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ABSTRACT
Localized genomic variability is crucial for the ongoing conflicts between infectious

microbes and their hosts. An understanding of evolutionary and adaptive patterns

associated with genomic variability will help guide development of vaccines and

antimicrobial agents. While most analyses of the human microbiome have focused

on taxonomic classification and gene annotation, we investigated genomic variation

of skin-associated viral communities. We evaluated patterns of viral genomic

variation across 16 healthy human volunteers. Human papillomavirus (HPV)

and Staphylococcus phages contained 106 and 465 regions of diversification, or

hypervariable loci, respectively. Propionibacterium phage genomes were minimally

divergent and contained no hypervariable loci. Genes containing hypervariable

loci were involved in functions including host tropism and immune evasion. HPV

and Staphylococcus phage hypervariable loci were associated with purifying selection.

Amino acid substitution patterns were virus dependent, as were predictions of

their phenotypic effects. We identified diversity generating retroelements as one

likely mechanism driving hypervariability. We validated these findings in an

independently collected skin metagenomic sequence dataset, suggesting that these

features of skin virome genomic variability are widespread. Our results highlight

the genomic variation landscape of the skin virome and provide a foundation for

better understanding community viral evolution and the functional implications

of genomic diversification of skin viruses.
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INTRODUCTION
Localized genomic modifications are ammunition in the ongoing battle between hosts

and infectious agents. The human adaptive immune response relies on localized genomic

diversity of antigen receptors to facilitate detection and efficient removal of foreign

agents (Borghans, Beltman & De Boer, 2004; Kubinak et al., 2012). Infectious microbes,

such as bacteria and viruses, likewise rely on genomic variation to modulate tropism

and facilitate immune evasion (Malim & Emerman, 2001; Doulatov et al., 2004; Minot

et al., 2012; Schillinger et al., 2012; Das et al., 2013; Minot et al., 2013; Guo et al., 2014).
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Potential selective benefits of targeted variation in viruses include immune evasion and

widening of host tropism (Borghans, Beltman & De Boer, 2004; Kubinak et al., 2012).

Most contemporary low resolution studies of the human microbiome evaluate

functional potential through taxonomic classification and whole gene identification

(Schloss & Handelsman, 2008; Human Microbiome Project Consortium, 2012; Langille

et al., 2013; Hannigan et al., 2014; Ly et al., 2014; Norman et al., 2015; Lim et al., 2015;

Meisel et al., 2016). These approaches are usually unable to capture nucleotide variations

that affect functionality of proteins encoded in the microbiome, which can be altered

by differences in only a few nucleotides. For example, viruses such as Bordetella

bacteriophages, hepatitis C virus, and others only require short variable regions

within a gene to facilitate functional changes in processes including tropism diversity,

immune evasion, drug resistance, and adaptation to host auxotrophies (Bacher, Bull &

Ellington, 2003; Doulatov et al., 2004; Donaldson et al., 2010; Guan et al., 2012; Shah et al.,

2014). Contemporary low-resolution studies also fail to identify genetic cassettes that

promote targeted diversity, such as diversity generating retroelements (DGRs). DGRs

promote targeted genetic diversification in bacteriophages through error-prone cycles of

transcription, reverse transcription, and integration; through this process information

encoded in a non-variable template region is copied in a fallible fashion into a variable

region within a coding sequence (Doulatov et al., 2004; Minot et al., 2012; Schillinger

et al., 2012).

Here, we investigate skin virome evolution and adaptation by inferring the selective

pressure, functional diversity, and substitution patterns associated with targeted

hypervariation. We focus on three prominent cutaneous viruses: human papillomavirus

(HPV), Propionibacterium phage, and Staphylococcus phage. HPV is associated with

the development of skin cancer, especially in immune-suppressed individuals (Vinzón

et al., 2014; Wang et al., 2014; Quint et al., 2015). Current vaccine efforts aim to target

conserved antigens for broad strain protection—thus a greater understanding of HPV

genomic diversity could improve design of vaccines (Schiller & Lowy, 2012; Vinzón et al.,

2014). Staphylococcus phages can modulate Staphylococcus pathogenic gene expression

and facilitate transmission of antibiotic resistance (Bae et al., 2006; Varga et al., 2012).

Propionibacterium phages are associated with Propionibacterium acnes and have

therapeutic potential for treating acne (Marinelli et al., 2012; Hannigan & Grice, 2013).

Our findings build upon previous analyses of individual virus genomic variability and

provide new insight into phage biology of the cutaneous microbiome.

MATERIALS AND METHODS
Analysis details and availability
All associated source code and explanatory README files are available for review at the

following GitHub repository: https://github.com/Microbiology/ViromeVarScripts.

Data acquisition and quality control
The primary skin virome dataset was acquired from SRA accession: SRP049645

(Hannigan et al., 2015) and includes sequences from samples collected at the second and
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third time points. The secondary dataset was obtained fromOh et al. (2014) (SRABioProject:

46333). Retroauricular crease samples were downloaded from the NCBI SRA BioProject:

46333. For samples from both the primary and secondary dataset, sequences were trimmed

with the FASTX-Toolkit (version 0.0.14), using a quality score cutoff of 33. Remaining

sequences with similarity to the human genome were removed using the standalone

DeconSeq toolkit (version 0.4.3) (Schmieder & Edwards, 2011).

Contig assembly and taxonomic identification
Contigs from the primary dataset were obtained from the published Figshare source

(DOI 10.6084/m9.figshare.1281248). Contigs from both the primary and secondary

datasets were separately assembled using the Ray metagenomic assembly software,

specifying a minimum contig length of 500 bp and otherwise default parameters (v2.3.1)

(Boisvert et al., 2012). Within each dataset, sequences from all samples were combined

prior to assembly to facilitate the most complete contig assembly. Contig coverage

was determined by aligning sequences back to the contigs with the bowtie2 toolkit

(v2.1.0; seed substring length of 25 and one mismatch allowed in alignment) (Langmead &

Salzberg, 2012). Quantification of reads mapping back to contigs was obtained by parsing

bowtie2 output using Perl and BASH scripts presented in the supplemental source

code. Coverage was calculated using the number of reads mapping to each contig. The

blastn program from the NCBI Blast+ toolkit (version 2.2.0) was used to determine

similarity of contigs to virus reference genomes (Camacho et al., 2009). Contigs were

blasted against a previously described virus-specific genome reference database, which is a

subset of the EMBL reference genome database (UniProt Consortium, 2014; Hannigan

et al., 2015). A similarity threshold of e-value < 10-3 was used, and sequences with multiple

potential identities were resolved by using only hits with the lowest e-values. Although

this was the minimum threshold, the contigs of interest exhibited e-values < 10-3.

Phylogenetic analysis
We constructed phylogenies using the L1 capsid gene for HPV (Ma et al., 2014) and

the large terminase subunit for the Staphylococcus and Propionibacterium phages

(Gutiérrez et al., 2013; Ma et al., 2014) as phylogenetic marker genes. For reference,

we used the PAVE reference L1 genes (https://pave.niaid.nih.gov/, accessed 2015-06-03)

(Van Doorslaer et al., 2013). The large terminase subunit references for Staphylococcus and

Propionibacterium phages were from the NCBI gene sequence database (Staphylococcus

phage: accessed 2015-09-14, search term: ((phage terminase large subunit staphylococcus))

AND “viruses”[porgn:__txid10239] NOT “ORF” NOT “hypothetical” NOT “putative;”

Propionibacterium phage: accessed 2015-09-15, search term: ((phage terminase large

subunit propionibacterium)) AND “viruses”[porgn:__txid10239]). To extract the

phylogenetic marker genes from the virome contigs, we determined which open reading

frames (ORFs) matched the reference genes by nucleotide similarity (nucleotide blast,

e-value 1e-10). Only ORFs longer than 1.2 kb were included in the analysis. The average

reference gene lengths were all longer than this threshold (average reference gene length:

HPV = 2,519 bp, Staphylococcus phage = 1,307 bp, Propionibacterium phage = 1,511 bp).
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Contig and reference marker genes were aligned using the Smith–Waterman algorithm

and 1,000 iterations as implemented by the mafft aligner (v7.221) (Katoh & Standley,

2013). Phylogeny was constructed using RAxML (version 8.1.21) (Stamatakis, 2014).

The phylogenetic tree was visualized using Figtree (Rambaut, 2006).

