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SUMMARY

Sensory experiences dynamically modify whether
animals respond to a given stimulus, but it is unclear
how innate behavioral thresholds are established.
Here, we identify molecular and circuit-level mecha-
nisms underlying the innate threshold of the zebra-
fish startle response. From a forward genetic screen,
we isolated five mutant lines with reduced innate
startle thresholds. Using whole-genome sequencing,
we identify the causativemutation for one line to be in
the fragile X mental retardation protein (FMRP)-inter-
acting protein cyfip2. We show that cyfip2 acts inde-
pendently of FMRP and that reactivation of cyfip2
restores the baseline threshold after phenotype
onset. Finally, we show that cyfip2 regulates the
innate startle threshold by reducing neural activity
in a small group of excitatory hindbrain interneurons.
Thus, we identify a selective set of genes critical to
establishing an innate behavioral threshold and un-
cover a circuit-level role for cyfip2 in this process.
INTRODUCTION

A critical function of the nervous system is to detect and respond

to threats. The vertebrate auditory system is particularly well

adapted to this task. Within milliseconds of an intense and

abrupt acoustic stimulus, animals initiate an evolutionarily

conserved startle response that enables them to rapidly escape

potential danger. The circuits underlying this behavior are largely

conserved among vertebrates, with auditory afferents (VIII) acti-

vating hindbrain reticulospinal neurons that then activate spinal

motor neurons to initiate movement (Davis et al., 1982; Eaton

et al., 1991; Koch, 1999). In teleost fish, a pair of bilateral reticu-

lospinal neurons, the Mauthner cells (M-cells), serve as ‘‘com-

mand-like neurons’’ for this; their activation drives the behavior
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whereas their ablation abolishes it (Burgess and Granato,

2007; Eaton et al., 1977; Liu and Fetcho, 1999; Zottoli, 1977).

Establishing a finely tuned baseline threshold for the startle

response is essential to evade threats, and if set too low, causes

hypersensitivity that is strongly associated with anxiety (Bakker

et al., 2009; Grillon et al., 1994; Grillon and Davis, 1995) and

autism spectrum disorder (ASD) in humans (Chamberlain et al.,

2013; Kohl et al., 2013; Takahashi et al., 2016). Sensory experi-

ences acutely modulate the innate startle threshold, and much

of our knowledge of the neural substrates and molecular regula-

tion of the startle threshold is in the context of experience-based

processes such as pre-pulse inhibition (PPI) (Burgess and Gran-

ato, 2007; Geyer et al., 1990) or habituation (Simons-Weidenma-

ier et al., 2006; Wolman et al., 2011). In contrast, the molecular

and circuit-level mechanisms that establish and maintain the

innate startle threshold have been largely unexplored. This is sur-

prising considering that the identity, developmental programs,

and connectivity of many cell types critical for the startle

response have been well characterized (reviewed in Hale et al.,

2016). To identify molecular regulators of the baseline startle

threshold, we performed an unbiased forward genetic screen us-

ing a high-throughput, observer-independent system for

analyzing larval zebrafish startle behavior. Our data establish

the first set of vertebrate genes that regulate this critical behav-

ioral threshold and identify cyfip2 as a key regulator of the audi-

tory nerve-spiral fiber-M-cell startle circuit.

RESULTS AND DISCUSSION

A Forward Genetic Screen Identifies Hypersensitive
Startle Mutants
In zebrafish, sound-evoked M-cell-driven startle responses are

observed starting at 75 hr post fertilization (hpf), and by 120

hpf, acoustic startle responses are reliably elicited (Kimmel

et al., 1974). To identify genetic mechanisms that establish the

innate baseline startle threshold, we performed a standard

3-generation forward genetic screen using N-ethyl-N-nitro-

sourea (ENU) to introduce point mutations throughout the
creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 1. The Startle Threshold Is Reduced in Mutants from the
Forward Genetic Screen

(A) Distribution of startle response frequency to 10 low-intensity (13.5 dB)

stimuli in 5 dpf wild-type TLF larvae (black bars, n = 110) and larvae from a

cross of triggerhappyp400 carriers (red bars, n = 104).

(B) Startle frequency for 10 trials at each of 6 intensities with sigmoidal fit

curves. triggerhappyp400 and TLF larvae were split into two groups: putative

mutants (top 25%; p400, red line; TLF, black line) and putative siblings (bottom

75%; p400, pink line; TLF, gray line) based on their startle response frequency

at 13.5 dB (mean ± SEM).

