2019). All compounds 
were dosed at 10 µM in 0.1% DMSO (n = 6 larvae), relative to 0.1% DMSO vehicle controls (n = 60 larvae). (D) These vectors are assembled across all 
screened compounds that were viable and did not cause death or paralysis of the larvae. Displayed as a hierarchically clustered heatmap of behavioural 
fingerprints (vectors of SSMD values). Clustering distance = ward, standardized Euclidean.

The online version of this article includes the following source data for figure 3:

Source data 1. Small- molecule library, Selleckchem Bioactive: FDA- approved/FDA- like small molecules.

Source data 2. Behavioural fingerprint parameter descriptions.

Source data 3. Behavioural fingerprints for viable compounds.

Figure 3 continued

https://doi.org/10.7554/eLife.84926
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Figure 4. Pharmaco- behavioural analyses of behaviour- modifying compounds. (A) Clustered heatmap of the behavioural fingerprints for the 176 
hits of the screen, showing at least one behaviour measure with  |SSMD| ≥ 2 . Clustering distance = ward, standardized Euclidean, colour/cluster 
threshold = 9.5. This led to the re- identification of haloperidol and clozapine as habituation modifiers (light blue arrows). (B) Clustered correlogram 
of the Pearson correlation coefficients for the different measured components of behaviour across hits (same data as A) revealing the independence 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.84926
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These analyses confirm habituation behaviour manifests from multiple distinct molecular mecha-
nisms that independently modulate different behavioural outputs.

Modulation of habituation by GABA, melatonin, and oestrogen 
signalling
For the remainder of the analyses, we decided to focus on the mechanisms leading to the habituation 
of response probability as this is the criterion for which it is easiest to identify the link between neural 
activity and behaviour, providing the best entry point for studying the circuit mechanisms of long- term 
habituation. To identify the most promising hits, we sought to identify compounds that:

1. Have minimal effects on the naive response to DFs, but strong effects during the training and/
or memoryretention periods. This would prioritize pathways that affect habituation, rather than 
simply DF responsiveness.

2. Have minimal effects on other aspects of behaviour, in order to exclude compounds that would 
alter generalized arousal, movement ability/paralysis, or visual impairment. Such compounds 
would strongly influence DF responsiveness, but likely independently of pathways related to 
habituation.

3. Show similar behavioural effects to other compounds tested that target the same molecular 
pathway. Such relationships can be used to cross validate, yet we note that our library choice 
was very broad, and target coverage is non- uniform. Therefore a lack of multiple hits targeting 
the same pathway should not be taken as strong evidence of a false positive.

This manual prioritization led to the identification of the GABAA/C receptor antagonists bicuculline, 
amoxapine, and picrotoxinin (PTX). PTX treatment had the strongest effects, with increased respon-
siveness to DFs during the training and test periods, indicative of defects in habituation (Figure 4Ci). 
Dose–response experiments confirmed a strong effect of PTX on inhibiting the progressive decrease 
in responsiveness during habituation learning at 1–10 µM doses (Figure 5A). Importantly, like the 
naive DF response, the probability of responding to an acoustic stimulus and the optomotor response 
(OMR) was not inhibited (Figure 5—figure supplement 1A). While strong GABAA/CR inhibition results 
in epileptic activity in larval zebrafish, we did not observe evidence of seizure- like behaviour at these 
doses, consistent with a partial GABAA/CR in our experiments and previous results (Bandara et al., 
2020). Therefore, we conclude that partial antagonism of GABAAR and/or GABACR is sufficient to 
strongly suppress habituation but not generalized behavioural excitability, indicating that GABA plays 
a very prominent role in habituation. This is consistent with a model in which the potentiation of inhi-
bition actively silences sensory- induced activity during habituation to suppress motor output (Cooke 
and Ramaswami, 2020; Ramaswami, 2014).

We next turned our attention to the upper portion of the clustered behavioural fingerprint graph 
(Figure  4A), where strong and relatively specific inhibition of responsiveness during training and 
testing were observed, indicative of enhanced habituation (Figure 4Cii, iii). Among the hits observed 
here were multiple agonists of both melatonin and oestrogen receptors, indicating that hormonal 
signalling may play a prominent role in habituation. Dose–response studies with melatonin confirmed 
strong potentiation of habituation (Figure 5B). Melatonin did cause a decrease in spontaneous move-
ment behaviour, consistent with its role in arousal/sleep regulation in zebrafish and other vertebrates 
(Gandhi et al., 2015; Zhdanova et al., 2001), yet melatonin did not inhibit the naive response to DFs, 
the responsiveness to acoustic stimuli or OMR performance (Figure 5B, Figure 5—figure supple-
ment 1B). Melatonin’s effect on habituation was also most prominent for the probability of response 
and did not strongly alter habituation for displacement (Figure 5—figure supplement 1F), indicating 
that it does not cause generalized sedation but modulates specific aspects of behaviour at these 
doses, including increasing habituation of the probability of response.

We similarly validated that the oestrogen receptor agonists ethinyl estradiol and hexestrol poten-
tiated habituation at 5–100 µM and 1–10 µM doses, respectively (Figure 5C and D). Ethinyl estradiol 

or co- modulation of behaviours. Clustering distance = average, correlation, colour/cluster threshold = 1.5. (C) Subsets of clustered heatmap from 
(A), highlighting the similar phenotypes exhibited by (i) GABA receptor antagonists and (ii, iii) melatonin receptor agonists, oestrogen receptor agonists, 
progesterone receptor agonists, and peroxisome proliferator- activated receptor alpha (PPARα) agonists. Heatmap is cropped to the first three columns 
of (A), depicting the strictly standardized mean difference (SSMD) of response probability relative to vehicle controls.

