

Article Outline

00

Protocol Acknowledgements References Glossary Copyright

Create new comment

Simple sequence length polymorphisms (SSLPs) have become an important and powerful genetic tool in constructing linkage maps of vertebrates such as the mouse, rat and human (Ref. 1, 2, 3). These genetic markers consist of two primers flanking a dinucleotide repeat which can be highly variable in length. The zebrafish has become a popular vertebrate model system for studying developmental events at a genetic level (Ref. 4, 5, 6). A newly constructed SSLP map (Ref. Z) demonstrates that SSLP are highly polymorphic, codominant and abundant in zebrafish.

We established a new laboratory line of zebrafish for genetic mapping termed WIK. From this line, which derives from a wild catch in India (H. Pichy and J. Klein, pers. commun.), we gained several sublines from single-pair matings (WIK2, WIK3, WIK4, WIK9, WIK10, WIK11 and WIK20). By screening the progeny of single-pair matings of F1 fish, we found that one of these sublines, WIK11, was free of embryonic and larval lethals with a probability of over 90%.

To test whether WIK11 is a suitable reference line for genetic mapping using SSLPs, we analyzed four individual fish from each of the two different zebrafish lines, Tũ and WIK11, using 314 randomly chosen SSLP primer pairs. The Tũ line has been used in our laboratory for a large-scale mutagenesis screen (Ref. 8). This line was inbred from a restricted number of founder individuals (Ref. 9), and is thus likely to be very homogeneous. We expect WIK11 to be more heterogeneous since it is a direct derivative of a wild catch. However, because this line was derived from a single pair, we do not expect to find more than four alleles per locus.

Out of 314 SSLPs tested, 136 (43.3%) showed only bands that were polymorphic between Tü and WIK11 and no shared alleles, 148 (47.1%) SSLPs showed only one shared allele and at least one polymorphic allele among the four pairs of fish analyzed and 30 (9.6%) SSLPs showed no polymorphisms between Tü and WIK11. These results demonstrate that the WIK11 line is very polymorphic relative to the Tü line. Within the Tü line, 201 (64%) SSLPs showed one identical allele in all four Tü fish. This confirms the initial assumption that the Tü line is very homogeneous in itself. The number of alleles found in WIK11 does not exceed the expected total of four but shows WIK11 to be less homogeneous than Tü.

We tested two other zebrafish lines, AB (Ref. <u>10</u>) and TL (Ref. <u>11</u>), and found a lower rate of polymorphisms than between the Tü and WIK lines. The IN line, which was used in a reference cross with the AB line for the generation of the SSLP map, is probably not free of mutations affecting larval viability (Ref. <u>7</u>). In our own experience, the IN line also seems harder to breed than the WIK line.

The SSLPs were originally analyzed by using radioactively labeled PCR primers and by separating the PCR products on polyacrylamide sequencing gels (Ref. <u>Z</u>). For the entire analysis described here, we used unlabeled PCR primers and separated the PCR products on high-percentage agarose gels [1-2% Metaphor (FMC) mixed with 1-2% regular <u>agarose</u> (Qualex)] which were stained with ethidium bromide to visualize the PCR products. A representative SSLP amplification product is shown (Fig. 1). This simplified procedure requires less laboratory space, allows direct computer-assisted imaging of the agarose gels and circumvents the problems associated with radioactive waste. We routinely obtained a resolution of at least 10 bp within a fragment size of 100-400 bp. We are planning to map all the mutations identified in the Tübingen screen (Ref. <u>12</u>) using a bulked segregant analysis strategy (Ref. <u>13</u>, <u>14</u>) in which DNA samples from pools of segregating F2 homozygous mutants and siblings are compared using SSLPs. In an artificial DNA mixing experiment, we found that we should be able to detect linked markers in a 25 cM window on either side of the taroeted locus.

In summary, the newly established WIK11 line is very well suited as a reference line for mapping mutations induced in the Tü line. In combination with the analysis of PCR products on high-resolution agarose gels, this method should allow simple and efficient mapping of all mutants identified in the Tübingen screen.

Protocol

For PCR amplification, 10 µl genomic fish DNA (2 ng/µl) was combined with 10 µl reaction mixture. The reaction mixture is made by mixing 3.9 µl H₂O, 3.5 µl <u>dNTPs</u> (Pharmacia, 1.25 mM), 2.2 µl 10× <u>PCR buffer</u> (Pharmacia), 0.5 µl forward primer (6 µM), 0.5 µl reverse primer (Research Genetics, 6 µM) and 0.4 µl <u>Taq polymerase</u> (Pharmacia, 2U/µl). The DNA was denatured for 2 min at 95°C, then amplified for 35 cycles (30 s at 94°C, 30 s at 60°C and 1 min at 73°C) followed by extension for 10 min at 73°C.