(C) Startle sensitivity indices. The area under the curves in (B) are displayed for

the top 25% of WIK and TLF (black circles and squares, mean ± SD) and 7

mutant lines (red triangles; p400-406; ****p < 0.0001, one-way ANOVA with

Dunnett’s multiple comparison test).
genome (for details, seeWolman et al., 2015). To isolate mutants

with altered startle sensitivity, we used a high-throughput plat-

form for unbiased startle analysis (Wolman et al., 2011) and

tested 32 5-day post fertilization (dpf) larvae from each F3 clutch

with an assay of 10 subthreshold stimuli (13.5 decibels [dB])

separated by 20-s inter-stimulus intervals (ISIs). The intensity

of the stimulus was calibrated so that fewer than 5% of wild-
type t€upfel longfin (TLF) strain larvae initiated a startle response

(Figure 1A). To identify recessive mutations, we scored putative

mutant clutches as those in which 15%–25% of larvae startled

with 40% or higher frequency to these subthreshold stimuli

(e.g., mutant line p400; Figure 1A). Larvae with morphological,

muscle, or otic vesicle defects were excluded from further

behavioral analyses. In total, we screened �614 genomes or

�1/6 of the genomes screened in one of the previous large-scale

morphological screens (Haffter et al., 1996) and identified a set of

7 hypersensitive mutant lines with significantly reduced startle

thresholds (Table 1). Mutants were confirmed by testing subse-

quent generations with an assay consisting of 60 total stimuli,

10 at each of 6 intensities, pseudo-randomized with a 20-s ISI.

One line, p400, is shown in Figure 1B, with larvae divided into

2 groups, putative mutants (top 25%) and siblings (bottom

75%), based on their startle frequency at 13.5 dB. Wild-type

TLF larvae were similarly divided, highlighting the disparity be-

tween putative p400 mutants and the most sensitive wild-type

larvae (Figure 1B). After identifying the causative mutation in

p400, we confirmed that the top 25% does correspond to the

population of p400 homozygousmutants (see below; Figure 2C).

To quantify the severity of the hypersensitivity phenotype, we

created a startle sensitivity index by plotting the startle frequency

of each larva across the 60-stimulus assay and measuring the

area under the resulting curves. We again defined putative

mutant larvae as the top 25% of each clutch and compared

these to the top 25% of larvae from the wild-type WIK and TLF

strains used for the mutagenesis. As shown in Figure 1C, each

mutant line exhibited significant hypersensitivity compared

with TLF and WIK. Finally, complementation analysis revealed

that these 7mutants represent mutant alleles of 5 different genes

(Table 1). Thus, through an unbiased genetic screen, we identi-

fied a selective collection of genes critical for establishing the

innate startle threshold.

To determine the specificity of the startle threshold phenotype,

we subjected the hypersensitivity mutants to a battery of addi-

tional behavioral tests (see Table 1 for detailed information). All

mutants displayed startle kinematics within the normal range

(Burgess and Granato, 2007), indicating normal motor function.

All mutants also displayed a normal ability to acutely modulate

their startle thresholds in a well-established habituation learning

assay (Wolman et al., 2011, 2015) but segregated into a group

that exhibited normal PPI (detectorp402, escapistp404-6) and a

group that displayed significantly reduced PPI compared with

wild-type siblings (triggerhappyp400, whisper2000p401, and high-

strungp403). Combining these results with those from a screen for

habituation mutants (Wolman et al., 2015), a picture emerges,

suggesting that the genetic pathways underlying the formation

of the innate startle threshold, although overlapping (Bergeron

et al., 2015), are also distinct from those that dynamically modu-

late it during habituation learning and prepulse inhibition.

Forward genetic screens in both invertebrate and vertebrate

systems have identified genes affecting behavioral responses

to chemical, thermal, or mechanical stimuli (e.g., Chalfie and Sul-

ston, 1981; Granato et al., 1996; Kernan et al., 1994). These

screens exclusively identified mutants with reduced sensitivity

because of defects in sensory structures detecting the stimulus

(e.g., Nicolson et al., 1998) rather than the central processing of
Cell Reports 23, 878–887, April 17, 2018 879



Table 1. Zebrafish Startle Sensitivity Mutants

Mutant Allele Viability Startle Latency (ms) Startle Turn Angle (�) Baseline Activity Startle Habituation (%) PPI (%)

PPI Hearing

Threshold Gene Locus

triggerhappyp400 no (7–8 dpf) 6.8 ± 0.4, 83% of

sibs, p < 0.00001a
96 ± 6.2, 77% of

sibs, p < 0.00001a
63% ± 4.3% of

sibs, p = 0.0002a
90 ± 6.3, 90% of sibs,

p = 0.15

29 ± 9.3, 56% of

sibs, p = 0.027a
n/a chr14 cyfip2

whisper2000p401 yes 6.2 ± 0.1, 70% of

sibs, p < 0.00001a
114 ± 4.4, 102% of

sibs, p = 0.69

109% ± 6.3% of

sibs, p = 0.0012a
90 ± 3.9, 111% of sibs,

p = 0.24

29 ± 6.0, 39% of

sibs, p = 0.00028a
n/a chr7

detectorp402 yes (weakly

dominant)

