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SUMMARY

Habituation represents a fundamental form of lear-
ning, yet the underlying molecular genetic mecha-
nisms are not well defined. Here we report on a
genome-wide genetic screen, coupled with whole-
genome sequencing, that identified 14 zebrafish star-
tle habituationmutants includingmutantsof theverte-
brate-specific gene pregnancy-associated plasma
protein-aa (pappaa). PAPP-AA encodes an extracel-
lular metalloprotease known to increase IGF bioavail-
ability, thereby enhancing IGF receptor signaling. We
find that pappaa is expressed by startle circuit
neurons, and expression of wild-type but not ametal-
loprotease-inactive version of pappaa restores habit-
uation inpappaamutants. Furthermore, acutely inhib-
iting IGF1R function in wild-type reduces habituation,
while activation of IGF1R downstream effectors in
pappaamutants restores habituation, demonstrating
that pappaa promotes learning by acutely and locally
increasing IGF bioavailability. In sum, our results
define the first functional gene set for habituation
learning in a vertebrate and identify PAPPAA-regu-
lated IGF signaling as a novel mechanism regulating
habituation learning.

INTRODUCTION

All animals exploit a fundamental mechanism of non-associative

learning, called habituation, to filter irrelevant input and prioritize

attention (Thompson and Spencer, 1966). Habituation is charac-

terized by progressive response decline to repeatedly experi-

enced yet inconsequential stimuli (Groves and Thompson,

1970; Rankin et al., 2009). Despite its simplicity, habituation is

an attractive form of learning because it provides a quantifiable

form of neuroplasticity (Poon and Young, 2006). Deficits in

habituation represent hallmark features of human cognitive and
1200 Neuron 85, 1200–1211, March 18, 2015 ª2015 Elsevier Inc.
behavioral disorders, including schizophrenia, addiction, atten-

tion deficit hyperactivity disorder, and other disorders marked

by ‘‘intellectual disability’’ (Braff et al., 1992; Jansiewicz et al.,

2004; McSweeney et al., 2005). Despite its biological conserva-

tion and clinical relevance, our understanding of the genetic

mechanisms governing habituation is limited. Identifying the ge-

netic program that governs how neural circuits regulate habitua-

tion is therefore instrumental to understanding disorders marked

by habituation deficits and for dissecting the genetic basis of

higher cognition.

To identify the genetic program that governs vertebrate habit-

uation learning, we took an unbiased, genome-wide approach to

define a core set of genes critical for habituation of the vertebrate

acoustic startle response. Inspired by behavioral screens in

Drosophila and C. elegans (Benzer, 1967; Brenner, 1974; Eddi-

son et al., 2012; Ikeda et al., 2008; L’Etoile et al., 2002; Lau

et al., 2013; Pierce-Shimomura et al., 2008; Rankin, 2004; Rankin

et al., 1990; Swierczek et al., 2011; Wolf et al., 2007), we per-

formed a forward genetic screen using a high-throughput

behavior testing apparatus that measures zebrafish startle habit-

uation (Wolman et al., 2011) and then applied whole-genome

sequence (WGS) analysis to molecularly identify the mutated

genes. Here, we report on (1) a set of 14 mutants with specific

deficits in startle habituation, (2) the molecular identification of

two mutants, and (3) the characterization of a novel and verte-

brate specific modulator of zebrafish habituation learning.

As predicted, our gene set includes genes with ‘‘expected’’

functions and genes previously not associated with habituation

learning. Specifically, we identified mutations in the pyruvate

carboxylase a (pcxa) gene, which encodes a rate limiting enzyme

in the production of the glutamate (Hertz et al., 2007), a key

neurotransmitter for habituation learning (Bespalov et al., 2007;

Bickel et al., 2008; Riedel et al., 2003; Rose and Rankin, 2006).

Conversely, we also identified a mutation in the vertebrate spe-

cific gene pregnancy associated plasma protein-aa (pappaa).

PAPP-AA has not been implicated in any type of learning and

is known to act as an extracellular metalloprotease to enhance

local insulin-like growth factor (IGF) signaling by cleaving IGF

binding protein 4 (IGFBP4), which normally restricts IGF from

signaling through cell-surface IGF receptors (Conover et al.,
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Figure 1. Genetic Screen Identifies Muta-

tions Affecting Acoustic Startle Habituation

(A) Schematic of acoustic startle habituation

assay. Larvae are exposed to 10 non-habituating

acoustic stimuli, delivered at 20 s interstimulus

intervals (ISI), and then 30 habituating stimuli at a

1 s ISI.

(B) Mean acoustic startle habituation percentage

calculated by comparing the average frequency of

startle responsiveness of an individual to stimuli 1–

10 and stimuli 31–40 (Wolman et al., 2011).

Behaviorally defined wild-type siblings shown in

white bars, mutants in gray bars.

(C) Estimated truncated PCXAp171 protein in in-

formation overloadp171 mutants due to Y1163X

mutation. BC, biotin carboxylase; CT, carboxyl

transferase; PT, pyruvate carboxylase tetrameri-

zation; BCCP, biotin-carboxy carrier protein.

(D) Estimated truncated PAPP-AAp170 protein

product in unfilteredp170 mutants due to Q322X

mutation. LG, laminin G-like module; LNR, Lin-12/

Notch repeats, MPD,metzincin proteolytic domain

containing zinc-binding consensus sequence (Zn)

and Met-turn motif (M); CCP, complement control

protein modules 1–5.