Identification of temperate phage contigs
As has been described previously, we identified temperate (lysogenic) phage contigs

using three genomic markers: contig nucleotide similarity to (1) phage integrase genes,

(2) prophage genes within the ACLAME prophage database, and (3) bacterial reference

genomes. We performed a blastx alignment (e-value 1e-10, percent identity threshold

75%) of the genes within the ACLAME prophage database (Leplae, Lima-Mendez &

Toussaint, 2010), a blastx alignment with integrase genes from Uniprot database, and

a blastn alignment of the Staphylococcus phage contigs to Staphylococcus bacterial

reference genomes. Integrase genes were obtained from the online Uniprot database

using the search term “organism:phage gene:int NOT putative.” Staphylococcus reference

genomes were obtained from the NCBI nucleotide database using the search term

“‘Staphylococcus’[Organism] AND ‘complete genome’[Name] NOT phage[All Fields]

NOT contig[All Fields] NOT (‘unidentified plasmid’[Organism] OR plasmid[All

Fields]) AND (bacteria[filter] AND biomol_genomic[PROP]).” Both were accessed

December 22, 2016. Together this allowed us to detect regions of contigs that

demonstrated a high similarity to temperate phage gene signatures.

Identification of hypervariable loci
The bowtie2 alignments of reads to viral contigs were formatted (e.g., conversion from

binary to ASCII format) and then single nucleotide polymorphisms (SNPs) were called

using VarScan (v2.3.7) (Li et al., 2009; Koboldt et al., 2012). The “pileup2snp” program from

VarScan was used with a minimumminor allele frequency threshold of 1%, a read depth of

8, and a minimum of two supporting reads for variant calls. Indels were excluded.

To identify hypervariable loci, we used a geometric distribution based statistic approach

as described previously (Zheng et al., 2010), which, compared to sliding window searches

and other similar methods, has the advantage of avoiding boundary difficulties and

variations within contigs. We used a geometric distribution to model the probability

of achieving two SNPs separated by a specified non-SNP nucleotide distance. Each

between-SNP distance was associated with a probability and the probability of a particular

distance occurring by randomly sampling was less than 5%. Thus, we identified a range of

SNP distances as significantly less than background if they occurred within our dataset

less than 5% of the time.

Protein family domain identification within hypervariable loci ORFs
Protein family domains were identified in ORFs that contained hypervariable loci. The

subset of translated virus ORFs that contained hypervariable loci were aligned to the

standard Pfam protein family domain database using hmmscan within the HMMer

toolkit (version 3.1) and GA gathering bit score thresholds (Finn, Clements & Eddy, 2011).
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Prediction of single amino acid variant effect on phenotype
The SuSPect algorithm was employed to predict the likelihood of SNP-associated single

amino acid variants (SAVs) impacting phenotype. We used SuSPect to create a matrix of

likelihood scores for every possible SAV at every position in the ORFs that contained

hypervariable loci. This matrix was used as a reference to quantify the likelihood of each

hypervariable loci SNP to impact the resulting phenotype. The significance of the score

differences between viruses was calculated using a Wilcoxon rank-sum test.

Evolutionary pressure of hypervariable loci and virus genomes
We assessed the evolutionary pressure of a gene using the pN/pS ratio as in Formula 1,

where MN and MS represent the observed number of non-synonymous and synonymous

SNPs, respectively. These values were normalized by the total number of possible non-

synonymous or synonymous substitutions (Ni and Si, respectively), in order to avoid

potential codon usage bias. Furthermore, to normalize for sequence coverage of the SNPs

and prevent extreme values, a pseudocount value of an arbitrarily small number was

added to theMN andMS values, which was defined as half of the square root of the median

sequence coverage of SNPs within the region of interest (CM). The pseudocount approach

was used to prevent infinite and illegal values when MN or MS had zero values, thus

allowing consideration of otherwise infinite or ignored data points. For example, an

absence of synonymous mutations would result in an infinitely large value (dividing by

zero) thus forcing exclusion of the data point. Our approach preserves this data and allows

us to draw conclusions from the largest possible dataset, and has been shown to be

effective in previous studies (Novaes et al., 2008; Bajgain et al., 2011).

pN
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¼
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ffiffiffiffiffi
~CM

2p
2PL

i¼1

Ni
3

0
B@

1
CA

MS þ
ffiffiffiffiffi
~CM

2p
2PL

i¼1

Si
3

0
B@

1
CA

(1)

The formula used to calculate the pN/pS ratio for a gene. MN is the number of non-

synonymous SNPs within the gene and MS is the number of synonymous SNPs found

within the gene. Each mutation value is normalized for the likelihood that the result

would have happened by chance, calculated as the sum of the proportions of nucleotides

that would have resulted in either a non-synonymous or synonymous mutation. To

calculate this proportion, the possible non-synonymous mutations (N) and synonymous

mutations (S) at position i within the gene are expressed as a fraction of the three possible

alternate nucleotides. SNP counts were smoothed as pseudo-counts using the median

SNP sequence coverage (CM).

This analysis is similar to the dN/dS calculations often performed to estimate degrees of

natural selection among genomes (Nishida, Frith & Nakai, 2009; Schloissnig et al., 2013).
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It is important to note however that such an analytical approach would be inappropriate

for this type of sample set because the nucleotide variations are not assignable to isolated

strains, which prevents haplotype identification that is a necessary component of

dN/dS calculations. The pN/pS calculation does not assume haplotypes, and is therefore

appropriate for metagenomic datasets.

To estimate the selective pressure on hypervariable loci, the locations of the hypervariable

loci were extracted, along with their immediately adjacent regions, using a Perl script as

presented in the supplemental source code. Adjacent regions are defined as the genomic

regions that are two times the length of the hypervariable loci and located immediately

before and after the hypervariable loci. These positions were used with the contig sequences,

SNP call data, and pN/pS calculator to estimate their selective pressure. Hypervariable

regions outside of coding regions were not considered.

Calculation of the overall selective pressure on virus contigs was performed in a

similar approach to the hypervariable loci selective pressure. Predicted ORFs were first

extracted from the contigs using the Glimmer3 toolkit (v3.02) (Delcher et al., 2007). The

predicted ORFs, along with the contig sequences, SNP profile, and pN/pS calculator were

used to calculate the overall selective pressure on each gene within each contig. The

distributions of selective pressures observed for each gene were observed as categorized

by virus type.

Amino acid frequency, charge, and polarity
Amino acid abundance profiles were calculated while correcting for the random

probability of that substitution. More specifically, each value was weighted for the number

of nucleotides that result in the same amino acid as weighted value = ((number of

nucleotide substitutions resulting in same amino acid)/3)-1. Relative abundance was

calculated as the sum of the corrected frequencies. Charge and polarity were determined

using a simple table of known amino acid properties. Differences in profiles between

viruses were calculated using a chi-square test.

Diversity generating retroelement identification
We identified potential DGRs by collecting assembled contigs that contained ORFs similar

to known reverse transcriptase genes, and a duplicated nucleotide region less than 150 bp

in length. Reverse transcriptase ORFs were identified using blastx (e-value < 10-5) and

the Uniprot reference reverse transcriptase sequences (http://www.uniprot.org/uniprot/

?sort=score&desc=&compress=yes&query=%22reverse%20transcriptase%22%20(phage

%20OR%20virus)&fil=&format=fasta&force=yes). Repeat regions were identified by

comparing each contig to itself with tblastx (e-value < 10-50) and were filtered using

custom scripts to remove duplicates and regions longer than 150 bp. DGR candidates

were removed if they contained no hypervariable loci or if the variable region was not

within a predicted ORF.

Diversity generating retroelements were visualized in the Integrated Genomic Viewer

using the DGR cassettes and bowtie2 aligned sequences described above. The linkage

disequilibrium was calculated using a custom Perl script for formatting and the
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“LDheatmap” and “genetics” R packages for analysis and visualization (Shin et al., 2006;

Warnes et al., 2003). The linkage disequilibrium for each pair of SNPs was calculated as

the squared allelic correlation (R2).

Comparison of primary analysis to validation dataset
Near identical contigs were identified between the primary and secondary validation

dataset by aligning the two individually assembled contigs to each other using bowtie2,

with a specified seed length of 25 and up to one seed mismatch. Sequences from our

primary dataset and the Oh et al. (2014) dataset were aligned to the near identical contigs.