6.8 ± 0.3, 86% of

sibs, p = 0.43

116 ± 6.2, 99% of

sibs, p = 0.99

105% ± 6.8% of

sibs, p = 0.74

100 ± 0, 100% of sibs,

p = 0.46

53 ± 10.4, 91% of

sibs, p = 0.33

4.6 dB in

muts and sibs

ND

highstrungp403 no (10–14 dpf) 6.9 ± 0.2, 90% of

sibs, p = 0.28

104 ± 3.4, 90% of

sibs, p = 0.014a
56% ± 5.4% of

sibs, p < 0.0001a
79 ± 4.5, 89% of sibs,

p = 0.14

27 ± 5.1, 41% of

sibs, p = 0.017a
n/a chr10

escapistp404

escapistp405

escapistp406

yes 6.8 ± 0.4, 83% of

sibs, p = 0.067

107 ± 3.6, 94% of

sibs, p = 0.18

98% ± 11.7% of

sibs, p = 0.88

100 ± 0, 102% of sibs,

p = 0.31

46 ± 5.5, 78% of

sibs, p = 0.35

4.6 dB in

muts and sibs

chr25

Summary of behavioral analyses. Viability was determined by raising and incrossing phenotypically identified mutants (muts). Three of five mutants survive to adulthood and produce viable

offspring. triggerhappyp400 mutants die at 7–8 dpf, likely because their swim bladders do not inflate, preventing them from feeding. It is unclear why highstrungp403 mutants die at 10–14 dpf.

detectorp402 is weakly dominant because crosses of identified carriers to wild-type fish produced hypersensitive larvae. Startle kinematics (latency and turn angle) were measured using FLOTE

software, and despite some statistically significant differences, all values are within normal parameters (Burgess and Granato, 2007). Total distance traveled over 160 s was normalized to the

sibling (sib) average to determine baseline activity. Startle habituation and PPI were calculated as inWolman et al. (2011) and Burgess and Granato (2007), respectively. PPI hearing threshold was

analyzed for mutants without PPI defects by reducing the intensity of the pre-pulse (Bhandiwad et al., 2013). The lowest intensity pre-pulse eliciting significant PPI (p < 0.05) is reported and was

unchanged in both mutants tested. Gene loci were determined using whole-genome (triggerhappyp400) or RNA sequencing (whisper2000p401, highstrungp403, and escapistp404-406) to identify

highly homozygous genomic regions (Figure S2). See Experimental Procedures for details. All values listed are mean ± SEMwith their relation to siblings’ performance (% of sibs). n/a, not appli-

cable; ND, not determined.
aStatistically significant difference (p < 0.05, Mann-Whitney test).
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Figure 2. Hypersensitivityof triggerhappyp400

Mutants Caused by cyfip2 Mutations and

Rescued by Conditional Cyfip2-GFP Expres-

sion

(A) Acoustic startle circuit. Acoustic nerve (VIII),

posterior lateral line nerve (PLL), feedforward (FF)

inhibitory, and excitatory spiral fiber (SF) neurons

connect to the Mauthner cells (red).

(B) Cyfip2 protein interaction domains (Abe-

khoukh and Bardoni, 2014; Pittman et al., 2010).

triggerhappyp400 (cyfip2p400) mutants have a pre-

mature stop codon after 342 of 1,253 amino acids.

The previously identified nevermind (cyfip2tr230b)

mutation (Pittman et al., 2010) is shown.

(C) Startle sensitivity curves of siblings and trans-

heterozygous (trans-het) larvae from cyfip2p400/+ X

cyfip2tr230b/+ crosses (n = 75 siblings, 34 trans-

hets; mean ± SEM).

(D) Startle sensitivity index in cyfip2p400 sibling and

mutant larvae expressing Tg(hsp70:cyfip2-GFP).

Larvae were given no heat shock or one 40-min

heat shock at 30 hpf. Cyfip2-GFP fluorescence

was largely restricted to the CNS and was visible

90 min after heat shock, peaked around 3 hr

after heat shock, and was detectable at low levels

24 hr later (Figure S3C). Without a heat shock,

cyfip2p400mutants had increased startle sensitivity

(***p < 0.001, Mann-Whitney test), whereas heat

shock reduced the sensitivity of cyfip2 mutants

with the transgene compared with those without it

(**p < 0.01, Mann-Whitney test).

(E) Startle sensitivity curves for fmr1 sibling (n = 62)

and mutant larvae (fmr1hu2787/hu2787, n = 20) at 5

dpf (mean ± SEM).

(F) Hindbrain expression of Cyfip2 in 5 dpf wild-

type (cyfip2+/+) and mutant (cyfip2p400/p400) larvae

using a Cyfip2 antibody (Ab). Membranes of VIII

neurons are marked by Tg(SCP1:Gal4FF(y256Et));

Tg(UAS:gap43-citrine) and anti-GFP Ab. Dashed

lines indicate the otic vesicles (OVs). Scale bar,

10 mm.
the stimulus. In contrast, we designed our screen to selectively

isolate mutants with increased rather than decreased respon-

siveness. Increased stimulus sensitivity not only reflects an

important aspect of several mental health disorders but also

provides an opportunity to investigate the molecular mecha-

nisms that regulate the filtering of sensory input into behavioral

output. To assay mechano-acoustic acuity in the hypersensitive

mutants, we examined hair cell morphology and function. In

zebrafish, hair cells located in lateral line neuromasts and in

the otic vesicle (OV) detect water motion induced by acoustic

stimuli and connect to the startle circuit’s command-like neu-

rons, the M-cells, via afferent nerves, the anterior lateral line

(ALL) and posterior lateral line (PLL), and the auditory (VIII)