E) pappaap170 larvae injected with increasing

doses of wild-type pappaa mRNA show improved

habituation at 5 dpf. *p < 0.01, **p < 0.001, ANOVA

with Bonferonni correction versus wild-type sibling

(B) or uninjected pappaap170 (E) larvae. N = number

of larvae shown within or below each bar. Error

bars indicate SEM.
2004; Laursen et al., 2001, 2007; Lawrence et al., 1999). Using a

combination of molecular-genetic, pharmacological, and behav-

ioral analyses, we uncover a previously unknown role for PAPP-

AA-regulated IGF signaling in mediating habituation learning

through an acute and presumptive local mechanism. Overall,

our results define the first in vivo function-based set of genes

regulating vertebrate habituation learning.

RESULTS

Forward Genetic Screen Identifies Zebrafish Mutants
with a Startle Habituation Deficit
By 5 days of age, zebrafish larvae perform a repertoire of sim-

ple sensorimotor behaviors that operate on characterized

and accessible neural circuits (Wolman and Granato, 2012). For

example, exposure to abrupt acoustic stimuli elicits a star-

tle response, an evolutionary conserved and stereotyped yet
Neuron 85, 1200–1211
modifiable behavior (Burgess and Gran-

ato, 2007b; Eaton et al., 1977; Kimmel

et al., 1974; Wolman et al., 2011).

Repeated acoustic stimulation rapidly

prompts habituation by the larvae with

identical kinematic and pharmacody-

namic parameters observed in adult ze-

brafish and mammals (Bespalov et al.,

2007; Bickel et al., 2008; Riedel et al.,

2003; Wolman et al., 2011). To identify
genes critical for habituation, we mutagenized adult males using

ENU and implemented a three-generation breeding scheme to

generate homozygous mutant larvae (Dosch et al., 2004; Mullins

et al., 1994). For each F3 clutch, we tested 32 larvae at 5 days

post-fertilization (dpf) for short-term habituation to repetitive

acoustic stimuli (Wolman et al., 2011). Larvae with morphological

defects, hearing loss, or aberration in the highly stereotyped kine-

maticsof thestartle responsewereexcluded fromsubsequentan-

alyses. Heritability of the genetic lesion was verified by observing

similarly reduced habituation in subsequent generations.

To identify mutants with habituation defects, we used a high-

throughput behavioral platform that measures habituation of the

acoustic startle response (Wolman et al., 2011). Specifically, 5

dpf larvae were first exposed to ten acoustic stimuli separated

by a 20 s interstimulus interval (ISI) to determine baseline startle

responsiveness, and then were given 30 acoustic stimuli with a

1 s ISI to evaluate habituation (Figure 1A). Wild-type larvae
, March 18, 2015 ª2015 Elsevier Inc. 1201



Table 1. Zebrafish Habituation Mutants

Mutant Allele

Startle

Habituation

Visual Habituation

Percentage

Baseline

Activity

Startle

Kinematics

Startle

Sensitivity Gene Locus

unfilteredp170 4.9% ± 1.2%* No responsea Normal Normal Increased pappaa

information overloadp171 23.6% ± 1.6%* Normal Normal Normal Normal pcxa

ignorance isblissp172 17.4% ± 2.3%* Normal Reduced Normal Increased Ch. 15 z4396; z9189z13822

irresistiblep173 18.8% ± 2.1%* Normal Normal Normal Increased Ch. 7 z7958

slow learnerp174 7.9% ± 2.0%* Reduced Reduced Normal Increased Ch. 4 z1366; z1525z4951; z7104

uninhibitedp175 15.7% ± 2.1%* Normal Normal Normal Increased n.d.

groundhog dayp176 20.1% ± 1.9%* Normal Normal Normal Increased n.d.

doryp177 13.8% ± 1.9%* Normal Reduced Normal Increased n.d.

divided attentionp178 24.0% ± 2.4%* Normal Normal Normal Increased n.d.

oops I did itagainp179 16.6% ± 2.3%* Reduced Reduced Normal Normal n.d.

repeat offenderp180 20.5% ± 2.0%* n.d. Normal Normal Increased n.d.

fool me twicep181 21.49% ± 4.48%* n.d. n.d. Normal Increased n.d.

forgetfulp182;forgetfulp183 28.49% ± 3.1%* n.d. n.d. Normal Normal n.d.

Summary of behavioral analyses, including acoustic startle habituation (Figure 1B), visual habituation (Figure S2C), baseline activity (Figure S2B), star-

tle kinematics, and startle sensitivity (Figure S2A) of mutants versus wild-type siblings. Startle kinematic analysis included latency to initiate C-Bend,

turning angle during Cbend, and duration of C-bend (primary data not shown). Genetic locus column shows gene or chromosomal region linked to

mutant phenotype. Results from complementation crosses suggest these 14 mutants represent alleles of 13 genes. *p < 0.01 mutants versus wild

type siblings using ANOVA with Bonferonni correction. n.d., not determined.
aNo response indicates that pappaap170mutants do not perform the stereotyped O-bend maneuver to the ‘‘dark flash’’ stimuli and therefore cannot be

evaluated for visual habituation.
show a rapid reduction in startle response initiation and stereo-

typically habituate by more than 80% under these conditions

(Wolman et al., 2011). Therefore, clutches with approximately

15%–25% of the larvae habituating by less than 50% indicated

that the larvae were homozygous for a recessive mutation

affecting habituation. Larvae habituating by less than 50%

were classified ‘‘mutant’’ (Figure 1B; Movie S1). Using this

approach, we screened 405 mutagenized F2 families, corre-

sponding to 614 genomes, and identified 14 habituation mutants

(Table 1; Figure 1B).