These alignments were used to identify shared SNP locations between our dataset and the

Oh et al. (2014) dataset. We quantified shared SNP location as percent of our primary

analysis SNPs whose location was identical to those of SNPs in the secondary validation

dataset. As a control, we compared these results to a simulated dataset where SNP position

was randomly assigned. The example SNP alignment over the circular contig was

generated using Genious (Kearse et al., 2012).

RESULTS
Diversity of skin viruses
We evaluated genomic variability associated with dsDNA skin viruses using a previously

published human skin virome metagenomic dataset, consisting of 260,714,906 high

quality sequences assembled into >76,000 contigs from 16 individuals (SRA accession:

SRP049645) (Hannigan et al., 2015). We relied on database virus annotation to identify

the taxonomic groups whose contigs had the overall highest confidence matches to

reference genomes. Because greater sequencing coverage allows for more refined

detection of variable nucleotides (Schloissnig et al., 2013), we focused our analysis on taxa

whose de novo assembled contigs had sufficient coverage (greater than 10�). Contigs

meeting these criteria were identified as Propionibacterium phages (contig count = 45),

Staphylococcus phages (contig count = 319), and human papillomaviruses (HPVs;

contig count = 56; Fig. 1A), representing a total of 420 contigs to be used out of the more

than 76,000 total contigs in the study (Fig. S1). All of the contigs from these three taxa

were used in our analysis, including those below our coverage threshold, since contigs

can have regions of high coverage despite an average low coverage. More specific,

secondary filtering was done while identifying SNPs. Some contigs were identified as

Pseudomonas phages or Enterobacteria phages, but these taxa excluded from the analysis

because their annotations were lower confidence and contig representation was minimal

(Fig. 1A). The uneven virus population coverage is potentially a reflection of our inability

to taxonomically identify the majority of virome sequences, and as a result we lose this

information to the viral “dark matter” (Hannigan et al., 2015).

We evaluated the diversity of the skin viruses by constructing phylogenic trees based on

conserved viral genes. Only fully assembled ORFs were considered of >1.5 kb for HPV,

and >0.15 kb for Staphylococcus and Propionibacterium phages. Similar to previous

studies, we used the L1 major capsid gene to classify HPV strains (de Villiers et al., 2004;

Ma et al., 2014). The terminase large subunit gene was extracted from Staphylococcus

Hannigan et al. (2017), PeerJ, DOI 10.7717/peerj.2959 7/24

http://www.ncbi.nlm.nih.gov/sra/SRP049645
http://dx.doi.org/10.7717/peerj.2959/supp-4
http://dx.doi.org/10.7717/peerj.2959
https://peerj.com/


phage contigs to construct phylogeny as described previously (Gutiérrez et al., 2013; Ma

et al., 2014). Because this gene is used for phylogeny of a variety of phages, we attempted

to construct Propionibacterium phage phylogeny in a similar manner (Ganz et al., 2014;

Li et al., 2014), but were ultimately unsuccessful due to the lack of a full-length de novo

assembled reference genes in the dataset.

Most skin HPVs were identified as gammaHPVs, the prototypical cutaneous HPV class

(Fig. 1B) (Mistry, Wibom & Evander, 2008). Few contigs were identified as beta and

Mu/Nu HPVs, and none were identified as alpha HPVs. This is consistent with data from

the Human Microbiome Project cohort (Ma et al., 2014).

Fewer Staphylococcus phage marker genes were identified, compared to HPVs, likely

because Staphylococcus phage genomes are orders of magnitude longer than HPV

Figure 1 Phylogenetic & evolutionary characteristics of skin virome hypervariable loci. (A) Scatter plot depicting the candidate contigs

considered for analysis in this study. Each point is a contig that mapped to a reference virus genome. The x-axis shows the length (log10 scale) of the

contig subsection that mapped to the reference genome. The y-axis shows the overall coverage of the contig, as a quantification of sequences

aligning to the contig. The color highlights the reference virus genome that the contig was most similar to, and the size depicts the e-value (inverse

log10) associated with the contig-reference match. The horizontal dashed line marks the threshold of 10� coverage, and the vertical dashed line

marks the 750 bp length threshold. (B) Phylogenetic tree of skin virome HPVs and (C) Staphylococcus phages, structured onto a standard phy-

logenetic tree using reference genomes. HPV phylogeny was based on the L1 major capsid gene and Staphylococcus phage phylogeny was based on

the large terminase subunit. Contigs from this study are highlighted as orange dots, and genera are labeled with text. Phylogenetic lengths were

normalized to ranks to facilitate visualization. (D) Box plots depicting the evolutionary pressure of HPVs (left) and Staphylococcus bacteriophages

(right) at the hypervariable loci (blue) and the regions immediately adjacent to the hypervariable loci (red). Adjacent regions were calculated as

being twice the length of the hypervariable loci (see visualization to the right). The hypervariable locus and adjacent region (combination of both

sides) from each sample were evaluated for evolutionary pressure (y-axis) using SNPs (pink lines in right illustration). Asterisk indicates a sta-

tistically significant difference (p < 0.01). Notched boxplots were created using ggplot and show the median (center line), the inter-quartile range

(IQR; upper and lower boxes), the highest and lowest value within 1.5 � IQR (whiskers), and the notch which provides an approximate 95%

confidence interval as defined by 1.58 � IQR/sqrt(n).
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genomes, thereby decreasing the probability that contigs covered the entire genome.

Because multiple displacement amplification (MDA) was not used to create this dataset,

there is no MDA-associated bias toward small circular genomes. The Staphylococcus

phage contigs belonged to the Phietalikevirus genus and orphan virus groups (those that

have not yet been classified) (Fig. 1C). Of the Staphylococcus phage contigs identified,

49.6% (123 out of 248 contigs) were predicted to be lysogenic, based on similarity to

lysogenic phages in the ACLAME database, integrase genes in the Uniprot database, and

Staphylococcus reference genomes from the NCBI nucleotide database, as described

previously (Leplae, Lima-Mendez & Toussaint, 2010; Minot et al., 2011; Hannigan et al.,

2015). This is a minimum estimate of contig lysogeny, as some of the other contigs

may have lysogenic signatures that we failed to identify. Furthermore, because this

classification strategy is based on blast assignments, it may result in false positives if genes

in the database are homologous to genes present in lytic phages.

Hypervariable loci within the skin virome
We implemented a geometric distribution-based approach to identify regions of high

genomic diversity, as in (Zheng et al., 2010). Regions within each contig that contained

a significantly higher frequency of SNPs over the stochastic background were identified

as viral hypervariable loci. Significance was defined as the frequency of SNPs having less than

a 5% chance of randomly occurring, given the geometric distribution of the dataset. HPVs

and Staphylococcus phages maintained 106 and 465 hypervariable loci, respectively. We were

unable to detect hypervariable loci in the Propionibacterium phage population.

To determine the virus protein family domains hosting hypervariable loci, we used

the hidden Markov model analysis implemented by HMMer (Finn, Clements & Eddy,

2011). Hypervariable loci-containing HPV genes include E6, E2, and E1 genes, which are

associated with infectious gene expression, and the L1 major capsid gene, which is

involved in tropism and host immune evasion (Table S1). The L1 major capsid protein is

also a target in contemporary, widely used HPV vaccines (Schiller & Lowy, 2012).

Hypervariable loci were detected in a variety of Staphylococcus phage genes with

predicted functions related to tropism, host immune evasion, and utilization of host

resources (Table S2).

Selective pressures on hypervariable loci
We evaluated the selective pressures on virus genes by calculating the pN/pS ratio of non-

synonymous SNPs (pN) to synonymous SNPs (pS) within each virus taxa (Schloissnig

et al., 2013). This was used as an alternative to dN/dS because dN/dS assumes haplotype

information which cannot be fulfilled by metagenomic data (Schloissnig et al., 2013). In

the pN/pS calculation, neutral evolution is defined as an equal frequency of synonymous

and non-synonymous polymorphisms. Selective pressure favors non-synonymous

mutations, resulting in increased pN/pS ratios. Purifying selection has the opposite effect.