nerves, respectively (Figure 2A). In all mutants, neuromast

numbers and OV hair cell morphology were unaffected (Figures

S1B–S1D). In agreement with previous data (Kohashi and Oda,

2008; Lacoste et al., 2015), neomycin treatment to selectively
ablate lateral line hair cells (Harris et al., 2003) did not signifi-

cantly alter startle sensitivity in wild-type or sibling larvae (Fig-

ure S1A). Similarly, neomycin treatment of triggerhappyp400,

detectorp402, and highstrungp403 mutants did not alter startle

hypersensitivity, consistent with the idea that the primary defect

in these mutants is improper processing of sensory information

‘‘downstream’’ of the auditory organs. Lateral line hair cell abla-

tion in whisper2000p401 and escapistp404-6 mutants, however,

partially rescued startle hypersensitivity (*p < 0.05, Mann-Whit-

ney test; Figure S1A), providing evidence that input from OV

hair cells is sufficient to set and maintain the innate startle

threshold in wild-type fish and that, although not essential, lateral

line input can modulate startle sensitivity. Thus, the mutants

identified here are likely to reveal mechanisms that regulate the

processing of auditory information both at the level of the sen-

sory organ (whisper2000p401 and escapistp404-6) and within the

brain (triggerhappyp400, detectorp402, and highstrungp403).
Cell Reports 23, 878–887, April 17, 2018 881
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Figure 3. VIII Nerve Excitatory Inputs to the Mauthner Cell Are

Normal in cyfip2 Mutants

(A) Diagram of the stimulating electrode (stimulus) adjacent to the OV posterior

macula, the club-ending mixed synapse between VIII afferents and the M-cell,

and the recording electrode (voltage/current [V/I]) on the M-cell.

(B) Representative traces of M-cell synaptic responses after stimulation of VIII

afferents in cyfip2+/+ (left) and cyfip2p400/p400 (right) larvae at 5 dpf. The stim-

ulation artifact has been truncated for clarity, and the electrical and chemical

components are indicated.

(C and D) Mean amplitude of M-cell electrical (C) and chemical synaptic re-

sponses (D) ±SD (n = 8 siblings, 8mutants; p = 0.78, 0.29,Mann-Whitney test).

(E) Paired-pulse ratios were unaltered in cyfip2p400/p400 larvae (p = 0.76, Mann-

Whitney test).
The triggerhappyp400 Startle Hypersensitivity
Phenotype Is Caused by Mutations in cyfip2

Wenext sought to determine themolecular identities of the startle

threshold mutants. Using either a previously validated DNA

whole-genome sequence (WGS) analysis pipeline (Wolman

et al., 2015) or using RNA sequencing (RNA-seq) analysis (Hill

et al., 2013), we assigned four of the five mutants to a small

genomic interval (Table 1; Figure S2; see Experimental Proced-

ures for details regarding WGS and RNA-seq). This confirmed

our complementation analysis showing that the startle threshold

mutants represent five genes located on different chromosomes.

We then focused on the triggerhappyp400mutant, in part because

our phenotypic analysis suggested that hypersensitivity in this

mutant is likely due to improper processing of sensory

information downstreamof the auditory organs.Wemapped trig-

gerhappyp400 to chromosome 14 (Figure S2A), where we identi-

fied a single nonsense mutation in the gene cytoplasmic Fragile

Xmental retardation protein (FMRP)-interacting protein 2 (cyfip2).
882 Cell Reports 23, 878–887, April 17, 2018
Sequencing of cyfip2 cDNA from phenotypically identified mu-

tants confirmed a single base pair substitution (nt1024: T to A),

causing a premature stop codon in exon 11 at amino acid 343

of 1,253 (Figure 2B). To confirm that triggerhappyp400 startle hy-

persensitivity is caused by mutations in cyfip2, we performed a

genetic complementation assay using a cyfip2mutant allele pre-

viously isolated by a retinotectal axon guidance defect (Pittman

et al., 2010; Trowe et al., 1996). Trans-heterozygous larvae dis-

played increased startle sensitivity compared with siblings (Fig-

ure 2C), confirming that mutations in cyfip2 cause startle

hypersensitivity. Finally, we created a transgenic line expressing

GFP-tagged Cyfip2 under the control of an inducible heat shock

promoter andcrossed theTg(hsp70:cyfip2-GFP) line into the trig-

gerhappyp400 mutant background. Activation of the transgene

prior to the onset of the phenotype at 30 hpf restored normal star-

tle sensitivity in genotypically mutant triggerhappyp400 larvae

(**p = 0.0036; Figure 2D). Combined, our data provide compelling

evidence that the triggerhappyp400 startle hypersensitivity pheno-

type is caused by mutations in cyfip2.