The behavioral severity and specificity of each of the 14

mutants was determined by comparing the magnitude of the

habituation deficit and performing additional behavioral ana-

lyses, including acoustic startle sensitivity, baseline activity

level, and habituation to repetitive visual stimuli. A compara-

tive analysis revealed that startle habituation in the 14 mutants

was affected to different degrees, ranging from 24% habitua-

tion (information overloadp171, divided attentionp178) down to

the almost complete absence of habituation (unfilteredp170;

Table 1; Figure 1B). We further evaluated two of the mutants,

unfilteredp170 and information overloadp171, for short-term

habituation to acoustic stimuli delivered at longer ISIs and

found that both mutants also show strong habituation

deficits to the less frequently delivered stimuli (Figure S1).

Startle sensitivity was significantly enhanced in unfilteredp170,

ignorance is blissp172, irresistiblep173, slow learnerp174, uninhi-

bitedp175, groundhog dayp176, doryp177, divided attentionp178,

repeat offenderp180, and fool me twicep181, but not information

overloadp171, oops I did it againp179, or forgetfulp182,p183 mu-

tants (Table 1; Figure S2A). Recording gross movement of un-

stimulated larvae revealed that none of the mutants displayed
1202 Neuron 85, 1200–1211, March 18, 2015 ª2015 Elsevier Inc.
spontaneous hyperactivity (Table 1; Figure S2B). In fact, igno-

rance is blissp172, slow learnerp174, doryp177, and oops I did it

againp179 mutants performed less spontaneous, overall move-

ment compared to their siblings (Table 1; Figure S2B). Larvae

were also given a series of repetitive visual ‘‘dark flashes’’

(Burgess and Granato, 2007a) to determine whether the

acoustic startle habituation mutants were capable of habitu-

ating to visual stimuli (see Experimental Procedures). Both

slow learnerp174 and oops I did it againp179 mutants showed vi-

sual habituation deficits, suggesting circuit and/or molecular

overlap between acoustic startle and visual habituation (Table

1; Figure S2C). Thus, a genome-wide genetic screen identified

a set of mutants in which acoustic startle habituation is

reduced to varying degrees. None of these mutants display

obvious deficits in acoustic startle performance (i.e., kinematic

parameters) or exhibit increased baseline activity, further

underscoring the specificity of our screening assay. Several

mutants exhibit deficits in acoustic stimulus sensitivity or in vi-

sual habituation, reflecting potential overlap between the neu-

ral circuitry and genetic programs underlying these behaviors

and startle habituation.

WGS Identifies Novel Regulators of Habituation
Learning
To determine the molecular identity of the mutated genes, we

selected twomutants with varying degrees of habituation capac-

ity and differing behavioral profiles and performed WGS. WGS

analysis from behaviorally defined unfilteredp170 and information

overloadp171 mutant larvae followed by homozygosity analysis

(see Experimental Procedures; Figure S3) identified distinct

chromosomal intervals for each of these mutants, which we



A A’

B C

Figure 2. pappaa Expression in Neurons of

the Acoustic Startle Circuit

(A and A0) Schematic representation of acoustic

startle circuit at larval stage from a lateral (A) and

dorsal (A0 ) perspective. The acoustic startle

circuit includes cranial ganglion (blue), Mauthner

neuron and homologs (green), spiral fiber neurons

(orange), passive hyperpolarizing (PHP) neurons

(red), and feedback inhibitory neurons (purple).

(B and C) In situ hybridization for pappaa at 48 hpf

(B, purple) and 5 dpf (C, red). Brackets (A and B)

mark site of hindbrain neurons controlling startle

behavior. (C) Dorsal view, anterior to the top.

pappaa mRNA in red, Mauthner neuron (M) in

green. Arrowheads mark site of spiral fiber neu-

rons, asterisks mark position of PHP neurons, and

arrows indicate location of feedback inhibitory

neurons. SAG, statoacoustic ganglion; aLL, ante-

rior lateral line ganglion; pLL, posterior lateral line

ganglion; M, Mauthner. Scale bars = 50 mm (B) and

10 mm (C).
confirmed using bulk segregant analysis (Jain et al., 2011).

Within these chromosomal intervals, sequencing data revealed

unique nonsense mutations in pyruvate carboxylase a (pcxa) in

information overloadp171 mutants, and in pregnancy-associated

plasma protein-aa (pappaa) in unfilteredp170 mutants, respec-

tively (Figures 1C and 1D).

PCXA is a biotin-dependent, mitochondrial enzyme that

catalyzes the carboxylation of pyruvate to oxaloacetate, a crit-

ical step in the synthesis of glucose, fat, amino acids, and neu-

rotransmitters, including glutamate, which is known to influence

habituation (Bespalov et al., 2007; Bickel et al., 2008; Jitrapak-

dee et al., 2008; Rankin and Wicks, 2000; Riedel et al., 2003).

Sequencing of pcxa cDNA from behaviorally identified informa-

tion overloadp171 mutant larvae identified a single nucleotide

nonsensemutation in pcxa (nt3489: C to A), which causes a pre-

mature stop codon within the biotin-carboxy carrier protein

(BCCP) domain (Figure 1C). Mutations to the BCCP domain

are associated with the most severe form of pyruvate carbox-

ylase deficiency (type B) due to loss of enzymatic activity (Mon-

not et al., 2009). Future experiments will determine whether the

pcxap171 allele shows reduced enzymatic activity as a result of

reduced biotin binding and/or catalytic activity due to improper

presentation of biotin to the biotin carboxylase (BC) and/or

carboxyl transferase (CT) domains.