Because the existing model (Schloissnig et al., 2013) is susceptible to stochastic effects and

extreme outliers (e.g., division by zero when pS = 0), we added a pseudocount correction

(Formula 1).
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We determined whether hypervariable loci are in fact loci of focused selective pressure

by comparing pN/pS values of the loci to the adjacent genomic regions. pN/pS values

of hypervariable loci were significantly lower than adjacent regions in both HPV (median:

adjacent = 1.0, hypervariable loci = 0.21; p-value = 3.4e-17) and Staphylococcus phage

(median: adjacent = 0.76, hypervariable loci = 0.41; p-value = 1.8e-40) genomes,

suggesting purifying selection and a propensity to maintain existing protein sequences

(Figs. 1D). HPV hypervariable loci were under significantly greater purifying selection

than those of Staphylococcus phages (median: HPV = 0.21, Staphylococcus phage = 0.41; p-

value = 4.64e-9) (Fig. S1). Furthermore, not only are the pN/pS values

of the hypervariable significantly lower than their adjacent regions, but very few of the

loci have a pN/pS value greater than one.

To evaluate whether the observed selective pressure in HPV and Staphylococcus virus

communities is genome-wide or localized to hypervariable loci, we quantified the

selective pressure on each virus’ genome by calculating the overall pN/pS ratio including

hypervariable loci and non-hypervariable loci SNPs. We observed nearly neutral pressure

across HPVs and Staphylococcus phages that mirrored pressures to those observed in

the regions adjacent to the hypervariable loci (median: HPV = 1.0, Staphylococcus

phage = 0.81, p-value = 3.2e-5) (Fig. S2).

Functional implications of targeted substitutions within
hypervariable loci
In order to evaluate the specific nucleotide changes occurring at hypervariable loci, as

well as to evaluate the implications of specific nucleotide polymorphisms, we quantified

the frequency of individual nucleotide substitutions within hypervariable loci. A>C

and T>C substitutions were most frequent in HPV hypervariable loci (Fig. 2A).

Staphylococcus phages exhibited a significantly different substitution profile (p-value =

0.00018, chi-square test), with the most common substitutions being A>G and G>A

transitions (Fig. 2B). HPVand Staphylococcus phage substitutions were more likely to be

transitions, with a transition/transversion (ti/tv) ratio of 3.25 and 2.02, respectively.

We predicted how hypervariable loci SNPs might affect protein functionality by

evaluating patterns of the amino acid substitutions while correcting for the random

chance that the substitution will occur. The most frequent non-synonymous amino acid

Figure 2 Nucleotide and amino acid substitution patterns within viral hypervariable loci.Heat maps

portraying the counts of every possible nucleotide substitution for each SNP found within (A) HPVand

(B) Staphylococcus phage hypervariable loci. Tile color weight corresponds to the relative abundance of

SNP substitution counts. The diagonal line highlights the panels associated with no substitution. The

substitution patterns of amino acids at each SNP are also shownwith exponential transformation (C, D).

An illustration of the major amino acid substitutions are provided beneath the legends as a reference.

Amino acid charge (E, F) and polarity with acidity (G, H) are shown with log10 transformation. The

absence of a basic or acidic polar identifier indicates the amino acid 20 is polar but neutral. The HPV

substitution profiles are found in the left column and the Staphylococcus phage profiles are found on the

right. Chi-square significance p-value, comparing variation profiles between the viruses in each row (i.e.,

A and B), is shown in the upper right corner of the associated Staphylococcus phage variation profile. The

most frequently substituted amino acid pairs are highlighted with a box around the amino acid letters.
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substitution in HPVs was glycine (consensus amino acid) to valine (variant amino acid,

Fig. 2C). While these amino acids are (non-polar and hydrophobic), glycine is less

hydrophobic than valine. The most frequent non-synonymous amino acid substitution

in Staphylococcus phages was proline to leucine (Fig. 2D), a substitution between a non-

polar cyclic amino acid and an aliphatic straight chain amino acid. Profiles of amino

acid substitution were significantly different between HPVs and Staphylococcus phages

(p-value = 0.0021; chi-square test).

Amino acid polarity and charge were largely maintained in HPV hypervariable loci

(Figs. 2E and 2G). In instances of altered charge, visual inspection suggests the most

frequent changes were from neutral to positive or negative charge, or positive to neutral

charge. Consensus acidic polar residues were not associated with polymorphisms.

Staphylococcus phage community hypervariable loci appeared to be under weaker

substitution selection, with a greater diversity in amino acid charge and polarity

(Figs. 2F and 2H) compared to HPV. Patterns of substitution charge and polarity were

not significant (p-value > 0.5; chi-square test) when comparing the entire HPV to

Staphylococcus phage substitution profiles.

We reinforced the observed functional implications of hypervariable loci by

predicting the effects of their associated SAVs on gene phenotype using the support

vector machine algorithm implemented in SuSPect (Yates et al., 2014). This method

assigns a deleterious score to each hypervariable loci SNP-associated SAV, with 0

representing a neutral SAV and 100 representing a SAV with high likelihood to impact

phenotype. These scores are based on the predicted impact of the SAV on the tertiary

and secondary structure of the resulting protein, the location of the SAV within the

resulting protein (surface vs core), and whether the SAV has previously been associated

with altered protein–protein interactions. Both Staphylococcus phages and HPVs

have an abundance of SNPs associated with SAVs predicted to be deleterious

(deleterious scores approaching 100) (Fig. 3). The HPV SNPs were predicted to be

significantly more likely to impact phenotype than the Staphylococcus phage SNPs

(median: HPV = 45, Staphylococcus phage = 17; p-value < 2.2e-16), suggesting that

SNPs impact functionality differently between viruses.

Diversity generating retroelements as a mechanism for targeted
hypervariability
Diversity generating retroelements are a genetic system used by bacteriophages (as well as

bacteria and archea) to promote targeted hypervariability in genes (Doulatov et al., 2004).

While DGRs are complex and consist of many components, at their most basic they can

be identified as elements consisting of a reverse transcriptase gene and a repeated nucleotide

sequence of length <150 bp that is found in two separate locations of the genome (Doulatov

et al., 2004; Minot et al., 2012; Schillinger et al., 2012), termed the template region and

the variable region. The template region is transcribed, then reverse transcribed in an error-

prone fashion. The resulting cDNA is then integrated into the variable region, introducing

base substitutions. Targeted hypervariation impacts functions including broadened

host cell tropism by mutagenizing a phage tail fiber gene (Doulatov et al., 2004).
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We thus sought to identify candidate DGR cassettes within our viral contigs. We

defined the candidate cassettes as pairs of non-overlapping regions with similar nucleotide

sequences (tblastx of contigs against themselves, e-value < 10e-50) and co-localized

on a contig containing a predicted virus/phage reverse transcriptase gene. We only

considered cassettes that were located within a predicted viral gene, contained at least one

hypervariable locus in their variable region, and exhibited truly random variation

(different between reads). Based on these criteria, we identified one Staphylococcus phage

DGR candidate that contained hypervariable loci. We also identified five other DGR

candidates that were associated with hypervariable loci outside of predicted genes or

that failed to demonstrate linkage disequilibrium, suggesting an association with cryptic

genes or pseudogenes.

For the Staphylococcus phage DGR candidate with hypervariable loci, we calculated

the linkage disequilibrium associated with the variable nucleotide positions to infer

whether the DGR was active or inactive (e.g., an evolutionary artifact). The DGR

cassette had unlinked nucleotide variation, which was supported by low levels of

linkage disequilibrium (squared allelic correlation R2) between SNP pairs in the

variable region (Fig. 4). In this cassette, the template region has less frequent

blocks of linkage equilibrium (unlinked variants) while the variable region was

associated with greater linkage equilibrium. Together this suggests the observed

Staphylococcus phage is active. The variable region was associated with a gene of

unknown function.

Figure 3 SVM predicted impact of hypervariable loci on phenotype. Notched boxplot of deleterious

scores in human papillomavirus (red) and Staphylococcus phage (blue) genomes. A low deleterious score

indicates a predicted neutral phenotypic effect, while a high score indicates a predicted strong pheno-

typic effect. Asterisk indicates significant difference by Wilcoxon rank-sum test (p < 1e15). Boxplot

parameters as described in Fig. 1.

Hannigan et al. (2017), PeerJ, DOI 10.7717/peerj.2959 13/24

http://dx.doi.org/10.7717/peerj.2959
https://peerj.com/


Skin virome variability patterns and SNP locations are reproducible
across different datasets
We repeated our analyses in a separate, independently collected dataset from another

research group (SRA BioProject: 46333) (Oh et al., 2014) to determine the generalizability

of our findings. We analyzed metagenomic sequence data of skin specimens that were

collected from the retroauricular crease without initial purification of virus like particles.