The Cytoskeletal Regulator cyfip2 Establishes the
Innate Startle Threshold Independently of FMRP
Cyfip2wasfirst identifiedon thebasis of its interactionwithFMRP

(Schenck et al., 2001) and is thought to interact with FMRP to

modulate RNA metabolism (Schenck et al., 2001, 2003). Cyfip2

also functions as a component of the Wiscott-Aldrich syndrome

protein/WASP-family verprolin-homologous protein (WAVE)

complex that regulates actin nucleation through binding to the

GTPase Rac1 (Chen et al., 2010; Eden et al., 2002; Schenck

et al., 2004). In several animal models, Cyfip2 has been shown

to regulate axon guidance (Pittman et al., 2010; Schenck et al.,

2003) as well as synapse formation and function (Schenck et al.,

2003). To test whether cyfip2 acts through fmr1 (the gene that en-

codes FMRP) to establish the startle threshold, we tested startle

sensitivity in previously identified fmr1 mutants (den Broeder

et al., 2009).Wedetectednodifference in startle frequencyacross

all stimulus intensities (Figure 2E), indicating that cyfip2 acts inde-

pendently of fmr1 to establish the innate startle threshold.

cyfip2p400 Mutant M-Cells Have Normal Inhibitory and
Excitatory Synaptic Connections
To examine Cyfip2 expression in the nervous system, we used a

commercially available antibody (Abcam, ab95969) to label

triggerhappyp400 (hereafter referred to as cyfip2p400) mutants

and siblings at 72 hpf. Siblings showed broad Cyfip2 expression

in the neuropil of the olfactory bulb, inner plexiform layer of the

retina, tectum, and hindbrain lateral to the M-cell near the VIII

ganglion (Figures S3A and S3B). Neuropil staining was absent

in mutants, confirming the specificity of the antibody. Using a

transgenic line that labels VIII neurons, Tg(SCP1:Gal4FF(y256Et));

Tg(UAS:gap43-citrine (Marquart et al., 2015), we found that, at

5 dpf, when the startle phenotype is observed, Cyfip2 is ex-

pressed in and around these neurons in the hindbrain at low

levels above the background level observed in mutants (Fig-

ure 2F), placing Cyfip2 in a prime location to influence the startle

circuit.

We next examined the structural and functional integrity of the

startle command-like neurons, the M-cells. We first used the



Table 2. Mauthner Cell Electrophysiological Properties

Parameter

cyfip2p400

Siblings

(n = 8)

cyfip2p400

Mutants

(n = 14)

Mann-Whitney

p Value

(Significance < 0.05)

Rheobase (nA) 3.1 ± 0.6 3.3 ± 0.9 p = 0.5 (n.s.)

Vresting (mV) �81.9 ± 1.9 �79.0 ± 2.6 p = 0.01

Rin (MU) 10.3 ± 5.3 11.4 ± 4.6 p = 0.3 (n.s.)

Vthreshold (mV) �53.1 ± 7.0 �45.8 ± 5.9 p = 0.1 (n.s.)

The rheobase, Vresting, Rin, and Vthreshold of M-cells in cyfip2p400 siblings

and mutants were measured as described in the Experimental Proced-

ures. n.s., not significant.
transgenic line Tg(Gal4FF-62A);Tg(UAS:GCaMP6s) to monitor

M-cell firing following acoustic stimulation (Marsden and Gran-

ato, 2015). Head-restrained larvae were presented with multiple

stimuli at each of 3 intensities with 4-min ISIs to minimize habit-

uation. Consistent with our observations in free-swimming

larvae, cyfip2p400 mutants showed significantly increased startle

probability to low-intensity (�14 dB) and medium-intensity

(�12 dB) stimuli, whereas mutants and siblings responded with

equal probability to strong stimuli (13 dB) (Figure S6A). Matching

these behavioral data, M-cells in cyfip2p400 mutants fired with

higher probability at low and medium intensity compared with

wild-type siblings (Figure S6D), consistent with the notion that

loss of cyfip2 leads to a lower threshold of the M-cell-dependent

startle response. Excitatory VIII nerve afferent inputs form mixed

chemical and electrical synapses known as club endings on the

M-cell lateral dendrite (Yao et al., 2014; Zottoli and Faber, 1979).

Thus, one plausible cause for the hypersensitivity observed in

cyfip2p400 mutants might be increased excitatory input to the

M-cell from VIII afferents. Analysis of club endings using a

connexin 35 (Cx35) antibody (Figures S4A and S4B), whole-cell

electrophysiology tomeasureM-cell synaptic responses to elec-

trical stimulation of VIII nerve afferents, and paired-pulse ratio

measurements to monitor transmitter release properties failed

to reveal any significant differences between cyfip2p400 mutants

and wild-type siblings (Figures 3A–3E).

We observed that, in cyfip2p400 mutants, the volume of the

M-cell cell body was unaffected, whereas the lateral and ventral

dendrites were significantly smaller (****p% 0.0001, Mann-Whit-

ney test; Figures S4C–S4F), which might cause M-cell hyperex-

citability. We therefore measured the M-cell’s rheobase (the

current necessary to trigger a spike), resting potential (Vresting),

input resistance (Rin), and action potential threshold (Vthreshold).