Sequencing of pappaa cDNA from behaviorally identified

unfilteredp170 larvae confirmed a single nucleotide nonsense

mutation in pappaa (nt964: C to T). This mutation causes a

premature stop codon in exon 3 at amino acid 322 of 1,591,

severely truncating PAPP-AA upstream of the metzincin pro-

teolytic domain required for substrate proteolysis and up-

stream of the C-terminal domains required for membrane teth-

ering via heparin sulfate proteoglycans (Figure 1D) (Boldt et al.,

2001; Laursen et al., 2002; Weyer et al., 2004). To confirm that

mutations in the pappaa gene cause the habituation deficit that

we observe in pappaa/unfilteredp170 mutants, we injected wild-

type zebrafish pappaa mRNA into one-cell stage pappaap170

embryos. This restored startle habituation in a dose-dependent
manner, demonstrating that the truncating mutation in zebra-

fish pappaa causes the habituation deficit (Figure 1E). Thus,

WGS analysis reveals pappaa as a novel regulator of habitua-

tion learning.

pappaa Is Expressed throughout the Acoustic Startle
Circuit
To understand how pappaa modulates startle habituation,

we first examined the spatial expression pattern of pappaa

mRNA. The acoustic startle response is triggered by activation

of one of the bilateral pair of Mauthner neurons in the hind-

brain (Figures 2A and 2A0). Mauthner neurons receive acoustic

inputs from the ear (via the statoacoustic ganglia) and the

lateral line and send descending commissural axons down

the spinal cord to stimulate contralaterally positioned motor

neurons and induce contralateral trunk muscle contraction

(Eaton and Emberley, 1991; Eaton et al., 2001; Faber et al.,

1989; Faber and Korn, 1978; Liu and Fetcho, 1999). Whole-

mount in situ hybridization revealed that during embryonic

development pappaa mRNA is detectable in several sensory

components of the startle circuit: in neurons of the anterior

and posterior lateral line ganglia and in neurons of the statoa-

coustic ganglia, which receive afferent input from sensory hair

cells in the lateral line neuromasts and the inner ear, respec-

tively (Figures 2A and 2B). Importantly, at 5 dpf, when

pappaap170 mutants display habituation defects, pappaa

mRNA is detectable in the startle command neurons, the

Mauthner neurons (Figure 2C). pappaa mRNA is also ex-

pressed by several clusters of neighboring hindbrain interneu-

rons known to modulate Mauthner activation (Figure 2C),

including passive hyperpolarizing (PHP) neurons, spiral fiber

neurons, and the feedback inhibitory neurons (Faber et al.,

1989; Hackett and Faber, 1983; Koyama et al., 2011; Lorent

et al., 2001; Scott et al., 1994). Molecular markers for these

cell types are currently unavailable yet the location of pappaa

mRNA-positive hindbrain neurons is consistent with the loca-

tion of PHP, spiral fiber, and feedback inhibitory neurons
Neuron 85, 1200–1211, March 18, 2015 ª2015 Elsevier Inc. 1203
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Figure 3. Acoustic Startle Circuit Appears

Intact in pappaap170 Larvae

(A–C) DASPEI labeling (A and B) andmean number

(C) of sensory neuromasts.

(D–I and K–L) Projections of confocal stacks ac-

quired at 5 dpf. Lateral views, anterior to the left in

(A), (B), (D), and (E). Dorsal views, anterior to the

top in (F)–(I) and (K)–(L). (D and E) Arrowheads

mark projections (anti-neurofilament, red) from

cranial ganglia (anti-HuC, green) to hindbrain. (F–I,

K, L) Green label marks hspGFF130DMCA:UAS-

gap43-citrine expression in Mauthner andMid2cm

Mauthner homologs. (F and G) Open arrows mark

Mauthner (M) axon cap. Open arrowhead marks

spiral fiber neuron projection and closed arrows

mark contralateral passive hyperpolarizing (PHP)

projection. (H and I) Brackets mark lateral dendrite

of Mauthner with Cx35-positive club endings.

Asterisk marks blood cell.

(J) Mean number of club endings.

(K and L) Glycineric receptors on Mauthner soma.

SAG, statoacoustic ganglion; aLL, anterior lateral

line ganglion; pLL, posterior lateral line ganglion.

N, larvae shown within bars. Error bars indicate

SEM. Scale bars = 1 mm (B), 50 mm (E), and 10 mm

(G, I, and L).
(Koyama et al., 2011). Thus, pappaa is expressed by identified

hindbrain neurons that are well characterized components of

the acoustic startle circuit.