Consistent with our primary analysis, Staphylococcus and Propionibacterium phages were

identified as having the highest coverage and similarity to reference genomes (Fig. 5A).

Pseudomonas phages were identified but were in the minority and had low coverage and

similarity to reference genomes. HPV was not identified as a major virus in our analysis of

the retroauricular crease; however, molluscum contagiosum virus, a poxvirus that causes

cutaneous growths that become severe in immunocompromised states, was present in high

relative abundance in agreement with the original published findings (Oh et al., 2014).
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Figure 4 The diversity generating retroelement as a mechanism for targeted nucleotide variation.

Alignment illustrating a putative diversity generating retroelement in Staphylococcus phage. (A)

Sashimi plot of sequence coverage across the contig. Coverage ranges from 0 to 67�. Below the coverage

is a map of the relevant genes predicted within the contig. Sequence alignment of the diversity gen-

erating retroelement template region (B) and variable region (C). Linkage disequilibrium heatmap for

the template (D) and variable (E) region. Panels compare variable nucleotides to each other and darker

tiles indicate decreased linkage disequilibrium correlation, according to squared allelic correlation (R2)

between pairs of SNPs.
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Similar to our primary analysis, we identified 158 hypervariable loci within the

Staphylococcus phage communities, and observed only 12 hypervariable loci associated

with Propionibacterium phages, further highlighting the overall lack of genetic variability

Figure 5 Validation of study findings using secondary dataset. Results from the Oh et al. (2014) dataset, which was analyzed using the same

workflow as the primary dataset. (A) Scatter plot depicting the candidate contigs considered for analysis in this study. Each point is a contig that

mapped to a reference virus genome. The x-axis shows the length (in nucleotides) of the contig subsection that mapped to the reference genome.

The y-axis shows the overall coverage of the contig as a quantification of sequences aligning to the contig. The color highlights the reference virus

genome that the contig was most similar to, and the size depicts the blast bit score associated with the contig-reference match. (B) Box plots

depicting the evolutionary pressure of Staphylococcus bacteriophages at the hypervariable loci (blue) and the regions immediately adjacent to the

hypervariable loci (red). (C) Heat map portraying the counts of every possible nucleotide substitution for each SNP found within 21 Staphylococcus

phage hypervariable loci. Tile color weight corresponds to the relative abundance of SNP substitution counts. The diagonal line highlights the

panels associated with no substitution. The substitution patterns of amino acids at each (D) SNP, (E) amino acid charge, and (F) polarity with

acidity are also shown. (G) Notched boxplot illustrating the percent of primary dataset SNPs whose nucleotide positions were identical to those

from the secondary validation sample set (left) compared to a simulated dataset of randomly assigned SNP locations (right). The inset shows an

example contig identified in both datasets with 81% identical SNP positions. SNPs are represented as yellow lines, with the inner circle representing

the validation dataset, and the middle circle representing the primary dataset. The outmost ring illustrates the contig, colored by nucleotides (A =

red, C = blue, G = yellow, T = green). Boxplot parameters as described in Fig. 1.
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of the Propionibacterium phage communities. The Staphylococcus phage hypervariable

loci were associated with purifying selection, yielding a pN/pS ratio slightly below 0.4

(Fig. 5B), recapitulating our findings in the primary dataset.

Staphylococcus phage nucleotide substitutions were associated with transitions between

guanine and adenine residues, as we observed in our primary analysis (Fig. 5C). The ti/tv

ratio of these loci was 1.02. The most common amino acid substitution was proline to

leucine (Fig. 5D) and the substitution properties appeared loosely specific based on charge

and polarity (Figs. 5E and 5F), reproducing our findings (Fig. 2).

We also evaluated the reproducibility of SNP position between identical but

independently assembled genomic contigs of the two studies. We quantified the

proportion of SNPs in our primary dataset that were also found at the same position in

the secondary dataset. This revealed a median of approximately 50% overlap between

datasets (Fig. 5G). As a control, we generated a simulated dataset using randomly assigned

SNP positions instead of those determined experimentally. This yielded a significantly

lower median of approximately 15% shared nucleotide SNP calls (Fig. 5G), suggesting

that the observed SNP position is not random. These data indicate that our findings are

consistent across different skin virome populations and techniques of collection and

sequencing.

DISCUSSION
Here we report localized targeted hypervariability in some of the most prevalent members

of the skin virome. Hypervariable loci provide a substrate for complex virus evolution

throughout the virome, which manifest as natural selection that differs by virus type and

enforces purifying selection. Hypervariable loci, which were present in genes encoding

factors including virus tropism and host immune evasion, and were primarily under

purifying selection, whereas overall virus genomes were under near neutral selection. We

characterized selected substitution of nucleotides within hypervariable loci, with different

variant patterns between HPVs and Staphylococcus bacteriophage communities. These

findings were validated in an independently collected cohort.

We showed Propionibacterium phages exhibited strikingly low nucleotide variation

with nearly no identifiable hypervariable loci. While this starkly contrasts with HPVs

and Staphylococcus bacteriophages, it agrees with our current understanding of

Propionibacterium phage diversity. Genome comparisons of Propionibacterium phage

isolates revealed minimal nucleotide diversity, although this has yet to be supported

by targeted metagenomic evidence such as presented here (Marinelli et al., 2012; Liu

et al., 2015). The lack of Propionibacterium phage hypervariability in our metagenomic

dataset provides another level of evidence for minimal Propionibacterium phage diversity

on the skin.

There are several potential factors that could contribute to the limited diversity of

Propionibacterium phages, and a consensus has yet to be reached. The lack of hypervariable

loci suggests minimal evolutionary pressure on the phages, which may be a reflection

of their environment. As suggested previously, the phages and their hosts reside in a

unique and relatively isolated environment deeper in the skin, which may contribute to
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low genomic diversity (Marinelli et al., 2012). Our data further support this hypothesis.

Another factor that could contribute to differential phage genomic diversity is their

host range. Although Propionibacterium phages have broad infectious capabilities within

bacterial species, they may be limited in their ability to infect other species (Marinelli

et al., 2012). Staphylococcus phages demonstrate greater genomic diversity, and may be

capable of infecting a broader range of hosts.

We observed greater selective pressure on HPVs compared to Staphylococcus phages,

which may reflect greater pressures from the human immune system, compared to phage

bacterial hosts. This may also reflect the effects of different virus replication cycles on

evolutionary selection. HPVs do not usually exist in a latent, integrated state, while

Staphylococcus phages do (Bae et al., 2006; Goerke et al., 2009; Edwards et al., 2013). Our

data suggest that at least one-half of the observed Staphylococcus phages have temperate

replication cycles. As long as the Staphylococcus phages are integrated into the bacterial

genome, we hypothesize that they are under less selective pressure by external factors.

The viral hypervariable loci are primarily associated with purifying selective pressure,

a finding in agreement with previous non-metagenomic virus reports (Chen et al., 2005;

Wolf et al., 2006; Li et al., 2011). The observed prominent purifying selective pressure

supports an evolutionary model of long static periods punctuated by brief positive

selection, as is observed in influenza virus (Wolf et al., 2006). Here nucleotide diversity acts

as a primer for rapid virus adaptation through brief positive selection, while maintaining

periods of consistency through purifying selection during static environmental conditions.

As an example, some localized nucleotide diversity may allow for the generation of

phages with different tropisms (e.g., different bacterial strains). If there are limited hosts,

the phages that successfully infect those hosts will be selected for, and altered tropisms will

be actively selected against. If that host population changes, then those viruses with the

appropriate tropism will be selected for instead of being selected against. Ultimately,

longitudinal and strain specific studies will be required to further address this hypothesis.

The amino acid substitutions associated with hypervariable loci were non-random

and followed virus-specific substitution patterns (Fig. 2). HPV hypervariable loci

were most associated with substitutions from glycine to valine. This substitution has

recently been associated with infectious functionality, whereby the introduction of this

mutation resulted in impaired infective ability of the virus (Bronnimann et al., 2013).

This impaired infectious activity was attributed to a reduced efficacy of genomic DNA

endosomal translocation within the host, which may have been the result of impaired

trans-membrane alpha-helical self-association of the L2 minor capsid protein. Given these

findings, our results suggest hypervariable loci are involved in promoting diversity in

endosomal translocation motifs to some degree. Hypervariable loci may certainly have

other diverse, functional roles, as evidenced by the wide range of hypervariable loci-

containing genes.