The only statistically significant difference we observed was a

slight increase in the Vresting from �81.9 ± 1.9 mV in siblings

to �79.0 ± 2.6 mV in mutants, a change too small to explain

the startle phenotype (Table 2). These findings are consistent

with our analysis of sodium channel staining in the M-cell axon

cap, in which we found no difference between cyfip2p400 mu-

tants and siblings (Figures S5A and S5B). Thus, we conclude

that cyfip2p400 mutants do not exhibit a functional difference in

auditory drive onto the M-cell and that loss of cyfip2 does not

detectably alter M-cell excitability.

An alternative cause for the hypersensitivity observed in

cyfip2p400 mutants might be decreased inhibitory input to the
M-cell. Larval zebrafish M-cells receive g-aminobutyric acid

(GABA)ergic (Roy and Ali, 2014) and glycinergic inhibitory input

from several sources (Koyama et al., 2011; Takahashi et al.,

2002), including feedforward neurons (Figure 2A) that have been

shown to influence the startle threshold in adult goldfish (Weiss

et al., 2008) and African cichlid fish (Neumeister et al., 2010).

We thereforemeasuredM-cell glycine receptor (GlyR) expression

to assess all glycinergic inhibitory inputs and found no difference

in the total intensity of GlyR labeling between cyfip2p400 mutants

and wild-type siblings (Figures S5C and S5D). Thus, our data

strongly suggest that excitatory and inhibitory connectivity onto

the M-cell soma is largely unaffected in cyfip2p400 mutants, indi-

cating that cyfip2 likely acts on a different population of startle

circuit neurons to establish the innate startle threshold.

cyfip2p400 Mutant Spiral Fiber Neurons Are
Hyperresponsive to Acoustic Stimuli
We next focused on spiral fiber (SF) neurons because they are

known to modulate startle probability. SFs respond to input

from the contralateral ear and project to the contralateral

M-cell axon hillock, where they wrap around the axon and termi-

nate in electrical and glutamatergic synapses (Figures 2A and

4A; Kimmel et al., 1981; Koyama et al., 2011; Lacoste et al.,

2015; Scott et al., 1994). Furthermore, optogenetically stimu-

lating SF neurons increases the startle probability (Lacoste

et al., 2015), making them a strong candidate to influence the

innate startle threshold in cyfip2p400 mutants. To assay SF excit-

ability, we used a transgenic line, Tg(�6.7FRhcrtR:gal4VP16);

Tg(UAS:GCaMP5), to measure Ca2+ responses in SF axon termi-

nals and startle behavior in response to acoustic stimuli (Mars-

den and Granato, 2015). Figure 4B shows a typical Ca2+

response in SF terminals following acoustic stimulation. Ca2+

responses in SF terminals followed the same pattern as startle

behavior (Figure S6A): peak change in fluorescence from base-

line (DF/F0) amplitudes were significantly increased in cyfip2p400

mutants following low- and medium-intensity stimuli but did not

differ with strong stimulation (p = 0.88; Figure 4C). Total activa-

tion of SF terminals, quantified by the area under the DF/F0
curves in Figure 4C, showed the same result (Figure 4D). Next

we examined whether cyfip2 regulates the number of mixed syn-

apses between SF terminals and the M-cell. Quantification of

Cx35-positive mixed synapses between SF terminals onto the

M-cell axon initial segment (AIS) revealed no detectable differ-

ence between cyfip2p400 siblings and mutants (Figures S6B

and S6C), demonstrating that cyfip2 does not primarily regulate

the number of synaptic contacts between SF neurons and the

M-cell. Althoughwe cannot exclude the possibility that individual

SF-M-cell synapses are strengthened without an increase in

Cx35 expression, an alternative explanation is that, at low

stimulus intensities, more SF neurons are activated in cyfip2p400

mutants, resulting in larger Ca2+ signals in SF terminals.

To directly test this hypothesis, we measured Ca2+ responses

in SF cell bodies. For this, we again presented acoustic stimuli at

3 different intensities, with 3 trials at each intensity, and moni-

tored a group of 6 SF neurons in the same confocal plane across

all larvae. For all trials, we determined whether each SF neuron

fired by defining a firing response as one in which the DF/F0
amplitude was greater than 3 SDs from the mean response
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Figure 4. SF Axon Terminal Activity Is

Increased in cyfip2 Mutants

(A) Maximum intensity projection of

Tg(�6.7FRhcrtR:gal4VP16); Tg(UAS:GCaMP5),

showing labeled SF neurons (green). M-cells (M)

and other reticulospinal neurons were labeled with

rhodamine dextran (magenta). Arrowheads indi-

cate SF cell bodies, and asterisks mark SF axon

terminals in theM-cell axon cap. Scale bar, 10 mm.

(B) Representative pseudocolored images of

baseline (F0) and peak fluorescence in SF axon

terminals following a strong acoustic stimulus

(13 dB; the color scale denotes fluorescence in-

tensity; black, lowest; white, highest). Scale bar,

10 mm.

(C) Averaged traces of SF terminal Ca2+ responses

following low (�14 dB), medium (�12 dB), and

strong (13 dB) acoustic stimuli (n = 42 responses

from 10 siblings, blue line; n = 36 responses from 9

mutants, red line; mean ± SEM; *p < 0.05, Mann-

Whitney test).