Figure 4 continued
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strongly suppressed movement rates at these doses, and both treatments suppressed acoustic 
responsiveness and OMR performance at doses ≥ 10 µM (Figure 5—figure supplement 1C and D). 
Thus, it is less clear how specific or generalized oestrogen receptor agonism is on behaviour, although 
the effective doses of hexestrol for influencing habituation (1–5 uM) were lower than those that signifi-
cantly affected other behaviours (10 uM). Nevertheless, we decided to focus on PTX and melatonin 
for the remaining experiments.

Our screening approach identified both expected (GABA) and unexpected (melatonin, oestrogen) 
pathways that strongly modulate habituation of responsiveness. We also implicated other pathways in 
habituation, including progesterone and PPARα (Figure 4C), and identified compounds that strongly 
modify other aspects of behaviour (OMR, acoustic and spontaneous behaviour). These hits can be 
mined for future projects investigating the molecular basis of behaviour.

Pharmacological manipulations of functional circuit properties during 
habituation
Our Ca2+ imaging experiments identified 12 distinct functional classes of neurons during habitua-
tion learning, but it is unclear how these might be organized in a circuit. Based on the diversity of 
functional response profiles identified, it is clear that solving this circuit will take considerable further 
work. As a starting point in this long- term effort, we used the pharmacological manipulations as these 
treatments provide us with tools to ask how treatments that potently alter habituation behaviour also 
alter the functional properties of neurons. We compared the Ca2+ activity patterns after treatment 
with vehicle (0.1% DMSO), PTX, or melatonin (Figure 6). At the behavioural level, we found a trend 
indicating that we were able to manipulate habituation pharmacologically in our tethered imaging 
assay, though this was very subtle (Figure 6A). This discrepancy relative to the very strong behavioural 

Figure 5. Confirmed pharmacological modulators of habituation. Dose–response studies for (A) picrotoxinin, (B) melatonin, (C) ethinyl estradiol, and 
(D) hexestrol. Displayed for each treatment are (i) behavioural fingerprint for the original screen data (10 uM) and the dose–response data. (ii) Original 
screen data for the probability of response to dark flash (DF) stimuli. Each dot is the probability of response to one flash. Lines are smoothed in time 
with a Savitzky–Golay filter (window = 15 stimuli, order = 2). (iii) Dose–response data for the probability of response, plotted as in (ii).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Pharmacological manipulation of control behaviours and response displacement during habituation.

https://doi.org/10.7554/eLife.84926
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effects in freely swimming animals (Figure 5) likely results from the head- restrained protocol, which 
itself strongly inhibits behavioural output. Yet, since we did observe a trend in behavioural data, we 
proceeded under the assumption that the compounds were having the desired effects.

As PTX and melatonin have opposing effects on habituation behaviour, we reasoned that these 
two treatments should have opposite effects in the circuit, with PTX inhibiting depression and 
melatonin promoting depression. Indeed, melatonin has been found to increase the effects of 
GABA, and so such a relationship could be direct (Cheng et  al., 2012; Niles et  al., 1987). In 
contrast to this straightforward hypothesis, what we observed was considerably more complex. We 
did not observe alterations of the average response profiles of individual neuronal classes, which 
remained indistinguishable after the treatments (Figure 6—figure supplement 1C- D). Instead, the 

Figure 6. Picrotoxinin and melatonin alter the proportions of functionally identified neurons. (A) Percent habituation for larvae during Ca2+ imaging, 

calculated as 
 
%Habituation = 100 × (1 −

P(Resp31→60)
0.5 × (P(Resp1→30) + P(Resp31→60))

)
 
 (B) Heatmap of response profiles of ROIs categorized into the 12 functional 

clusters from larvae treated with DMSO (vehicle control, n = 428,720 total ROIs in 14 larvae), Picrotoxinin (PTX, 10 uM, n = 271,037 total ROIs in 9 
larvae), or melatonin (1 uM, n = 350,516 total ROIs in 11 larvae). (C) Proportion of neurons belonging to each functional cluster across treatment groups. 
Distributions for violin plots are bootstrapped from 5000 replicates. (D) Same data as (C), only showing the data for PTX vs DMSO vehicle control, 
reordered to reflect the cluster Adaptation Profiles grouped by cluster Response Shape.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Mean response of functionally identified clusters after different pharmacological treatments.

https://doi.org/10.7554/eLife.84926
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proportion of neurons that belonged to the different classes was altered (Figure 6B–D). Therefore, 
the pharmacological manipulations did not alter the activity of neurons in such a way as to alter the 
average activity states of populations, but instead the proportion of neurons belonging to different 
populations changed. This may point to fixed and relatively inflexible processing strategies that 
the brain is using in the context of DF habituation which constrain the possible functional response 
types.

The effect of PTX on cluster reassignment generally tended towards weaker depression, increasing 
the proportion of cells falling into the weaker depressing classes at the expense of strongly depressing 
classes for a given response shape (Figure 6D). This pattern was most clear in the classes with ‘short’ 
and ‘long’ Response Shapes, which are those that included the most strongly depressed classes of 
neurons.