Gel electrophoresis was carried out on 2–3% agarose gels [QualexGold (AGS)]. In some cases, regular agarose was mixed with <u>Metaphor</u> (FMC) high-resolution agarose at a ratio of 1:1. The electrophoresis conditions were 5V/cm for 2 h and we used 1× TBE (18 mM Tris-Borate pH 8.0, 0.4 mM EDTA) for gels and running buffer.

All zebrafish lines described in this paper are available through the zebrafish stockcenter at the Max-Planck-Institut für Entwicklungsbiologie in Tübingen (hgf@mailer1.mpib-tuebingen.mpg.de).

Figure 1

Characterization of one SSLP Marker (z1295) using genomic DNA of four different pairs of Tü and WIK fish. The PCR products were run on a 2% agarose gel. The polymorphism between the two lines can clearly be resolved in pairs 2, 3 and 4, whereas pair 1 shows shared alleles.

Acknowledgements

00

We thank Ela Knapik, Howard Jacob and Mark Fishman for the SSLP markers used in this study. We also thank Jan Klein for allowing us to propagate the WIK line, and Robert Geisler and Ann Miller for critically reading the manuscript.

References

[1] Jacob H.J. et al. (1995) Nat. Genet., 9:63-69. MEDLINE Cited by

[2] Dib C. *et al.* (1996) *Nature* , **380**:152-154. <u>MEDLINE</u> <u>Cited by</u>

[3] Dietrich W.F. *et al.* (1996) *Nature* , **380**:149-152. <u>MEDLINE</u> <u>Cited by</u>

[4] Kimmel C.B. (1989) Trends Genet. , **5**:283-288. <u>ScienceDirect</u> <u>MEDLINE</u> <u>Cited by</u>

[5] Mullins M.C. and Nüsslein-Volhard C. (1993) Curr. Opin. Genet. Dev., 3:648-654. MEDLINE Cited by

[6] Driever W. *et al.* (1994) *Trends Genet.* , **5**:152-159. <u>ScienceDirect Cited by</u>

[7] Knapik E.W. et al. (1996) Development , **123**:451-460. <u>MEDLINE</u> <u>Cited by</u>

[8] Haffter P. and Nüsslein-Volhard C. (1996) Int. J. Dev. Biol., **40**:221-227. <u>MEDLINE</u> <u>Cited by</u>

[9] Mullins M.C. et al. (1994) Curr. Biol., 4:189-202. Full text MEDLINE Cited by

[10] Chakrabarti S. *et al.* (1983) *Genetics* , **103**:109-124. <u>Cited by</u>

[11] Haffter P. et al. (1996) Dev. Genes Evol. , **206**:260-276. <u>Cited by</u>

[12] Haffter P. et al. (1996) Development , 123:1-36. MEDLINE Cited by

[13] Michelmore R.W., Paran I. and Kesseli R.V. (1991) Proc. Natl. Acad. Sci. U. S. A., 88:9828-9832. <u>MEDLINE</u> Cited by

[14] Churchill G.A., Giovannoni J.J. and Tanksley S.D. (1993) Proc. Natl. Acad. Sci. U. S. A., **90**:16-20. <u>MEDLINE Cited by</u>

Glossary

Products Used

Metaphor Metaphor from FMC BioProducts agarose gel agarose gel from Sigma agar agar from Difco dNTP dNTP from Promega Corporation dNTP dNTP from <u>PE Applied Biosystems</u> dNTP dNTP from Pharmacia dNTP dNTP from Promega Corporation dNTP dNTP from Boehringer Mannheim

	PCR buffer	
	PCR buffer from Pharmacia	
	PCR buffer	
	<u>PCR buffer</u> from <u>PE Applied Biosystems</u>	
	Taq DNA polymerase	
	Taq DNA polymerase from PE Applied Biosystems	
	Taq DNA polymerase	
	<u>Taq DNA polymerase</u> from <u>Life Technologies (Gibco BRL)</u>	
	Taq DNA polymerase	
	<u>Taq DNA polymerase</u> from <u>Life Technologies (Gibco BRL)</u>	
	Taq DNA polymerase	
	Taq DNA polymerase from Promega Corporation	
	Taq polymerase	
	<u>Taq polymerase</u> from <u>Boehringer Mannheim</u>	
	Taq polymerase	
	<u>Taq polymerase</u> from <u>Pharmacia</u>	
	Taq polymerase	
	Tag polymerase from <u>Bioline</u>	
	Taq polymerase	
	Tag polymerase from Advanced Biotechnologies	
	Taq polymerase	
	<u>Taq polymerase</u> from <u>Boehringer Mannheim</u>	
	Taq polymerase	
	Tag polymerase from Bioline	
	Metaphor	
	Metaphor from FMC BioProducts	
	PII: S016895259601208	
	Copyright	00
	© 1997 Elsevier Science Limited. All rights reserved.	
	Journal Research Research News & Books & Science	
BIOMEGNET	Collection Reviews Update Tools Features Labware Jobs	. 🖤 🖤 🖼
Information for Advertise	ers © Elsevier Limited 2003	