Neuronal Development of the Acoustic Startle Circuit Is
Intact in pappaap170 Mutants
Given the expression of pappaa in several neuronal cell types

known to regulate startle modulation and/or execution, we

used vital dye and immunolabeling to examine whether pappaa

function is required for the development and/or cellular and syn-

aptic integrity of startle circuitry neurons. Analysis of sensory

neuromasts that detect acoustic stimuli, sensory cranial ganglia,

Mauthner neurons, and some of their inputs from other hindbrain

modulatory interneurons such as PHP and spiral fibers did

not reveal any obvious defects in 5 dpf pappaap170 mutants

when compared to wild-type animals (Figures 3A–3G; n = 22

pappaap170, n = 24 pappaa+/+). Furthermore, high-resolution im-

aging of the Mauthner neuron showed indistinguishable cellular
1204 Neuron 85, 1200–1211, March 18, 2015 ª2015 Elsevier Inc.
morphology between pappaap170 mu-

tants and siblings (Movie S2 (pappaa+/+,

n = 16) and Movie S3 (pappaap170, n =

14); Figure S4). Similarly, large synaptic

club endings on the lateral dendrite, the

sites of acoustic input to the Mauthner,

and glycinergic receptor distribution

on the soma of Mauthner neurons re-

vealed no differences when compared

to wild-type animals (Figures 3H–3L; n =

12 pappaap170, pappaa+/+ n = 10). Taken

together, in pappaap170 mutant larvae,

sensory afferents to the Mauthner neu-

rons, the Mauthner neurons, andmodula-
tory inputs from neighboring hindbrain neurons appear morpho-

logically indistinguishable from those in wild-type.

PAPP-AA Regulates Habituation Learning through Its
Metalloprotease Activity
At 5 dpf, when pappaap170 larvae first become behaviorally

distinct from their siblings, they appear grossly normal but often

fail to fully inflate their swim bladder (62%, n = 26 pappaap170;

Figure 4A). By 9 dpf, the pappaap170 mutants are noticeably

smaller in size than their wild-type siblings (3.93 mm ± 0.07,

n = 15 pappaap170 versus 4.65 mm ± 0.03 SEM, n = 24

pappaa+/+). Behavioral testing of pappaap170 mutants at 12 dpf

revealed a clear deficit in habituation learning, strongly suggest-

ing that PAPP-AA also mediates habituation learning during

post-developmental stages (Figure 4B). pappaap170 mutants

die at 16.9 dpf (±0.29 days SEM, n = 10; Figure 4C), precluding

the analysis of adult mutants. Therefore, we conducted all future

experiments between 5 and 12 dpf.
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Figure 4. pappaap170 Mutants Show Reduced Swim Bladder Infla-

tion, Habituation, and Survival

(A) pappaap170mutants appear grossly normal at 5 dpf, with exception of some

showing an uninflated swim bladder.

(B) pappaap170 larvae show startle habituation deficit at 5 and 12 dpf.

(C) Kaplan-Meier survival curve shows reduced viability in pappaap170 mu-

tants. *p < 0.001, one-way ANOVA (with Bonferonni correction) versus

pappaa+/+, **p < 0.0001Mantel-Cox test versus wild-type siblings. N = number

of larvae shown within bars (B) or in legend (C). Error bars indicate SEM.
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Figure 5. PAPP-AA Metalloprotease Activity Is Required for Startle

Habituation

Mean habituation percentage after injection of human wild-type pappa mRNA

or proteolytically inactive pappaE483A mRNA. *p < 0.001, ANOVA with Bon-

feronni correction versus DMSO treated larvae of the same genotype. N, larvae

shown within bars. Error bars indicate SEM.
PAPP-A encodes an extracellular metalloprotease known to

cleave IGF binding protein 4 (IGFBP4) and hereby increasing

insulin-like growth factor (IGF) locally available to bind its recep-

tor (Conover et al., 2004; Laursen et al., 2007; Laursen et al.,
2001; Lawrence et al., 1999). To ask whether PAPP-AA functions

as a protease for habituation learning, we tested the ability of a

previously characterized version of human PAPP-A lacking pro-

tease activity (h-pappaE483A) to restore habituation learning in

zebrafish pappaap170 mutant larvae (Boldt et al., 2001). While

control injections of h-pappa mRNA into one-cell stage embryos

significantly improved habituation in pappaap170 mutants, injec-

tion of equimolar amounts of h-pappaE483A mRNA did not

improve habituation deficits in pappaap170 mutants (Figure 5).

Importantly, RT-PCR analysis revealed that wild-type h-pappa

and h-pappaE483A mRNA persisted through 5 dpf (Figure S5),

demonstrating that PAPP-AA metalloprotease activity is re-

quired for acoustic habituation learning.

PAPP-AA Regulates Habituation through Acute Control
of IGF1R Signaling
Given that PAPP-AA’s metalloprotease activity is required for

habituation learning, we next asked whether PAPP-AA regulates

this process through canonical IGFR signaling. For this we

exposed pappaap170 mutants to SC79, a pharmacological acti-

vator of Akt, a canonical downstream effector of IGF1R signaling

(Anlar et al., 1999; Jo et al., 2012; Laviola et al., 2007). SC79

treatment from 1 to 5 dpf improved habituation in pappaap170

mutants to near wild-type levels (Figure 6A), suggesting that

PAPP-AA regulates acoustic startle habituation through

IGFR1-Akt signaling. We next asked whether PAPP-AA acts

throughout the period of startle circuit development, or whether

PAPP-AA regulates IGF1R-Akt signaling acutely during the

habituation process. We hypothesized that periods of SC79

exposure sufficient to improve habituation in pappaap170 mu-

tants would indicate critical periods of PAPP-AA/ IGF1R/Akt

signaling. SC79 treatment restricted prior to 3 dpf failed to

improve habituation in pappaap170 mutants. In contrast, SC79

treatment between 3 and 5 dpf, even beginning as late as 5

dpf, restored habituation in pappaap170 mutants. Consistent

with these results, acute exposure to 740 Y-P, a cell-permeable

phosphopeptide activator of PI 3-kinase (PI3K) (Williams and
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Doherty, 1999), also improved habituation in pappaap170

mutants (Figure 6B). Finally, exposure to BMS-754807, a phar-

macological inhibitor of IGF1R (Carboni et al., 2009; Kamei

et al., 2011) for 30 min prior to and during habituation testing,

also significantly reduced startle habituation in a dose-depen-

dent manner in wild-type zebrafish at both 5 and 12 dpf (Figures

6C and 6D). Together, these results reveal a novel, acute

role for PAPP-AA/IGF1R/PI3K/Akt signaling in promoting startle

habituation.