Based on the hypothesis that melatonin and GABA cooperate during habituation, we expected PTX 
and melatonin to have opposite effects. This clearly does not fit with our observations: for example, 
the size of the  12Pot

M   neuron population was increased by both PTX and melatonin (Figure 5C). While 
habituation of the probability of response is oppositely modulated by PTX and melatonin, this is not 
true of behaviour globally – the behavioural fingerprints of melatonin and GABA are not opposites 
(Figure 5A and B) and opposing effects are not seen for the habituation of displacement (Figure 5—
figure supplement 1E and F). Therefore, a lack of coherent shifts across the entire neural population 
when applying these treatments is expected. However, opposite effects of PTX and melatonin were 
observed for  4

strgD
L   neurons (Figure 6C), which we found to be most strongly correlated with motor 

output (Figure 2F). Therefore, this class might be most critical for habituation of response probability.
Combined, these experiments reveal that pharmacological manipulations that affect habituation 

behaviour manifest in complex functional alterations in the circuit. These effects cannot be captured 
by a simple model, and considerable additional knowledge of the circuit, including the connectivity 
and signalling capacity of different neurons, will be necessary to understand these dynamics.

Identification of GABAergic neuron classes in the habituating circuit
Since our pharmacological experiments point to the importance of GABAergic inhibition in habitua-
tion, we asked which functional classes of neurons are GABAergic? An obvious model for habituation 
would assign a GABAergic identity to the  12Pot

M   neurons that potentiate their responses, and thus 
could act to progressively depress the responses of other neuronal classes. We began with virtual 
co- localization analyses with 3D atlases to identify candidate molecular markers for functionally iden-
tified neurons. Such a strategy can be powerful to generate hypotheses from brain- wide imaging 
data, provided sufficient stereotypy exists in the positioning of neurons, and the relevant marker 
exists in the atlas (Dunn et  al., 2016; Randlett et  al., 2015). Therefore, we analysed the spatial 
correlations for markers contained in the Z- Brain (Randlett et  al., 2015), Zebrafish Brain Browser 
(Gupta et  al., 2018; Marquart et  al., 2017; Tabor et  al., 2018), and mapZebrain atlases (Kunst 
et al., 2018; Shainer et al., 2022). We identified markers showing the highest spatial correlations with 
any of our functional clusters (corr. > 0.15, n = 89 of 752 markers) and organized these hierarchically 
(Figure 7A). GABAergic reporter lines based on the gad1b promoter were located in a region of the 
hierarchy showing greatest spatial similarity with  10noA

S   and  11weakD
S  (Figure 7B–E). An enrichment along 

the medial tectum is common to markers in this region of the hierarchy, where the highest density of 
GABAergic neurons within the tectum resides.

To confirm that  10noA
S   and  11weakD

S   classes are GABAergic, we imaged the response of neurons 
in Tg(Gad1b:DsRed); Tg(elavl3:H2B- GCaMP6s) double transgenic larvae and classified neurons as 
gad1b- positive or -negative based on DsRed/GCaMP levels (Figure 7F and G). Indeed, we saw a 
heterogeneous distribution of gad1b- positive neurons across functional clusters, including a signifi-
cant enrichment in not only  10noA

S   and  11weakD
S  , but also the other two clusters with the ‘short’ Response 

Shape ( 7
medD
S   and  8

strgD
S  ). The remaining clusters either showed no significant bias, indicating that they 

contain mixed populations, or a significant depletion of gad1b- positive cells, suggesting that they 
comprise mostly of excitatory or neuromodulatory neurons ( 3

medD
L   and  12Pot

M  ).
These experiments indicate that GABAergic neurons in the habituating circuit are not character-

ized by their Adaptation Profile (other than non- potentiating), and instead have a characteristic ‘short’ 
Response Shape, perhaps reflecting a transient bursting style of activity relative to other neuronal 
types that exhibit more sustained firing patterns. This lack of coherence in adaptation profile may 

https://doi.org/10.7554/eLife.84926


 Research article      Neuroscience

Lamiré et al. eLife 2023;12:RP84926. DOI: https://doi.org/10.7554/eLife.84926  14 of 25

Figure 7. Identification of GABAergic neuronal classes. (A) Hierarchically clustered heatmap depicting the correlation of markers aligned to the Z- Brain 
atlas with the spatial arrangement of the 12 functional clusters (distance = complete, correlation). Correlation values are z- scored by rows to highlight 

the cluster(s) most strongly correlated or anti- correlated with a given marker. The subset of the hierarchy containing the gad1b- reporters is coloured 

in purple. (B–D) Normalized summed intensity projections of (B)  10noA
S  , (C)  11weakD

S  , (D) TgBAC(gad1b:GFP) (Satou et al., 2013), Z- Brain Atlas, and (E) 
nns26, aka TgBAC(gad1b:LOXP- RFP- LOXP- GFP) (Satou et al., 2013), mapZebrain Atlas. (F) Two- photon imaging of Tg(Gad1b:DsRed);Tg(elavl3:H2B- 
GCaMP6s) larvae depicting the raw data for each channel (top), and the ratio of Gad1b/GCaMP6s fluorescence in each ROI functionally identified using 
suite2p. (G) ROIs imaged in double transgenic larvae are assigned a cluster identity based on their correlation to the cluster mean trace and classified 
as Gad1b- positive based on a DsRed/GCaMP6s ratio of greater than 0.25. Dotted line = expected proportion based on total number of cells classified 

Figure 7 continued on next page

https://doi.org/10.7554/eLife.84926


 Research article      Neuroscience

Lamiré et al. eLife 2023;12:RP84926. DOI: https://doi.org/10.7554/eLife.84926  15 of 25

explain why global manipulations of GABAergic signalling through PTX have complex manifestations 
in the functional properties of neurons (Figure 6D).