The dominant amino acid substitution observed in Staphylococcus bacteriophages

was from proline to leucine, a different substitution than that observed in HPV. This

substitution could affect protein structure, particularly a loss of rigidity due to the loss

of the proline ring structure. This observation may reflect a biologically important
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adaptation of the bacteriophage to its Staphylococcus host, which have been shown

to be auxotrophic for proline and leucine and may switch between auxotroph and

prototroph depending on nutrient availability (Emmett & Kloos, 1975;Nuxoll et al., 2012).

Because the amino acids may be in variable supply depending on the host, phages may

alter their amino acid usage to exploit what is most readily available.

The overall selective nucleotide substitutions associated with HPVamino acid charge

highlights a potential maintenance of HPV tropism. The lack of HPV substitutions

between charges may suggest a selection against strong alterations in protein isoelectric

points, which have been implicated in affecting HPV tropism (Mistry, Wibom &

Evander, 2008). Furthermore, because acidic residues almost never mutated to non-

polar residues, these acidic amino acids are potentially important external amino acids

that may participate in tropic protein–protein interactions.

The described patterns in our findings suggest a role for targeted and/or localized

genomic variation. One mechanism of such active targeted variation in Staphylococcus

bacteriophages is DGRs. In this system, a phage-encoded reverse transcriptase copies a

template region to create a variable region in a gene in an error-prone fashion. We

identified such an element that is likely active and promotes diversity in a gene of

unknown function. We additionally identified five other DGR elements whose

hypervariable loci were not associated with an identified gene, suggesting an interesting

phenomenon where high variability is selected for in non-coding regions. While

informative, these discoveries only explain the diversity-generating mechanism of a

small proportion of hypervariable loci. We suspect another underlying mechanism for

the origin and evolution of other hypervariable loci could be that they are located

on functionally important loci such as encoding regions that interact with other genes or

are important to protein structure, therefore being functionally selected. Significant

further investigation will be needed to characterize these and other potential

mechanisms behind the observed hypervariable loci.

This study illustrates the diversity of evolutionary pressures on skin virus communities.

It begins to provide further community-wide context to the molecular understanding

of skin viruses, and highlights important aspects of their infectious cycles. These insights

also contribute to understanding virus ecology of the human skin, and will inform future

translational research into HPV vaccination, vaccination against other skin-associated

viruses, effects of phages on bacterial pathogenesis, and phage therapy. Understanding how

viruses evolve in their natural communities is crucial for improving these translational

applications, and our findings here, which focus on HPV and Staphylococcus phages, will

benefit cutaneous clinical virology and provide a foundation for future studies.

CONCLUSION
We report that the skin virus communities contain hypervariable loci that are associated

with strong purifying selection and targeted nucleotide substitution. The degree of

selective pressure and impact of amino acid substitutions on protein chemistry (structure,

isoelectric point, polarity) is virus specific, despite being members of the same

community. These hypervariable loci are found within diverse viral strains, with varying
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degrees of phylogenetic divergence over their evolutionary history. We further reproduce

these findings in independently collected skin virus communities.

ACKNOWLEDGEMENTS
We thank the members of the Grice and Bushman laboratories for their underlying

contributions.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by grants from the NIH (NIAMS R00AR060873 to

Elizabeth A. Grice and NIAMS R01AR066663 to Elizabeth A. Grice). Geoffrey D.

Hannigan is supported by the Department of Defense, National Defense Science and

Engineering Graduate fellowship program and Jacquelyn S. Meisel is supported by NIH

T32 HG000046 Computational Genomics Training Grant. The funders had no role in

study design, data collection and analysis, decision to publish, or preparation of the

manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

NIH: NIAMS R00AR060873 and NIAMS R01AR066663.

NIH Computational Genomics Training Grant: T32 HG000046.

Competing Interests
Samuel S. Minot is an employee of One Codex.

Author Contributions
� Geoffrey D. Hannigan conceived and designed the experiments, analyzed the data,

wrote the paper, prepared figures and/or tables, reviewed drafts of the paper.

� Qi Zheng analyzed the data, reviewed drafts of the paper.

� Jacquelyn S. Meisel analyzed the data, reviewed drafts of the paper.

� Samuel S. Minot analyzed the data, reviewed drafts of the paper.

� Frederick D. Bushman analyzed the data, reviewed drafts of the paper.

� Elizabeth A. Grice conceived and designed the experiments, wrote the paper, prepared

figures and/or tables, reviewed drafts of the paper.

Data Deposition
The following information was supplied regarding data availability:

GitHub, ViromeVarScripts, https://github.com/Microbiology/ViromeVarScripts.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/

10.7717/peerj.2959#supplemental-information.

Hannigan et al. (2017), PeerJ, DOI 10.7717/peerj.2959 19/24

https://github.com/Microbiology/ViromeVarScripts
http://dx.doi.org/10.7717/peerj.2959#supplemental-information
http://dx.doi.org/10.7717/peerj.2959#supplemental-information
http://dx.doi.org/10.7717/peerj.2959
https://peerj.com/


REFERENCES
Bacher JM, Bull JJ, Ellington AD. 2003. Evolution of phage with chemically ambiguous

proteomes. BMC Evolutionary Biology 3:24 DOI 10.1186/1471-2148-3-24.

Bae T, Baba T, Hiramatsu K, Schneewind O. 2006. Prophages of Staphylococcus aureus

Newman and their contribution to virulence. Molecular Microbiology 62(4):1035–1047

DOI 10.1111/j.1365-2958.2006.05441.x.

Bajgain P, Richardson BA, Price JC, Cronn RC, Udall JA. 2011. Transcriptome characterization

and polymorphism detection between subspecies of big sagebrush (Artemisia tridentata).

BMC Genomics 12(1):370 DOI 10.1186/1471-2164-12-370.

Boisvert S, Raymond F, Godzaridis E, Laviolette F, Corbeil J. 2012. Ray Meta: scalable

de novo metagenome assembly and profiling. Genome Biology 13:R122

DOI 10.1186/gb-2012-13-12-r122.

Borghans JAM, Beltman JB, De Boer RJ. 2004. MHC polymorphism under host-pathogen

coevolution. Immunogenetics 55(11):732–739 DOI 10.1007/s00251-003-0630-5.

Bronnimann MP, Chapman JA, Park CK, Campos SK. 2013. A transmembrane domain and

GxxxG motifs within L2 are essential for papillomavirus infection. Journal of Virology

87(1):464–473 DOI 10.1128/JVI.01539-12.

Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009.

BLAST+: architecture and applications. BMC Bioinformatics 10(1):421

DOI 10.1186/1471-2105-10-421.

Chen Z, Terai M, Fu L, Herrero R, DeSalle R, Burk RD. 2005. Diversifying selection in human

papillomavirus type 16 lineages based on complete genome analyses. Journal of Virology

79(11):7014–7023 DOI 10.1128/jvi.79.11.7014-7023.2005.

Das SR, Hensley SE, Ince WL, Brooke CB, Subba A, Delboy MG, Russ G, Gibbs JS, Bennink JR,

Yewdell JW. 2013. Defining influenza A virus hemagglutinin antigenic drift by sequential

monoclonal antibody selection. Cell Host and Microbe 13(3):314–323

DOI 10.1016/j.chom.2013.02.008.

de Villiers E-M, Fauquet C, Broker TR, Bernard H-U, zur Hausen H. 2004. Classification of

papillomaviruses. Virology 324(1):17–27 DOI 10.1016/j.virol.2004.03.033.

Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and

endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679

DOI 10.1093/bioinformatics/btm009.

Donaldson EF, Lindesmith LC, Lobue AD, Baric RS. 2010. Viral shape-shifting: norovirus

evasion of the human immune system. Nature Reviews Microbiology 8(3):231–241

DOI 10.1038/nrmicro2296.

Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, Deora R, Simons RW, Zimmerly S,

Miller JF. 2004. Tropism switching in Bordetella bacteriophage defines a

family of diversity-generating retroelements. Nature 431(7007):476–481

DOI 10.1038/nature02833.

Edwards TG, Helmus MJ, Koeller K, Bashkin JK, Fisher C. 2013. Human papillomavirus

episome stability is reduced by aphidicolin and controlled by DNA damage response pathways.

Journal of Virology 87(7):3979–3989 DOI 10.1128/JVI.03473-12.