(D) Scatterplot of the area under the curve for

individual SF axon terminal Ca2+ responses

(mean ± SD; **p = 0.0049, ***p = 0.0003, Mann-

Whitney test).
observed when the fish did not startle (Marsden and Granato,

2015), specifically DF/F0 > 0.16. The firing probability for each

cell was calculated by dividing the number of trials in which the

cell fired by the total of 3 trials. By these criteria, SF neurons in

cyfip2p400 mutants were more likely to fire following low- and

medium-intensity but not high-intensity stimuli (Figures 5A and

5B). Again, these data precisely correlate with the observed

behavioral change (Figure S6A). Furthermore, following low-in-

tensity stimuli, of the 6 SF neurons recorded, 3.39 ± 0.51 fired

in cyfip2p400 mutants, whereas only 0.88 ± 1.3 SF neurons fired

in sibling larvae (****p < 0.0001, Mann-Whitney test). Similarly,

after medium-intensity stimuli, 4.4 ± 0.40 SF neurons fired in mu-

tants, whereas just 1.7 ± 0.36 fired in siblings (****p < 0.0001,

Mann-Whitney test). These data strongly support a model in

which cyfip2 functions primarily to dampen the activity of SF

neurons at low stimulus intensities.

Finally, we wondered whether these circuit defects in

cyfip2p400 mutants are ‘‘hard wired’’ or reversible. Specifically,

we tested whether heat shock-induced expression of Cyfip2-

GFP in cyfip2p400 mutants after onset of the hypersensitivity

phenotype can restore the wild-type innate startle threshold.

Indeed, cyfip2 expression after phenotype onset was sufficient

to revert mutants’ hypersensitivity (Figure 5C), revealing a sur-

prising degree of plasticity within the VIII-SF-M-cell circuit mech-

anisms that establish and maintain the innate startle threshold.

The Role of cyfip2 in Regulating the Innate Startle
Threshold
We were initially surprised to identify a cytoplasmic, cytoskeletal

regulator rather than a membrane protein such as an ion channel

in our screen for genes regulating the innate startle threshold.

However, a large body of evidence exists that cyfip2 and cyfip1

are critical regulators of many neural functions (Abekhoukh and

Bardoni, 2014). Through their interaction with FRMP, Cyfip1/2

may modulate the translation of cytoskeletal-associated pro-
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teins (MAP1B, PP2Ac) (Brown et al., 2001; Castets et al., 2005)

or other target RNAs important for synaptic plasticity, such as

Arc (De Rubeis et al., 2013; Napoli et al., 2008). Our data indicate

that Cyfip2 acts independently of FMRP to establish the innate

startle threshold (Figure 2E), suggesting that Cyfip2’s role in

the actin-regulating WAVE regulatory complex (WRC) may,

instead, underlie this function. Cyfip1 and Cyfip2 both directly

interact with Rac1-guanosine triphosphate (GTP), and this bind-

ing activates WRC, allowing it to bind Arp2/3 to initiate actin

nucleation (Chen et al., 2010; Cory and Ridley, 2002; Derivery

et al., 2009). In mice, homozygous mutations in cyfip1 and 2

are lethal (Bozdagi et al., 2012; Han et al., 2014), and, in contrast

to our results, cyfip2 heterozygousmice showed decreased star-

tle responsiveness and increased PPI (Han et al., 2014). This

discrepancy could be due to differences in gene dosage,

although we did not observe any phenotypes in heterozygous

cyfip2 larvae. More likely it is due to species differences. The

significance of PPI and startle hypersensitivity phenotypes for

human disease and the unique opportunity afforded by semi-

viable homozygous zebrafish mutants, however, makes the

zebrafish cyfip2mutant an important model to better understand

the cellular and molecular regulation of these behaviors.

Our circuit analysis reveals that cyfip2 function is dispensable

for normal M-cell excitability and, rather, points to a role for

cyfip2 in dampening SF neuron excitability or reducing excitatory

synaptic input from upstream neurons (Figures 5D and S6E).

cyfip2 may act on SF neurons through changes in dendrite

morphology (Figure S4) but more likely acts on VIII terminals

onto SF neurons or on currently unidentified intermediary

neurons to regulate synaptic vesicle trafficking and/or release

via the actin cytoskeleton (Hsiao et al., 2016; Schenck et al.,

2003). In either scenario, reducing cyfip2 function would cause

a weak acoustic stimulus to elicit firing of a larger set of SF neu-

rons, leading to increased transmission onto the M-cell AIS,

thereby driving the M-cell to fire and initiate the startle response.
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Figure 5. SF Neurons Are Hyperexcited by

Weak Acoustic Stimuli in cyfip2 Mutants

and Reversal of the Hypersensitivity Pheno-

type

(A) Representative SF neuron Ca2+ responses in

cyfip2 siblings and mutants 1 s before (F0) and

150 ms after (peak) medium-intensity (�12 dB)

acoustic stimulation. Dashed circles indicate SF

cell bodies, arrowheads mark cells that fired

according toourcriteria (see text).Scalebar, 10mm.