Discussion
Molecular mechanisms of DF habituation
To explore the molecular mechanisms of habituation, we performed a small- molecule screen testing 
for effects on DF habituation behaviour. Analyses of the correlated effects of drugs across different 
aspects of behaviour (Figure  4) are consistent with our previous results, indicating that habitua-
tion results from multiple molecularly independent plasticity processes which act to adapt different 
aspects of the DF response during habituation (Randlett et al., 2019). Here we focused our analysis 
on those pharmacological agents and pathways that strongly and relatively specifically modulated 
habituation when measuring response probability. We found that inhibition of GABAA/C receptors 
using PTX reduced habituation learning. GABA is the main inhibitory neurotransmitter in the zebrafish 
brain, and deficits in GABA signalling lead to epileptic phenotypes (Baraban et al., 2005). We were 
fortunate that our screening concentration (10  µM) did not cause seizures, but was still sufficient 
to inhibit habituation. This implies that the habituation circuit is exquisitely sensitive to changes in 
GABA signalling at levels well below the threshold required to drastically change excitatory- inhibitory 
balances. We cannot rule out the possibility that off- targets of PTX or subtle non- specific changes in 
excitatory/inhibitory balance alter habituation behaviour. However, the lack of strong modulation of 
other behaviours, including the response to acoustic stimuli or the optomotor response (Figure 5—
figure supplement 1A), suggests that GABAergic inhibition plays a crucial role in the process of DF 
habituation.

A critical role for GABA in habituation is also consistent with data from Drosophila, where both 
olfactory and gustatory habituation have been linked to GABAergic interneurons (Das et al., 2011; 
Paranjpe et  al., 2012; Trisal et  al., 2022). Therefore, this circuit motif of increasing inhibition to 
drive habituation may be a conserved feature of habituation, which would allow for a straightforward 
mechanism for habituation override during dishabituation via dis- inhibition (Cooke and Ramaswami, 
2020; Trisal et al., 2022).

Our screen also identified that neurohormonal signalling is critical for habituation, where melatonin 
and oestrogen receptor agonists potently increase habituation learning rate. The role of oestrogens 
in learning and memory is well established (Luine et  al., 1998; Nilsson and Gustafsson, 2002). 
Though its role in habituation is less well explored, it has previously been shown to increase memory 
retention for olfactory habituation in mice (Dillon et al., 2013). To our knowledge, melatonin has not 
previously been implicated in habituation, though it has been implicated in other learning paradigms 
(El- Sherif et al., 2003; Jilg et al., 2019). Notably, melatonin was shown to block operant learning at 
night in adult zebrafish (Rawashdeh et al., 2007), and therefore melatonin appears to be able to both 
promote or inhibit plasticity in zebrafish, depending on the paradigm.

While melatonin and oestrogen were not strong candidates for involvement in DF habituation plas-
ticity before our screen, their previous associations with learning and memory reinforce the idea that 
these molecules play critical roles in plasticity processes. In support of this idea, we have previously 
shown that habituation is regulated in a circadian- dependent manner (Randlett et al., 2019), and 
both melatonin and oestrogen levels fluctuate across the circadian cycle (Alvord et al., 2022; Gandhi 
et al., 2015; Zhdanova et al., 2001), suggesting that either or both of these pathways may act to 
couple the circadian rhythm with learning performance.

Finally, approximately 2% of the US population use melatonin as a sleep aid (Li et al., 2022), and a 
substantial proportion of US women take oestrogen as part of either oral contraceptives or hormone 
replacement therapy. Therefore, understanding the roles these molecules play in neuroplasticity is a 
clear public health concern.

as Gad1b- positive. *p<0.05, Chi- square test with Bonferroni correction. Distributions for violin plots calculated by bootstrapping 5000 replicates. n = 
1835 ROIs in six larvae.

Figure 7 continued
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Circuit mechanisms of DF habituation
Based on behavioural experiments, we previously postulated that multiple plasticity loci coop-
erate in the habituating DF circuit, arranged in both parallel and series within the circuit (Randlett 
et al., 2019). Here, our Ca2+ imaging experiments identified a diverse range of neuronal Adapta-
tion Profiles, including non- adapting and potentiating neurons spread throughout sensory- and 
motor- related areas of the brain. Thus, non- habituated signals are transmitted throughout the brain, 
consistent with a distributed learning process. Such a model is further supported with brain- wide 
imaging data for short- term habituation to looming stimuli, where distributed neurons were identi-
fied that showed differential rates of habituation (Marquez- Legorreta et al., 2022). It is important 
to point out that Marquez- Legorreta et al. did not observe non- adapting or potentiating neurons 
in their experiments. This may be due to the differences in analysis methods or could highlight a 
difference between short- and long- term habituation circuit mechanisms, the latter of which may 
rely on more complex circuit mechanisms involving both potentiation and suppression of neuronal 
responses.

We also observed classes exhibiting an On- response profile ( 1
noA
On   and  2

medD
On  ). These neurons fire 

at the ramping increase in luminance after the DF, making it unlikely that they play a role in aspects 
of acute DF behaviour we measured here. These neurons exist in both non- adapting and depressing 
forms, suggesting a yet unidentified role in behavioural adaptation to repeated DFs.