DISCUSSION

Habituation is a fundamental form of learning duringwhich an an-

imal’s response to repetitive, identical stimuli gradually declines

(Groves and Thompson, 1970; Thompson and Spencer, 1966).

This decline is not due to sensory adaptation or motor fatigue

(Rankin et al., 2009; Thompson and Spencer, 1966; Wolman

et al., 2011) and is conserved across species. In addition to its

conservation, habituation is a particularly interesting form of

learning because it provides a measurable form of neuroplastic-

ity that enables animals to ignore irrelevant stimuli in favor of

higher-priority stimuli (Poon and Young, 2006), and in humans

disruption of habituation is strongly correlated with cognitive im-

pairments (Braff et al., 1992; Jansiewicz et al., 2004;McSweeney

et al., 2005). Despite extensive characterization of various forms

of habituation learning, including olfactory, mechanosensory,

and startle habituation (Engel and Wu, 2009; Giles and Rankin,

2009; Glanzman, 2009; Halberstadt and Geyer, 2009; Koch

and Schnitzler, 1997; Schmid et al., 2003; Wilson, 2009), there

remains a clear need for functional gene sets underlying habitu-

ation learning, particularly in vertebrates. Here, we report on

results from a genome-wide genetic screen to identify a gene

set selected solely for a functional role in startle habituation.

Importantly, this work identifies pappaa as a novel, vertebrate-

specific regulator of startle habituation. Based on a series of

in vivo experiments, we propose a model by which PAPP-AA

acts as a metalloprotease to promote startle habituation by

increasing IGF receptor signaling during the process of habitua-

tion (Figure 7).

A Forward Genetic Screen Identifies Startle Habituation
Mutants
With the exception of an unbiased, forward genetic screen for ol-

factory habituation mutants in Drosophila (Eddison et al., 2012;

Wolf et al., 2007), only candidate gene approaches have been

used to identify and dissect genetic mechanisms underlying

habituation (Castro-Alamancos and Torres-Aleman, 1994; Das

et al., 2011; Engel and Wu, 1998; Lau et al., 2013; Morrison

and van der Kooy, 2001; Ohta et al., 2014; Rankin and Wicks,

2000; Rose et al., 2003; Sanyal et al., 2004; Swierczek et al.,

2011; Typlt et al., 2013). To complement previous work and iden-

tify a broad set of core genes critical for vertebrate startle habit-

uation, we conducted a classical three generation forward ge-

netic screen. This approach yielded a set of 14 mutants with

unaltered startle performance but impaired startle habituation

(Figure 1). Because thesemutants do not exhibit anymorpholog-

ical or motility defects, they probably represent mutants previ-

ously not identified in the major zebrafish screens from Tubingen
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and Boston in the mid-1990s (see Development, 1996, Issue

123). We noticed that several of themutants displayed enhanced

sensitivity to acoustic stimuli (Figure S2A), consistent with the

idea that the mechanisms controlling startle sensitivity are

located ‘‘upstream’’ within the neural circuitry regulating startle

habituation (Hoffman and Searle, 1968; Pilz and Schnitzler,

1996). Importantly, not all habituation mutants exhibit increased

startle sensitivity (e.g., information overloadp171, oops I did it

againp179, and forgetfulp182,p183). Conversely, in a companion

screen, we identified mutants with much greater enhanced star-

tle sensitivity than themutants described here, yet thesemutants

habituate normally (data not shown). We find that several habit-

uation mutants (e.g., information overloadp171, ignorance is

blissp172, irresistiblep173, slow learnerp174, uninhibitedp175,

groundhog dayp176, and divided attentionp177) are homozygous

viable and display startle habituation deficits when tested as

young adults (�3months), confirming that themolecular-genetic

mechanisms driving habituation learning in 5 dpf larvae persists

into adulthood. Finally, we find that two of the mutants with

reduced habituation to acoustic stimuli also displayed visual

habituation deficits (Figure S2C; slow learnerp174 and oops I

did it againp179), providing evidence that these two affected

genes play a role in habituation independent of sensorymodality.

Thus, we have identified the first set of startle habituation genes

characterized solely by their functional requirement for habitua-

tion, and given that we previously demonstrated that acoustic

startle habituation in zebrafish larvae can be reversed, i.e., dis-

habituated by a novel stimulus (Wolman et al., 2011), we expect
to find already well-characterized genes as well as genes previ-

ously not known to affect the central process of habituation

learning.