Emmett M, Kloos WE. 1975. Amino acid requirements of staphylococci isolated from human

skin. Canadian Journal of Microbiology 21(5):729–733 DOI 10.1139/m75-107.

Finn RD, Clements J, Eddy SR. 2011. HMMER web server: interactive sequence similarity

searching. Nucleic Acids Research 39:W29–W37 DOI 10.1093/nar/gkr367.

Hannigan et al. (2017), PeerJ, DOI 10.7717/peerj.2959 20/24

http://dx.doi.org/10.1186/1471-2148-3-24
http://dx.doi.org/10.1111/j.1365-2958.2006.05441.x
http://dx.doi.org/10.1186/1471-2164-12-370
http://dx.doi.org/10.1186/gb-2012-13-12-r122
http://dx.doi.org/10.1007/s00251-003-0630-5
http://dx.doi.org/10.1128/JVI.01539-12
http://dx.doi.org/10.1186/1471-2105-10-421
http://dx.doi.org/10.1128/jvi.79.11.7014-7023.2005
http://dx.doi.org/10.1016/j.chom.2013.02.008
http://dx.doi.org/10.1016/j.virol.2004.03.033
http://dx.doi.org/10.1093/bioinformatics/btm009
http://dx.doi.org/10.1038/nrmicro2296
http://dx.doi.org/10.1038/nature02833
http://dx.doi.org/10.1128/JVI.03473-12
http://dx.doi.org/10.1139/m75-107
http://dx.doi.org/10.1093/nar/gkr367
http://dx.doi.org/10.7717/peerj.2959
https://peerj.com/


Ganz HH, Law C, Schmuki M, Eichenseher F, Calendar R, Loessner MJ, Getz WM, Korlach J,

Beyer W, Klumpp J. 2014. Novel giant siphovirus from Bacillus anthracis features unusual

genome characteristics. PLoS ONE 9(1):e85972 DOI 10.1371/journal.pone.0085972.

Goerke C, Pantucek R, Holtfreter S, Schulte B, Zink M, Grumann D, Broker BM, Doskar J,

Wolz C. 2009. Diversity of prophages in dominant Staphylococcus aureus clonal lineages.

Journal of Bacteriology 191(11):3462–3468 DOI 10.1128/JB.01804-08.

GuanM,WangW, Liu X, Tong Y, Liu Y, Ren H, Zhu S, Dubuisson J, Baumert TF, Zhu Y, Peng H,

Aurelian L, Zhao P, Qi Z. 2012. Three different functional microdomains in the hepatitis C

virus hypervariable region 1 (HVR1) mediate entry and immune evasion. Journal of Biological

Chemistry 287(42):35631–35645 DOI 10.1074/jbc.M112.382341.

Guo H, Arambula D, Ghosh P, Miller JF. 2014. Diversity-generating retroelements in

phage and bacterial genomes. Microbiology Spectrum 2(6):1237–1252

DOI 10.1128/microbiolspec.mdna3-0029-2014.

Gutiérrez D, Adriaenssens EM, Martı́nez B, Rodrı́guez A, Lavigne R, Kropinski AM, Garcı́a P.

2013. Three proposed new bacteriophage genera of staphylococcal phages: “3alikevirus,”

“77likevirus” and “Phietalikevirus”. Archives of Virology 159(2):389–398

DOI 10.1007/s00705-013-1833-1.

Hannigan GD, Grice EA. 2013. Microbial ecology of the skin in the era of metagenomics and

molecular microbiology. Cold Spring Harbor Perspectives in Medicine 3(12):a015362

DOI 10.1101/cshperspect.a015362.

Hannigan GD, Hodkinson BP, McGinnis K, Tyldsley AS, Anari JB, Horan AD, Grice EA,

Mehta S. 2014. Culture-independent pilot study of microbiota colonizing open fractures

and association with severity, mechanism, location, and complication from presentation

to early outpatient follow-up. Journal of Orthopaedic Research 32(4):597–605

DOI 10.1002/jor.22578.

Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, Minot S,

Bushman FD, Grice EA. 2015. The human skin double-stranded DNA virome: topographical

and temporal diversity, genetic enrichment, and dynamic associations with the host

microbiome. mBio 6(5):e01578-15 DOI 10.1128/mBio.01578-15.

Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy

human microbiome. Nature 486(7402):207–214 DOI 10.1038/nature11234.

Katoh K, Standley DM. 2013. MAFFTmultiple sequence alignment software version 7:

improvements in performance and usability. Molecular Biology and Evolution 30(4):772–780

DOI 10.1093/molbev/mst010.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A,

Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012.Geneious Basic:

an integrated and extendable desktop software platform for the organization and analysis of

sequence data. Bioinformatics 28(12):1647–1649 DOI 10.1093/bioinformatics/bts199.

Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis ER, Ding L,

Wilson RK. 2012. VarScan 2: somatic mutation and copy number alteration discovery in cancer

by exome sequencing. Genome Research 22(3):568–576 DOI 10.1101/gr.129684.111.

Kubinak JL, Ruff JS, Hyzer CW, Slev PR, Potts WK. 2012. Experimental viral evolution to specific

host MHC genotypes reveals fitness and virulence trade-offs in alternative MHC types.

Proceedings of the National Academy of Sciences of the United States of America 109(9):3422–3427

DOI 10.1073/pnas.1112633109.

Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC,

Burkepile DE, Thurber RLV, Knight R, Beiko RG, Huttenhower C. 2013. Predictive functional

Hannigan et al. (2017), PeerJ, DOI 10.7717/peerj.2959 21/24

http://dx.doi.org/10.1371/journal.pone.0085972
http://dx.doi.org/10.1128/JB.01804-08
http://dx.doi.org/10.1074/jbc.M112.382341
http://dx.doi.org/10.1128/microbiolspec.mdna3-0029-2014
http://dx.doi.org/10.1007/s00705-013-1833-1
http://dx.doi.org/10.1101/cshperspect.a015362
http://dx.doi.org/10.1002/jor.22578
http://dx.doi.org/10.1128/mBio.01578-15
http://dx.doi.org/10.1038/nature11234
http://dx.doi.org/10.1093/molbev/mst010
http://dx.doi.org/10.1093/bioinformatics/bts199
http://dx.doi.org/10.1101/gr.129684.111
http://dx.doi.org/10.1073/pnas.1112633109
http://dx.doi.org/10.7717/peerj.2959
https://peerj.com/


profiling of microbial communities using 16S rRNA marker gene sequences. Nature

Biotechnology 31(9):814–821 DOI 10.1038/nbt.2676.

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods

9(4):357–359 DOI 10.1038/nmeth.1923.

Leplae R, Lima-Mendez G, Toussaint A. 2010. ACLAME: a CLAssification of Mobile genetic

Elements, update 2010. Nucleic Acids Research 38:D57–D61 DOI 10.1093/nar/gkp938.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G,

Durbin R, 1000 Genome Project Data Processing Subgroup. 2009. The sequence

alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

DOI 10.1093/bioinformatics/btp352.

Li S, Fan H, An X, Fan H, Jiang H, Chen Y, Tong Y. 2014. Scrutinizing virus genome termini by

high-throughput sequencing. PLoS ONE 9(1):e85806 DOI 10.1371/journal.pone.0085806.

Li W, Shi W, Qiao H, Ho SYW, Luo A, Zhang Y, Zhu C. 2011. Positive selection on hemagglutinin

and neuraminidase genes of H1N1 influenza viruses. Virology Journal 8(1):183

DOI 10.1186/1743-422x-8-183.

Lim ES, Zhou Y, Zhao G, Bauer IK, Droit L, Ndao IM, Warner BB, Tarr PI, Wang D, Holtz LR.

2015. Early life dynamics of the human gut virome and bacterial microbiome in infants.

Nature Medicine 21(10):1228–1234 DOI 10.1038/nm.3950.

Liu J, Yan R, Zhong Q, Ngo S, Bangayan NJ, Nguyen L, Lui T, Liu M, Erfe MC, Craft N,

Tomida S, Li H. 2015. The diversity and host interactions of Propionibacterium acnes

bacteriophages on human skin. ISME Journal 9(9):2116 DOI 10.1038/ismej.2015.47.

Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, Pride DT.

2014. Altered oral viral ecology in association with periodontal disease. mBio 5(3):e01133-14

DOI 10.1128/mBio.01133-14.