While we have insufficient anatomical data to constrain circuit connectivity models that drive DF 
habituation, here we demonstrate the use of pharmacology, functional imaging, and neurotransmitter 
classifications to constrain our models. Specifically, pharmacology indicated a role for GABA and 
melatonin in habituation, and our functional imaging identified distinct classes of neuronal types 
in the DF circuit, including potentiating neurons ( 12Pot

M  ). These results point to a model where  12Pot
M   

neurons are GABAergic and thus progressively inhibit the other neuronal classes, and that perhaps 
this effect is bolstered by melatonin. However, in silico co- localization analyses and double transgenic 
Ca2+ imaging identified  12Pot

M   neurons as predominantly non- GABAergic, inconsistent with this simple 
model. Instead, we found that the GABAergic neurons in the circuit are characterized by their short 
burst of activity to the stimulus onset. If the GABAergic neurons are not increasing in their firing rates 
but do drive habituation, then perhaps it is the potentiation of GABAergic synapses that drives habit-
uation. This is a somewhat unexpected model as studies of long- term synaptic plasticity (e.g. LTP and 
LTD) have overwhelmingly focused on plasticity at excitatory synapses. Although a functional link to 
behaviour is less well established, long- term inhibitory synaptic plasticity has been well documented, 
including inhibitory (i)- LTP and i- LTD (Castillo et al., 2011). Alternatively, there may be a key minority 
subset of  12Pot

M   neurons that are GABAergic and exert a strong influence over the rest of the circuit 
driving depression and habituation.

We also found that the same pharmacological treatments that result in strong alterations to habitua-
tion behaviour in freely swimming larvae (Figure 5) resulted in relatively subtle and complex functional 
alterations in the circuit (Figure 6). Making direct comparisons between freely swimming behaviour 
and head- fixed Ca2+ imaging is always challenging due to the differences in behaviour observed in 
the two contexts, and therefore our failure to identify a clear logic in these experiments may have 
technical explanations that will require approaches to measure neural activity from unrestrained and 
freely behaving animals to resolve (Kim et al., 2017). Alternatively, these results are again consistent 
with the idea that habituation is a multidimensional and perhaps highly non- linear phenomenon in the 
circuit, which cannot be captured by a simple model.

Circuit loci of DF habituation
Where in the brain does habituation take place? As discussed above and previously, our data is 
inconsistent with a single locus of plasticity (Randlett et al., 2019). Instead, we propose that plas-
ticity is distributed throughout the circuit. Since PTX inhibits most aspects of habituation learning 
(Figure 5Ai), these all may involve GABAergic motifs. Moreover, the different functional classes of 
neurons are distributed through sensory- and motor- related areas of the brain, consistent with the 
notion that habituation plasticity occurs in a very distributed manner. While distributed, there are 
clear associations between anatomical location and functional neuron type (Figure 2A–E), indicating 
that there is some degree of regional logic to the localization of Adaptation Profiles. For example, 

 5
weakD
M   and  6

weakD
M   are the most prevalent in the pretectum and mostly absent from the tegmentum and 
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posterior hindbrain, whereas  3
medD
L   and  4

strgD
L   are numerous in tegmentum and posterior hindbrain, 

and thus likely occupy more downstream positions in the sensorimotor circuit.
The tectum is one of the largest brain areas in larval zebrafish and is directly innervated by nearly 

all retinal ganglion cells (Robles et al., 2014). Therefore, the tectum is a prime candidate for imple-
menting DF habituation for anatomical reasons. In further support of this notion, the neurons we have 
identified as GABAergic and propose to be driving habituation ( 7

medD
S  ,  8

strgD
S  ,  10noA

S  , and  11weakD
S  ) are 

concentrated in the tectum (Figure 2C and D). The tectum contains multiple anatomically distinct 
types of GABAergic neurons, most of which are locally projecting interneurons (SINs - superficial inter-
neurons, ITNs - intertectal commisural neurons, and PVINs - periventricular interneurons), although 
GABAergic projection neurons have been observed with axons projecting to the anterior hindbrain 
(Gebhardt et al., 2019; Martin et al., 2022; Nevin et al., 2010; Robles et al., 2011). Therefore, we 
expect that our GABAergic classes correspond to subsets of these GABAergic tectal neurons, which 
is testable using genetic approaches based on marker co- expression and/or single- cell morphometric 
and transcriptomic analyses.

Beyond the tectum, conspicuous neuronal clustering was observed in the inferior olive and cere-
bellum, which have been implicated in motor- related learning behaviours in larval zebrafish (Ahrens 
et al., 2012; Lin et al., 2020; Markov et al., 2021). Both structures contained many stimulus- tuned 
neurons (Figure 1I), and non- adapting ( 1

noA
On  ,  9

noA
M   and  10noA

S  ) and potentiating ( 12Pot
M  ) neurons were 

among the most concentrated in the cerebellum (Figure 2C and D). Non- adapting  9
noA
M   neurons were 

also prominent in the torus longitudinalis. The torus longitudinalis has recently been implicated in 
the binocular integration of luminance cues (Tesmer et al., 2022), and therefore is ideally placed to 
influence habituation to whole- field stimuli like DFs.

Collectively, our brain- wide imaging data indicate that the adaptations underlying habituation span 
many regions of the brain, and therefore a comprehensive model will need to span many regions of 
the brain in order to explain the neural and behavioural dynamics underlying habituation learning.