(B) Distribution of SF neuron firing probability

(n = 48 cells from 8 siblings, 36 cells from 6 mu-

tants; ****p < 0.0001, Mann-Whitney test).

(C) Startle sensitivity index of cyfip2p400 siblings

and mutants expressing Tg(hsp70:cyfip2-GFP)

4 dpf before 8 heat shock cycles at 37�C sepa-

rated by 120 min (d4 pre; *p = 0.025, unpaired t

test). The same larvae were tested for startle

sensitivity after heat shock at 6 dpf (d6 post;

**p = 0.0018, paired t test). cyfip2p400 mutants

without the hsp70:cyfip2-GFP transgene re-

mained hypersensitive (p = 0.46, paired t test).

(D) Model of Cyfip2’s role in the startle circuit.

In cyfip2 mutants, activity is enhanced in the VIII-

SF-M-cell pathway, either through a direct VIII-SF

connection or through an indirect connection via

an unknown cell population (question mark),

leading to enhanced M-cell firing and startle

behavior. In wild-type fish, Cyfip2 potentially acts

at pre- and/or postsynaptic sites, indicated by

asterisks, to dampen neural activity.
Independent of the precisemechanismbywhich cyfip2 regulates

the innate startle threshold, given that the human cyfip1 gene is

located on 15q11.2, a hotspot for risk factors associated with

neuropsychiatric disorders, including schizophrenia, epilepsy,

intellectual disability, developmental delay, and autism (reviewed

in Cox and Butler, 2015), understanding howCyfip proteins influ-

ence the formation and function of neural circuits underlying

whole-animal behavior remains an important question.

EXPERIMENTAL PROCEDURES

Zebrafish Husbandry, Mutagenesis, and Maintenance

All animal protocols were approved by the University of Pennsylvania Institu-

tional Animal Care and Use Committee (IACUC). ENU mutagenesis was per-
Ce
formed using TLF and WIK strains as described

previously (Wolman et al., 2015). See the Supple-

mental Experimental Procedures for details.

Behavioral Assays and Analysis

Behavioral experiments were performed using

4–6 dpf larvae and analyzed using FLOTE soft-

ware as described previously (Burgess and

Granato, 2007; Wolman et al., 2011). See the

Supplemental Experimental Procedures for

details.

WGS, RNA-Seq, and Molecular Cloning of

cyfip2

Pools of 50 behaviorally identified triggerhap-

pyp400 mutant larvae were made, and genomic
DNA (gDNA) libraries were created. gDNA was sequenced with 100-bp

paired-end reads on the Illumina HiSeq 2000 platform, and homozygosity anal-

ysis was done using 463,379 SNP markers identified by sequencing gDNA

from ENU-mutagenized TLF and WIK males as described previously (Wolman

et al., 2015). Mapping of whisper2000p401, highstrungp403, and escapistp404-6

was performed using RNA-seq. See the Supplemental Experimental Proced-

ures for details.

Immunohistochemistry, Spinal Backfills, 2-(4-(dimethylamino)

styryl)-N-Ethylpyridinium Iodide Staining, and Image Analysis

Larvae were fixed in either 2% trichloroacetic acid (TCA) for 3 hr or 4% para-

formaldehyde (PFA) for 1 hr at room temperature. After washes in PBS + 0.25%

Triton X-100, fixed larvae were stained under standard blocking and antibody

conditions, dissected, andmounted in Vectashield (Vector Labs). See the Sup-

plemental Experimental Procedures for details.
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Combined Ca2+ and Behavior Imaging and Analysis

Combined Ca2+ and startle behavior experiments were performed as

described previously (Marsden and Granato, 2015). See the Supplemental

Experimental Procedures for details.

Heat Shock-Induced cyfip2-GFP Rescue

To induce expression of cyfip2-GFP in the Tg(hsp70:cyfip2-GFP) line, 30 hpf

larvae were placed in individual wells of a 96-well plate and incubated at

37�C for 40 min in a thermocycler. After heat shock, larvae were returned

to Petri dishes, with 4 days of recovery at 29�C. For pre/post heat shock
experiments, 4 dpf larvae were tested for startle sensitivity, transferred to

96-well plates, and given 8 heat shock cycles: 37�C for 40 min, 120 min at

28�C. After heat shock, larvae were transferred to individual wells of

24-well plates and kept at 29�C until 6 dpf for post heat shock startle sensi-

tivity testing.

Electrophysiology

Electrophysiological recordings were performed in 5–6 dpf cyfip2p400 siblings

and mutants carrying the Tol056-GFP transgene that labels M-cells (Satou

et al., 2009) as described previously (Yao et al., 2014). See the Supplemental

Experimental Procedures for details.

Statistics

Statistical analyses, including calculation of means, SD, and SE, were done

with Prism (GraphPad). Datasets were tested for normality using the D’Agos-

tino-Pearson omnibus normality test with subsequent t tests, non-parametric

(Mann-Whitney) tests, or ANOVA tests for significance, used as indicated in the

figure legends.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and two tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.03.095.
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