A Role for pyruvate carboxylase a in Habituation
Learning
Whole-genome sequence analysis and high-resolution linkage

analyses reveal that the information overloadp171 habituation

phenotype co-segregates with a premature stop codon in the

biotin-carboxy carrier protein (BCCP) domain of the pyruvate

carboxylase a (pcxa) gene (Figure 1C). PCXA catalyzes the

carboxylation of pyruvate to oxaloacetate, a necessary step to-

ward the production of glucose, fat, and amino acids, including

glutamate (Jitrapakdee et al., 2008). Importantly, pyruvate

carboxylase activity is undetectable in neurons but is active in

astrocytes, where it plays a pivotal role in the maintenance of

the glutamate neurotransmitter pool (Hertz, 2004; Schousboe

et al., 2013; Whitfield et al., 1996). In humans, pyruvate carbox-

ylase deficiency results in severe psychomotor retardation and

affected individuals die within months to a few years after birth

(Monnot et al., 2009). It might therefore appear surprising that

pcxap171 mutant zebrafish larvae appear grossly normal and

that they are at least partially homozygous viable (data not

shown). One likely explanation for the viability of pcxa mutants

is that a second paralog gene, pyruvate carboxylase b (pcxb)

located on chromosome 7, attenuates the impact of pcxa defi-

ciency. How then does pcxa affect habituation learning? It is

well documented that glutamate neurotransmission regulates

habituation learning in both mammals and zebrafish (Bespalov

et al., 2007; Bickel et al., 2008; Roberts et al., 2013; Wolman

et al., 2011). It is therefore tempting to speculate that glia asso-

ciated with neurons of the startle circuit require pcxa to maintain

a constant pool of glutamate. Further analyses are necessary to

test this hypothesis and to understand how pyruvate carbox-

ylase-dependent glutamate synthesis promotes neuronal plas-

ticity, including habituation learning.

PAPP-AA Is a Novel Regulator of Habituation Learning
and Acutely Promotes IGFR Signaling
Mammalian pregnancy-associated plasma protein a (PAPP-A)

was originally purified from late pregnancy plasma and later

shown to encode a membrane associated metalloprotease

that specifically cleaves insulin-like growth factor binding pro-

teins IGFBP-4 and IGFBP-5, thereby releasing IGF from their

binding partners and hence promoting IGF receptor activation

(Laursen et al., 2001, 2007; Lawrence et al., 1999; Lin et al.,

1974). In mice, knockout of pappa results in viable offspring

about 60% the size of wild-type at birth, identical to the pheno-

type observed in IGF-II null animals (Conover et al., 2004; De-

Chiara et al., 1990). Although pappa is expressed in the mouse

brain, a requirement for pappa in neural development, function,

or behavior has not been reported (Conover et al., 2004). The

zebrafish genome contains two pappa orthologs, pappaa and

pappab, and both have been shown to cleave IGFBP-4 (Kjaer-

Sorensen et al., 2013). Furthermore, morpholino knockdown of

pappab affects developmental growth independent of its proteo-

lytic activity (Kjaer-Sorensen et al., 2013). In contrast, the role of

zebrafish pappaa has not been examined.
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We find that the startle habituation phenotype in pappaa/unfil-

teredp170 mutants is caused by a mutation in pappaa and that

pappaa promotes startle habituation through its metalloprotease

activity (Figures 1B and 5). Our results support a mechanism

in which PAPP-AA regulates habituation by targeting IGFBPs

for cleavage and thereby enhancing IGF1R signaling. IGF1R

signaling serves extensive roles during all stages of circuit devel-

opment and also regulates circuit plasticity (Fernandez and

Torres-Alemán, 2012). Although we cannot exclude the possibil-

ity that pappaamight contribute to some aspects of neural devel-

opment, the ability to restore habituation in pappaa p170 mutants

by acute activation of Akt and PI3K combined with the observa-

tion that acute inhibition of IGF1R reduces startle habituation

strongly argues for an acute, post-developmental role for

PAPP-AA during habituation learning.

Post-developmental roles for IGF1-IGF1R in learning behavior

have been documented from C. elegans to rodent models of

IGF signaling deficiency (Castro-Alamancos and Torres-Aleman,

1994; Tomioka et al., 2006). For example, insulin receptor

signaling in C. elegans has been shown to play a critical role in

experience-dependent temperature habituation and in taste

avoidance learning (Ohno et al., 2014, 2014). Furthermore, in

rats administration of insulin-like growth factor II enhancesmem-

ory retention and prevents forgetting (Chen et al., 2011), and in

humans insulin treatment has been reported to improve memory

function (Benedict et al., 2004), while IGF-1-mediated signaling

is thought to contribute to age-related cognitive decline (Deak

and Sonntag, 2012). Reduced IGF availability and signaling has

also been linked to schizophrenia (Venkatasubramanian et al.,

2007), a disorder with a pronounced habituation deficit (Braff

et al., 1992). This association warrants further examination of

PAPP-A as a potential therapeutic target to stimulate IGF

signaling in patients suffering from disorders like schizophrenia.

pappaa is expressed by neurons known to modulate startle

behaviors and as outlined above is likely to promote habituation

learning through an acute, IGFR-dependent process. IGFR

signaling is known to regulate synaptic strength through ion

channel modulation and neurotransmitter release, trafficking,

and receptor activity (Blair and Marshall, 1997; Chen and Roche,

2009; Liou et al., 2003;Wang and Linden, 2000; Xing et al., 2007).

In the future, resolving the precise mechanism by which pappaa

modulates IGFR signaling and how IGFR signaling in turn pro-

motes plasticity will be critical to understand the process of

habituation leaning.