Conclusion
Habituation is the simplest form of learning, yet despite its presumed simplicity a model of how this 
process is regulated in the vertebrate brain is still emerging. Here we have combined two methods 
offered by the larval zebrafish model: whole- brain functional imaging and high- throughput behavioural 
screening. By applying these methods to long- term habituation, we identified and validated pharma-
cological agents that strongly modulate habituation learning, and distinct classes of neurons that 
are activated by DFs and adapt their activity during learning. The systematic datasets we generated 
contain large amounts of additional information that await future validation and integration into our 
understanding of DF habituation. Nonetheless, the diversity of molecular pathways and functional 
neuronal types we have identified here indicates that considerable biological complexity exists that 
awaits discovery within the ‘simplest’ form of learning.

Methods
Animals
All experiments were performed on larval zebrafish at 5 days post fertilization (dpf), raised at a density 
of ≈1 larvae/mL of E3 media in a 14:10  hr light/dark cycle at 28–29°C. Wild- type zebrafish were 
of the TLF strain (ZDB- GENO- 990623- 2). Transgenic larvae used were of the following genotypes: 
Tg(elavl3:H2B- GCaMP7f)jf90 (Yang et al., 2021), Tg(elavl3:H2B- GCaMP6s)jf5 (Freeman et al., 2014), 
and Tg(gad1b:DsRed)nns26 (Satou et  al., 2013). Zebrafish were housed, cared for, and bred at the 
Harvard MCB, UPenn CDB, and Lyon PRECI zebrafish facilities. All experiments were done in accor-
dance with relevant approval from local ethical committees at Harvard University, the University of 
Pennsylvania, and the University of Lyon.

High-throughput screening setup and protocol
Larvae were assayed for behaviour in 300- well plates using the apparatus described previously 
(Randlett et  al., 2019). Briefly, each well is 8  mm in diameter and 6  mm deep, yielding a water 
volume of ≈300 uL. Behaviour plates are suspended below a water bath kept at 31°C, which acts 
as a heated lid to prevent condensation and maintains the water temperature in the well at 29°C. 

https://doi.org/10.7554/eLife.84926
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Behaviour was tracked using a Mikrotron CXP- 4 camera, Bitflow CTN- CX4 frame grabber, illuminated 
with IR LEDs (TSHF5410, digikey.com). Visual stimuli were delivered via a ring of 155 WS2812B RGB 
LEDs (144LED/M, aliexpress.com). For a DF stimulus, the LEDs were turned off for 1 s, and then the 
light intensity was increased linearly to the original brightness over 20 s. The optomotor response was 
induced by illuminating every eighth LED along the top and bottom of the plate, and progressively 
shifting the illuminated LED down the strip, resulting in an approximately sinusoidal stimulus, 5.5 cm 
peak to peak, translating at 5.5 cm/s. Direction of motion was switched every 30 s, for a total testing 
period of 1 hr, and performance was scored as the average change in heading direction towards the 
direction of motion during these 30 s epocs. Acoustic tap stimuli were delivered using a Solenoid 
(ROB- 10391, Sparkfun). The behavioural paradigm was designed to be symmetrical such that 1 hr 
worth of stimulation was followed by 1 hr worth of rest (Figure 1B), allowing us to alternate the view of 
the camera between two plates using 45° incidence hot mirrors (43- 958, Edmund Optics) mounted on 
stepper motors (Figure 1A, ROB- 09238, Sparkfun), driven by an EasyDriver (ROB- 12779, Sparkfun).

Apparatus was controlled using arduino microcontrollers (Teensy 2.0 and 3.2, PJRC) interfaced 
with custom- written software (Multi- Fish- Tracker), available at https://github.com/haesemeyer/Multi-
Tracker, (copy archived at Haesemeyer, 2023).

The protocol for assessing behaviour (Figures 1B and 3B) consisted of DFs repeated at 1 min inter-
vals, delivered in four training blocks of 60 stimuli, separated by 1 hr of rest (from 0:00 to 8:00, hr:min 
of the protocol). For analyses, this epoch is separated into periods reflective of the naive response 
(first five stimuli), and the remaining 235 stimuli during training. From 8:00 to 8:30, no stimuli are 
delivered and fish are monitored for spontaneous behaviour. From 8:30 to 9:00, fish are given acoustic 
stimuli, and from 10:00 to 11:00 fish are assayed for the optomotor response and turning towards the 
direction of motion (light blue). Finally, at 12:00–13:00, larvae are given 60 additional DFs during the 
test period (red).

Behavioural analyses
The behaviour of the fish was tracked online at 28 Hz, and 1- s- long videos at 560 Hz were recorded 
in response to DF and Acoustic Tap stimuli. Offline tracking on recorded videos was performed 
in MATLAB (MathWorks) using the script ‘TrackMultiTrackerTiffStacks_ParallelOnFrames.m’, as 
described previously, to track larval posture (Randlett et al., 2019). Tracks were then analysed using 
Python. Analysis code is available at https://github.com/owenrandlett/lamire_2022, (copy archived at 
Randlett, 2023).

Responses to DFs and taps were identified as movement events that had a bend amplitude 
greater than 3 rad and 1 rad, respectively. Behavioural fingerprints were created by first calculating 
the average value for each fish reflecting either the DF response during the specified time period 
(naive = DFs 1–5, training = DFs 6–240, test = DFs 241–300) or the average response during the 
entire stimulus period (Acoustic Taps, OMR, Free Swimming). Periods where the tracking data was 
incomplete were excluded from the analysis. DFs where larvae did not respond were excluded from 
the behavioural components other than the probability of response. The SSMD was then calculated 
for each of these average fish values for the compound- treated larvae relative to the vehicle (DMSO) 
control (Figure 3C). The threshold for determining hit compounds was set at  |SSMD| ≥ 2 . These anal-
yses were performed using Analyze_MultiTracker_TwoMeasures.py.