Ma Y, Madupu R, Karaoz U, Nossa CW, Yang L, Yooseph S, Yachimski PS, Brodie EL, Nelson KE,

Pei Z. 2014. Human papillomavirus community in healthy persons, defined by metagenomics

analysis of human microbiome project shotgun sequencing data sets. Journal of Virology

88(9):4786–4797 DOI 10.1128/JVI.00093-14.

Malim MH, Emerman M. 2001. HIV-1 sequence variation: drift, shift, and attenuation.

Cell 104(4):469–472 DOI 10.1016/s0092-8674(01)00234-3.

Marinelli LJ, Fitz-Gibbon S, Hayes C, Bowman C, Inkeles M, Loncaric A, Russell DA,

Jacobs-Sera D, Cokus S, Pellegrini M, Kim J, Miller JF, Hatfull GF, Modlin RL. 2012.

Propionibacterium acnes bacteriophages display limited genetic diversity and broad

killing activity against bacterial skin isolates. mBio 3(5):e00279-12

DOI 10.1128/mBio.00279-12.

Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, Grice EA. 2016.

Skin microbiome surveys are strongly influenced by experimental design. Journal of Investigative

Dermatology 136(5):947–956 DOI 10.1016/j.jid.2016.01.016.

Minot S, Bryson A, Chehoud C, Wu GD, Lewis JD, Bushman FD. 2013. Rapid evolution of the

human gut virome. Proceedings of the National Academy of Sciences of the United States of

America 110(30):12450–12455 DOI 10.1073/pnas.1300833110.

Minot S, Grunberg S, Wu GD, Lewis JD, Bushman FD. 2012.Hypervariable loci in the human gut

virome. Proceedings of the National Academy of Sciences of the United States of America

109(10):3962–3966 DOI 10.1073/pnas.1119061109.

Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, Lewis JD, Bushman FD. 2011. The

human gut virome: inter-individual variation and dynamic response to diet. Genome Research

21(10):1616–1625 DOI 10.1101/gr.122705.111.

Hannigan et al. (2017), PeerJ, DOI 10.7717/peerj.2959 22/24

http://dx.doi.org/10.1038/nbt.2676
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1093/nar/gkp938
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1371/journal.pone.0085806
http://dx.doi.org/10.1186/1743-422x-8-183
http://dx.doi.org/10.1038/nm.3950
http://dx.doi.org/10.1038/ismej.2015.47
http://dx.doi.org/10.1128/mBio.01133-14
http://dx.doi.org/10.1128/JVI.00093-14
http://dx.doi.org/10.1016/s0092-8674(01)00234-3
http://dx.doi.org/10.1128/mBio.00279-12
http://dx.doi.org/10.1016/j.jid.2016.01.016
http://dx.doi.org/10.1073/pnas.1300833110
http://dx.doi.org/10.1073/pnas.1119061109
http://dx.doi.org/10.1101/gr.122705.111
http://dx.doi.org/10.7717/peerj.2959
https://peerj.com/


Mistry N, Wibom C, Evander M. 2008. Cutaneous and mucosal human papillomaviruses differ

in net surface charge, potential impact on tropism. Virology Journal 5(1):118

DOI 10.1186/1743-422x-5-118.

Nishida K, Frith MC, Nakai K. 2009. Pseudocounts for transcription factor binding sites. Nucleic

Acids Research 37(3):939–944 DOI 10.1093/nar/gkn1019.

Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL,

Zhao G, Fleshner P, Stappenbeck TS, McGovern DPB, Keshavarzian A, Mutlu EA, Sauk J,

Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW. 2015. Disease-specific alterations in

the enteric virome in inflammatory bowel disease. Cell 160(3):447–460

DOI 10.1016/j.cell.2015.01.002.

Novaes E, Drost DR, Farmerie WG, Pappas GJ, Grattapaglia D, Sederoff RR, Kirst M. 2008.

High-throughput gene and SNP discovery in Eucalyptus grandis, an uncharacterized genome.

BMC Genomics 9(1):312 DOI 10.1186/1471-2164-9-312.

Nuxoll AS, Halouska SM, Sadykov MR, Hanke ML, Bayles KW, Kielian T, Powers R, Fey PD.

2012. CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of

proline catabolism. PLoS Pathogens 8(11):e1003033 DOI 10.1371/journal.ppat.1003033.

Oh J, Byrd AL, Deming C, Conlan S, Program NCS, Kong HH, Segre JA. 2014. Biogeography and

individuality shape function in the human skin metagenome. Nature 514(7520):59–64

DOI 10.1038/nature13786.

Quint KD, Genders RE, de Koning MN, Borgogna C, Gariglio M, Bouwes Bavinck JN,

Doorbar J, Feltkamp MC. 2015. Human Beta-papillomavirus infection and keratinocyte

carcinomas. Journal of Pathology 235(2):342–354 DOI 10.1002/path.4425.

Rambaut A. 2006. FigTree. Available at http://tree.bio.ed.ac.uk/software/figtree/ (accessed 3 June

2015).

Schiller JT, Lowy DR. 2012. Understanding and learning from the success of prophylactic

human papillomavirus vaccines. Nature Reviews Microbiology 10:681–692

DOI 10.1038/nrmicro2872.

Schillinger T, Lisfi M, Chi J, Cullum J, Zingler N. 2012. Analysis of a comprehensive dataset of

diversity generating retroelements generated by the program DiGReF. BMC Genomics 13:430

DOI 10.1186/1471-2164-13-430.

Schloissnig S, Arumugam M, Sunagawa S, Mitreva M, Tap J, Zhu A, Waller A, Mende DR,

Kultima JR, Martin J, Kota K, Sunyaev SR, Weinstock GM, Bork P. 2013. Genomic

variation landscape of the human gut microbiome. Nature 493(7430):45–50

DOI 10.1038/nature11711.

Schloss PD, Handelsman J. 2008. A statistical toolbox for metagenomics: assessing functional

diversity in microbial communities. BMC Bioinformatics 9(1):34 DOI 10.1186/1471-2105-9-34.

Schmieder R, Edwards R. 2011. Fast identification and removal of sequence contamination

from genomic and metagenomic datasets. PLoS ONE 6(3):e17288

DOI 10.1371/journal.pone.0017288.

Shah S, Alexaki A, Pirrone V, Dahiya S, Nonnemacher MR, Wigdahl B. 2014. Functional

properties of the HIV-1 long terminal repeat containing single-nucleotide polymorphisms in Sp

site III and CCAAT/enhancer binding protein site I. Virology Journal 11(1):92

DOI 10.1186/1743-422x-11-92.

Shin J-H, Blay S, McNeney B, Graham J. 2006. LDheatmap: an R function for graphical display of

pairwise linkage disequilibria between single nucleotide polymorphisms. Journal of Statistical

Software 16: DOI 10.18637/jss.v016.c03.

Hannigan et al. (2017), PeerJ, DOI 10.7717/peerj.2959 23/24

http://dx.doi.org/10.1186/1743-422x-5-118
http://dx.doi.org/10.1093/nar/gkn1019
http://dx.doi.org/10.1016/j.cell.2015.01.002
http://dx.doi.org/10.1186/1471-2164-9-312
http://dx.doi.org/10.1371/journal.ppat.1003033
http://dx.doi.org/10.1038/nature13786
http://dx.doi.org/10.1002/path.4425
http://tree.bio.ed.ac.uk/software/figtree/
http://dx.doi.org/10.1038/nrmicro2872
http://dx.doi.org/10.1186/1471-2164-13-430
http://dx.doi.org/10.1038/nature11711
http://dx.doi.org/10.1186/1471-2105-9-34
http://dx.doi.org/10.1371/journal.pone.0017288
http://dx.doi.org/10.1186/1743-422x-11-92
http://dx.doi.org/10.18637/jss.v016.c03
http://dx.doi.org/10.7717/peerj.2959
https://peerj.com/


Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large

phylogenies. Bioinformatics 30(9):1312–1313 DOI 10.1093/bioinformatics/btu033.

UniProt Consortium. 2014. Activities at the Universal Protein Resource (UniProt). Nucleic Acids

Research 42(D1):D191–D198 DOI 10.1093/nar/gkt1140.

Van Doorslaer K, Tan Q, Xirasagar S, Bandaru S, Gopalan V, Mohamoud Y, Huyen Y, McBride

AA. 2013. The Papillomavirus Episteme: a central resource for papillomavirus sequence data

and analysis. Nucleic Acids Research 41(D1):D571–D578 DOI 10.1093/nar/gks984.
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