EXPERIMENTAL PROCEDURES

Fish Maintenance and Mutagenesis

ENU mutagenesis was performed in TLF and WIK Danio rerio strains as previ-

ously described (Dosch et al., 2004; Mullins et al., 1994). Embryos/larvae were

maintained on a 14/10 hr light/dark cycle at 29�C and raised as previously

described (Gyda et al., 2012; Kimmel et al., 1995). Behavioral experiments

were conducted on 5–12 dpf larvae.

Behavioral Assays and Behavioral Analysis

Behavioral experiments were performed and analyzed with the FLOTE soft-

ware package as previously described (Burgess and Granato, 2007a, 2007b;

Hao et al., 2013; Wolman et al., 2011). The acoustic startle habituation assay

was performed as described in Figure 1A (Wolman et al., 2011). Short latency

C-bend startle response is measured by defined kinematic parameters
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including C-turn initiation latency, C-turning angle, C-turn duration, and C-

turn maximum angular velocity (Burgess and Granato, 2007b). For secondary

behavioral analyses of startle sensitivity, baseline activity, and visual habitu-

ation, habituation mutant larvae and wild-type siblings were identified based

on acoustic startle habituation percentage (mutants < 50%, siblings > 50%

habituation). Startle sensitivity assay was built into the habituation assay

(Wolman et al., 2011). Baseline activity was determined by measuring total

distance traveled over 160 s. For visual habituation testing, larvae were

grouped by startle habituation phenotype in a 6 cm petri dish at a density

of 12–15 larvae per dish. The visual habituation assay consisted of exposing

larvae to 10 1-s-long dark flashes at 30 s ISI to establish baseline dark-flash

responsiveness and then 30 1-s-long dark flashes at 3 s ISI to test visual

habituation.

Recombination Mapping, Whole-Genome Sequencing, and

Molecular Cloning of pappaa and pcxa

A three-generation mapping cross was built into our breeding scheme by

crossing F1 heterozygotes from mutagenized TLF and WIK backgrounds.

Pools of 25 behaviorally identified F3 mutant and sibling larvae were collected

at 5 dpf and used for bulk segregant mapping with simple sequence length

polymorphic markers (Table S1) (Jain et al., 2011) and/or whole-genome

sequencing.

For whole-genome sequencing, we used 100 base pair paired-end

sequencing on the Illumina HiSeq 2000 platform and compared gDNA from

our pooled F3 mutants to gDNA prepped from the ENU-mutagenized males

of both the TLF and WIK-L11 strains. Each sample was given its own lane in

the flow cell, allowing us to achieve an average�203 coverage of the genome

for each sample. Sequence data for each sample wasmapped to the zebrafish

Zv9 assembly (Ensembl) using Burrows-Wheeler Aligner software to map

reads (Li and Durbin, 2009). Duplicate reads were eliminated with Picard tools

(http://picard.sourceforge.net). We then adapted a fast homozygosity map-

ping strategy from Voz et al. (2012) to our screen. First we isolated all of the

100% homozygous bases unique to our TLF and WIK-L11 reference using

the GATK software (McKenna et al., 2010). This generated 463,379 SNP

markers. Using this set of SNPs, we calculated homozygosity scores by as-

signing TLF alleles a value of 1 and WIK alleles a value of 0 in a rolling 100-

SNPwindow incrementing one SNP at a time.We analyzed the homozyogosity

of our mutant samples across the genome and identified regions with scores

>0.9 or <0.1 to indicate strong linkage to TLF or WIK-L11 alleles, respectively.

To identify potentially causative mutations, we isolated all SNPs in the linked

region that were unique to the mutant sample by comparing each mutant

sequence to a combined reference sequence comprised of our TLF and WIK

sequences, the Ensembl reference sequence, and our other mutant se-

quences. We restricted our list of candidate mutations to SNPswith <1%allele

frequency in this reference sequence that also causes a change in amino

acid sequence (nonsense, missense, or splice site mutations). For both

unfilteredp170 and information overloadp171, these criteria produced a single

SNP candidate.

To confirm candidate nonsense mutations in pappaa and pcxa, cDNA was

prepared from total mRNA extraction from 5 dpf larvae, as previously

described (Peterson and Freeman, 2009). pappaa and pcxa cDNA were ampli-

fied with primers (Table S1) designed against pappaa and pcxa reference

sequence (Ensembl) with the following RT-PCR conditions: 94�C for 3 min

and then 35 cycles of 94�C for 30 s, 57�C for 1 min, and 70�C for 1 min. Prod-

ucts were gel purified and cloned into the pCR2.1-TOPO-TA vector for

sequencing.

For zebrafish pappaaRNA injection, cDNAwas prepared fromwild-type TLF

larvae and amplified with the z-pappaa:FL primers using similar PCR condi-

tions to those above but with extension time increased to 3 min. Full-length

pappaawas cloned into pCS2+ vector, transcribed using themMessagemMa-

chine kit (Ambion), and injected at the one-cell stage at doses ranging from 1–

200 picograms. Full-length human pappa and pappaE483A constructs (Boldt

et al., 2001) were similarly prepped and injected. Embryos injectedwith greater

than 50 pg of zebrafish pappaa or 100 pg h-pappa or h-pappaaE483A mRNA

showed gross morphological abnormalities and necrosis, whereas embryos

injected with 50 pg pappaa or 100 pg h-pappa (or less) appeared morpholog-

ically normal.

http://picard.sourceforge.net


Genotyping, confocal imaging, morphological analyses, immunolabeling

and in situ hybridization, pharmacological applications, and statistical ana-

lyses are described in Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION
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