Hierarchical clustering (Figures 3D and 4A–C) was performed using SciPy (Virtanen et al., 2020). 
Correlations across different behavioural measures (Figure 4B) were calculated computing all pairwise 
comparisons for each behavioural measure in the SSMD fingerprint across the 176 hit compounds.

Further details and code for the analyses used to create the figure panels are provided in the 
following notebook: 2022_LamireEtAl_BehavFigs.ipynb. Analyses made use of open- source Python 
packages, including NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), matplotlib (Hunter, 
2007), seaborn (Waskom, 2021), and open- cv (Bradski, 2000).

Pharmacology
Compounds were prepared as 1000× frozen stock solutions in DMSO. Stock solutions were initially 
diluted 1:100 in E3, yielding a 10× solution. Then, 30 uL of this solution was pipetted into the wells, 
yielding a 1× compound solution in 0.1% DMSO (Sigma). Vehicle treatment followed the same 
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protocol using pure DMSO. Larvae were incubated in compound solution for between 30 and 90 min 
prior to behavioural testing.

The small- molecule compound library (Selleckchem Bioactive: FDA- approved/FDA- like small mole-
cules Figure 3—source data 1) was obtained from the UPenn High- Throughput Screening Core. 
The library concentration was 10  mM, and thus all compounds were screened at approximately 
10 µM. For subsequent pharmacological experiments, chemicals were obtained from picrotoxinin: 
Sigma, P- 8390; melatonin: Cayman, 14427; Sigma, M5250; ethinyl estradiol: Cayman, 10006486; and 
hexestrol: Sigma, H7753.

Microscopy
Imaging was performed on 5 dpf larvae, mounted tail- free in 2% LMP agarose (Sigma A9414) in 
E3, using a 20× 1.0 NA water dipping objective (Olympus). Volumetric imaging (Figures 1, 2, and 
6) was performed at 930 nm on a Bruker Ultima microscope at the CIQLE imaging platform (Lyon, 
LYMIC) using a resonant scanner resonant scanner over a rectangular region of 1024 × 512 pixels 
(0.6 µm x/y resolution) and piezo objective mount for fast z- scanning. Imaging sessions began by 
taking an ‘Anatomy Stack’ consisting of 150 slices at 1 µm z- steps, summed over 128 repeats (imaging 
time ≈11 min). This served as the reference stack used for alignment to the Z- Brain atlas and detect 
Z- drift in the imaging session (see below). The functional stack consisted of 12 slices separated 
at 10  µm steps, thus covering 120  µm in the brain acquired at 1.98  Hz. To image Tg(elavl3:H2B- 
GCaMP6s);Tg(gad1b:DsRed) double transgenic larvae (Figure 7), we used a custom- built two- photon 
microscope (Haesemeyer et al., 2018), imaging 512 × 512 images (0.98 µm x/y resolution) at 1.05 Hz. 
The anatomy stack was taken at 2 µm step sizes for both the green and red channels in the dark. 
Functional imaging was performed only on the green/GCaMP channel since the red stimulus LED was 
incompatible with DsRed imaging.

When developing this protocol, we determined that substantial shifts of more than a cell- body 
diameter (5 uM) in the Z- plane are common during the ≈1.2 hr of imaging. We determined this by 
comparing the sum of the functional image planes during five equally sized time epochs (1540 frames 
per epoch), aligned to the ‘Anatomy Stack,’ using ‘phase_cross_correlation’ in the scikit- image library 
(van der Walt et al., 2014). This allowed us to quantify shifts in the imaging plane as shifts in this 
alignment. These tended to occur within the first hour of imaging; therefore, we performed an hour of 
imaging of this functional stack before beginning the DF stimulation protocol to allow the preparation 
to settle under imaging conditions. DFs were delivered using a 3 mm red LED mounted above the 
fish, controlled by an Arduino Nano connected to the microscope GPIO board and the Prairie View 
software to deliver pulses of darkness consisting of 1 s light off, 20 s linear ramp back to light on, 
delivered at 60 s intervals.

Even with this pre- imaging protocol, z- shifts were still observed in a considerable number 
of fish. Since our habituation- based analysis is focused on how individual neurons change their 
responses over time, shifts in the z- plane are extremely problematic as they are not correctable 
post- acquisition and can result in different neurons being imaged at individual voxels. This could 
easily be confused for changes in functional responses over time during habituation. Therefore, any 
fish showing a z- drift of greater than 3 µm was excluded from our analysis. Stable z- positioning was 
further confirmed by manual inspection of the eigen images in the imaging time course using ‘View 
registration metrics’ in suite2p to confirm that these do not reflect z- drift. Of the 56 larvae imagined 
in total, 22 were excluded, leaving 34 included. Larvae were treated with 0.1% DMSO, picrotoxinin 
(PTX, 10 uM), or melatonin (1 uM) approximately 1 hr before imaging. These fish were analysed as 
a single population (Figures 1 and 2) and separately to determine the effects of the treatments 
(Figure 6).

To quantify responses to the DF stimuli, we used motion artefacts in the imaging data to identify 
frames associated with movements (Figure 1—figure supplement 1). Motion artefact was quantified 
using the ‘corrXY’ parameter from suite2p, which reflects the peak of phase correlation comparing 
each acquired frame and reference image used for motion correction. The ‘motion power’ was quan-
tified as the standard deviation of a three- frame rolling window, which was smoothed in time using a 
Savitzky–Golay filter (window length = 15 frames, polyorder = 2). A response to a DF was defined as 
a ‘motion power’ signal greater than 3 (z- score) occurring within 10 s of the DF onset and was used to 
quantify habituation in the head- embedded preparation (Figure 6A).

https://doi.org/10.7554/eLife.84926
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Ca2+ imaging analysis
ROIs were identified using suite2p (Pachitariu et  al., 2017) using the parameters outlined in  
RunSuite2p_BrukerData_ScreenPaper.py and RunSuite2p_MartinPhotonData_ScreenPaper.py scripts 
for the data from the Bruker Ultima microscope (Figures 5–7) and custom- built two- photon micro-
scope (Figure 7F and G), respectively. These ROIs mostly reflected individual neuronal nuclei/soma. 
The clustered heatmap image of neural activity (Figure 3F) was generated using the suite2p GUI using 
the ‘Visualize selected cells’ function and sorting the neurons using the rastermap algorithm (Pachi-
tariu et al., 2017, https://github.com/MouseLand/rastermap, copy archived at MouseLand, 2023). 
The imaging planes were then aligned to the anatomical stack taken before functional imaging using 
‘phase_cross_correlation’ in the scikit- image library (van der Walt et al., 2014). For the volumetric 
data, the anatomical stack was then aligned to the Z- Brain atlas coordinates using CMTK, and ROI 
coordinates were transformed into Z- Brain coordinates using streamxform in CMTK. These steps were 
performed using Bruker2p_AnalyzePlanesAndRegister.py.

To identify ROIs that were correlated with the stimulus, we used a regression- based approach (Miri 
et al., 2011), where we identified ROIs that were correlated with vectors representing the time course 
of the DF stimuli convolved with a kernel approximating the slowed H2B- GCaMP time course with 
respect to neuronal activity. These regressors reflected either the entire 21 s DF stimulus, or only the 
onset of the flash, and either the first three, last three, or all 60 flashes (six regressors in total). To iden-
tify neurons correlated to motor output, we took advantage of the plane- based registration statistics 
calculated by suite2p. Specifically, the ‘ops[’corrXY’]’ metric, which reflects the correlation of each 
registered image frame with the reference image. We reasoned that movements would cause image 
artefacts and distortions that would be reflected as a transient drop in these correlations. Indeed, we 
confirmed this association by imaging the tail using an infrared camera and compared the motion 
index calculated through tail tracking, and that which we calculated based on the motion artefacts, 
which showed good overall agreement in predicted movement events and average correlation of 0.4, 
demonstrating that these image- based artefacts can be used as reliable proxies of tail movements 
(Figure 1—figure supplement 1). Therefore, regressors based on these motion indices were used to 
identify neurons correlated with motor output.

Images for the functional tuning of individual neurons (Figure 1G–J) were computed using the 
hue saturation value (HSV) colour scheme, with the maximal correlation value to either regressor 
mapped to saturation, and the hue value reflecting the linear preference for either regressor. Clus-
tering of functional response types (Figure 2) was done by first selecting all those ROIs that showed 
a correlation of ≥0.25 with any of the six stimulus regressors across all imaged fish. Then among these 
ROIs we removed any ROIs that did not show a correlation of ≥0.3 with at least five ROIs imaged in 
a different larvae. This filtered out ROIs that were unique in any individual fish, allowing us to focus 
on those neuron types that were most consistent across individuals. We then used the Affinity Prop-
agation clustering from scikit- learn (Pedregosa et al., 2011), with ‘affinity’ computed as the Pearson 
product–moment correlation coefficients (corrcoef in NumPy; Harris et al., 2020), preference = -9 
and damping = 0.9, and clustered using hierarchical clustering (cluster.hierarchy in SciPy; Virtanen 
et al., 2020). Cluster number was assigned based on the ordering of the hierarchical clustering tree.

To generate the final cluster assignments, we re- scanned all the ROIs calculating their correlation 
with the mean- response vectors for each of the identified 12 functional clusters, selecting those with 
a correlation value of ≥0.3, which were then assigned to the cluster with which they had the highest 
correlation. To determine the cluster assignments for the data from Tg(Gad1b:DsRed);Tg(elavl3:H2B- 
GCaMP6s) double transgenic larvae (Figure  7F and G), data were realigned and interpolated to 
match the frame rate of the clustered data, and assigned to the 12 clusters as above.

To compare the spatial relationships between the neuronal positions of different functional clusters 
(Figure 2E), and between the functional clusters and reference brain labels (Figure 7A–E), image 
volumes were cropped to the imaged coordinates (Figure 1E), downsampled to isometric 10 um3 
voxels, and linearized to calculate the Pearson correlation coefficient between the image sub- volumes.

Analyses made use of multiple open- source Python packages, including suite2p (Pachitariu et al., 
2017), NumPy (Harris et  al., 2020), SciPy (Virtanen et  al., 2020), scikit- learn (Pedregosa et  al., 
2011), scikit- image (van der Walt et al., 2014), numba (Lam et al., 2015), matplotlib (Hunter, 2007), 
seaborn (Waskom, 2021), and open- cv (Bradski, 2000). Details of the analyses used to create the 
figure panels are provided in the following notebook: 2022_LamireEtAl_FunctionalFigs.ipynb.
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